MATH 449, HOMEWORK 1

DUE SEPTEMBER 4, 2015

Part I. Theory

Problem 1. Brouwer's fixed point theorem (Süli and Mayers, Theorem 1.2) only holds for *closed* intervals [a, b]. For each of the following intervals I, find a continuous function $g: I \to I$ that does *not* have a fixed point in I.

- **a.** I = (0, 1]**b.** I = [0, 1)
- **c.** $I = [0, \infty)$

Problem 2. The simple iteration $x_{k+1} = \cos x_k$ always converges to a unique fixed point $\xi = \cos \xi$, no matter which x_0 you start with. (If you have a scientific calculator or calculator app, you can see this by putting in any number and hitting \cos repeatedly—in radians mode, of course.) Prove this using the contraction mapping theorem.

Hint: Use the mean value theorem, as in Example 1.2 in Süli and Mayers, to show that $x \mapsto \cos x$ is a contraction on some appropriately chosen interval.

Part II. Programming

To get started, download and install the Anaconda software package from http://continuum.io/downloads. Next, start the Anaconda Launcher, and install and launch the Spyder application. (You can also launch *Spyder* by typing spyder in a command line terminal.) Finally, open the file hw1.py (available on the class web page) in Spyder, and click the green "play" button to run the code in the IPython console.

Problem 3. Starting with $x_0 = 1$, how many iterations n of Heron's method are needed so that $x_n \approx \sqrt{2}$ is correct to 6 decimal places? What about $\sqrt{0}$?

Problem 4. The function plotLogError plots $\log |x_k - \sqrt{y}|$ for Heron's method. Look at the cases y = 2, 3 when $x_0 = 1$. For each of these plots, you should notice that something strange happens after a few steps. Can you explain the observed behavior?

Problem 5. What happens when you try to apply Heron's method to y < 0? In particular, can you explain what happens for y = -1, -2, -3 when $x_0 = 1$?

Problem 6. Create a new function $\cos Array(x0,n)$, which implements the recursion $x_{k+1} = \cos x_k$ from Problem 2 but is otherwise similar to heronArray. Run the command plot($\cos Array(1,40)$), and print the resulting plot. Give the fixed point $\xi = \cos \xi$ to 6 decimal places.