
MATH 449, HOMEWORK 2

DUE SEPTEMBER 12, 2014

Part I. Theory

Problem 1. For Heron’s method, recall that the error ek = xk−
√
y satisfies

the identity ek+1 = 1
2e

2
k/xk.

a. Use this identity and Definition 1.7 to show that, if xk →
√
y and

y > 0, then the method converges quadratically. (Prove this di-
rectly, i.e., do not just cite the results on Newton’s method from the
book/lecture.)

b. If y = 0, show that xk → 0 at least linearly (from Definition 1.4) but
not quadratically.

Problem 2. In this problem, you will examine the simple iterative method
xk+1 = 2xk − yx2k for y 6= 0. This can be used to compute the reciprocal 1/y
without any division operations.

a. Show that 0 and 1/y are the only fixed points of g(x) = 2x− yx2.
b. Determine whether each fixed point is stable or unstable.
c. This iteration is actually Newton’s method for a particular choice of

f , which has 1/y as a root. Find f , and show this equivalence.

Part II. Programming

Download the file hw2.py from the class web page, open it in Spyder, and
click the green “play” button to run the code in the IPython console (just
like last week).

About the code. In Python, functions can be treated just like variables:
they can even be returned and passed as arguments to other functions. In
newtonStep and newtonArray, the arguments f and df correspond to a
function f (whose root we wish to find) and its derivative f ′. Example: for
f(x) = sinx, f ′(x) = cosx, and x0 = 3, we can take a step of Newton’s
method by running the command newtonStep(sin, cos, 3).

Problem 3. Using newtonArray, apply Newton’s method to f(x) = sinx
with x0 = 3. How many iterations are needed to get the correct answer to 6
decimal places?

Problem 4. The function f, corresponding to f(x) = x3 − 2, has already
been defined in hw2.py. (In Python, note that x3 is written as x**3, not x^3!)
Define a new function df, corresponding to f ′(x), and use newtonArray to

1

2 DUE SEPTEMBER 12, 2014

approximate 3
√

2 starting from x0 = 1. How many iterations are needed to
get the correct answer to 6 decimal places?

Problem 5. Implement the reciprocal algorithm from Problem 2 by defining
functions recipStep(y, x) and recipArray(y, x0, n). (You may wish to
use heronStep and heronArray from hw1.py as a template.) Approximate
1/3 starting from x0 = 0.3. After 4 iterations, to how many decimal places
is the answer correct? Explain how and why this converges “faster” than
the long division algorithm you learned in school.

	Part I. Theory
	Part II. Programming

