MATH 450, HOMEWORK 6

DUE FRIDAY, APRIL 29, 2016

Part I. Theory

Problem 1. In class, we computed the entries of the stiffness matrix for the 2-D Laplace operator, using piecewise-linear triangular elements on the grid

and showed that this coincides with the 5 -point finite difference stencil

Now, do this for the lowest-order rectangular elements on the grid

What is the resulting " 9 -point stencil"?

Problem 2. Similarly to Problem 1, compute the stiffness matrix entries using piecewise-linear triangular elements on the grid

consisting of equilateral triangles. What is the resulting "7-point stencil"?

Problem 3. Find the six quadratic shape functions on the reference triangle with nodal degrees of freedom at the vertices and midpoints, as shown:

Part II. Programming

Consider an initial-boundary-value problem for the 1-D heat equation:

$$
\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t) & & \text { for }(x, t) \in(0,1) \times(0,1), \\
u(0, t)=u(1, t) & =0 & & \text { for } t \in[0,1], \\
u(x, 0) & =\sin ^{2}(\pi x) & & \text { for } x \in[0,1] .
\end{aligned}
$$

The function plotFTCS (M,N) in hw6.py computes and plots a numerical solution to this problem using the forward-time centered-space (FTCS) finitedifference method -ie., Euler's method in t and centered second-order finite differences in x-with M space steps of size $h=1 / M$ and N time steps of size $k=1 / N$.

Problem 4. Use plotFTCS to plot the numerical solution with $M=10$ for $N=50,100$, and 200. Describe and explain the behavior of the solutions as N increases.

Problem 5. Using plotFTCS as a general template, create a new function plotBTCS (M, N) that computes and plots a numerical solution using the backward-time centered-space (BTCS) method-i.e., backward Euler in t and centered second-order finite differences in x.

Note: this method is linearly implicit in time, so you will have to solve a linear system involving A_{h} at each time step. Since you are dealing with small values of M, though, feel free to use the standard linear solver solve instead of solveh_banded.

Plot the numerical solution with $M=10$ for $N=5,10$, and 20 .
Problem 6. Create a function plot CN(M,N) that computes and plots a numerical solution using the Crank-Nicolson method-i.e., the trapezoid method in t and centered second-order finite differences in x. As in Problem 5 , feel free to use solve instead of solveh_banded to solve the linear system at each time step.

Plot the numerical solution with $M=10$ for $N=5,10$, and 20 .

