MATH 449, HOMEWORK 7

DUE NOVEMBER 14, 2014

Part I. Theory

Problem 1. Prove that Simpson's rule is exact for degree ≤ 3 polynomials.

Problem 2.

a. Find a function f on the interval $[-1,1]$ where

$$
\left|E_{1}(f)\right|=\frac{(b-a)^{3}}{12} M_{2}>0,
$$

i.e., where the trapezoid rule attains the maximum error allowed by Theorem 7.1, but does not integrate f exactly.
b. Find a function f on the interval $[-1,1]$ where

$$
\left|E_{2}(f)\right|=\frac{(b-a)^{5}}{2880} M_{4}>0,
$$

i.e., where Simpson's rule attains the maximum error allowed by Theorem 7.2, but does not integrate f exactly.

Problem 3 (Süli-Mayers, Exercise 7.3). A quadrature formula on the interval $[-1,1]$ uses the quadrature points $x_{0}=-\alpha$ and $x_{1}=\alpha$, where $0<\alpha \leq 1$:

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx w_{0} f(-\alpha)+w_{1} f(\alpha) .
$$

The formula is required to be exact whenever f is a polynomial of degree 1 .
a. Show that $w_{0}=w_{1}=1$, independent of the value of α.
b. Show also that there is one particular value of α for which the formula is exact for all polynomials of degree 2 . Find this α, and
c. show that, for this value, the formula is also exact for all polynomials of degree 3 .

Part II. Programming

Like last week, there is no sample code for this assignment, so you should create a new file hw7.py beginning with the usual lines:

```
from __future__ import division
from pylab import *
```

Hand in a printed copy of your code, as well as a printout of the IPython terminal session(s) containing the commands and output you used to get your answers.

Problem 4. Write functions mid($\mathrm{f}, \mathrm{a}, \mathrm{b}$), $\operatorname{trap}(\mathrm{f}, \mathrm{a}, \mathrm{b})$, and $\operatorname{simp}(\mathrm{f}, \mathrm{a}, \mathrm{b})$ implementing the midpoint rule, trapezoid rule, and Simpson's rule for a function f on the interval $[a, b]$. Use each of these quadrature rules to approximate $\frac{\pi}{4}=\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$.
Problem 5. Next, write functions midc (f, a, b, m), $\operatorname{trapc}(f, a, b, m)$, and $\operatorname{simpc}(f, a, b, m)$ implementing the composite midpoint rule, trapezoid rule, and Simpson's rule for a function f on the interval $[a, b]$, where this interval is subdivided into m equally-sized subintervals. As in Problem 4, use each of these to approximate $\frac{\pi}{4}=\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$ for the following parameters m :
a. $m=16$,
b. $m=256$,
c. $m=4096$.

