MATH 450, HOMEWORK 3

DUE MARCH 2, 2018

Part I. Theory

Problem 1 (Iserles, Exercise 3.4). Restricting your attention to scalar autonomous equations $y^{\prime}=f(y)$, prove that the ERK method with the tableau

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$	0	$\frac{1}{2}$		
1	0	0	1	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

is of order four. (Note: This is a long calculation, so start early!)
Problem 2 (Iserles, Exercise 3.7). Write the theta method, (1.13), as a Runge-Kutta method.

Problem 3 (Iserles, Exercise 4.6). Evaluate explicitly the function r for the following Runge-Kutta methods:

a. | 0 | 0 | 0 |
| :---: | :---: | :---: |
| $\frac{2}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| | $\frac{1}{4}$ | $\frac{3}{4}$ |,

b. | $\frac{1}{6}$ | $\frac{1}{6}$ | 0 |
| :---: | :---: | :---: |
| $\frac{5}{6}$ | $\frac{2}{3}$ | $\frac{1}{6}$ |
| | $\frac{1}{2}$ | $\frac{1}{2}$ |,

c. | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | 0 |
| 1 | 0 | 1 | 0 |
| | $\frac{1}{6}$ | $\frac{2}{3}$ | $\frac{1}{6}$ |.

Part II. Programming

Download the sample code, hw3.py, which contains implementations of Euler's method (euler) and the explicit trapezoid rule (etrap). For etrap, observe that after computing xi1 $=\xi_{1}$ and xi2 $=\xi_{2}$, we immediately evaluate and store the function values $\mathrm{f} 1=f\left(t_{n}+c_{1} h, \xi_{1}\right)$ and $\mathrm{f} 2=f\left(t_{n}+c_{2} h, \xi_{2}\right)$. This lets us reuse these function values at later stages without having to evaluate f again. (Remember: function evaluation is expensive!)

Create functions implementing the following ERK methods:

- explicit midpoint: emid (f,t0,y0,h,N)
- classical 3-stage Runge-Kutta: rk3(f,t0,y0,h,N)
- RK4 (tableau given in Problem 1): rk4 (f,t0, y0,h,N)

Problem 4. For this problem, you will be solving the scalar IVP

$$
y^{\prime}=y, \quad y(0)=1
$$

numerically on the interval $[0,1]$. The exact solution $y(t)=e^{t}$ has $y(1)=$ $e=2.7182818284590 \ldots$ Approximate e by solving this IVP with $h=0.01$ for each of the following explicit Runge-Kutta methods:
a. euler
b. emid
c. rk3
d. rk4

Problem 5. The function errorPlot (method) applies method (which can be any function for solving ODEs) to solve the IVP from Problem 4 for various choices of h, then creates a log-log plot of the absolute error vs. h.

Create error plots for the methods euler, emid, rk3 and rk4. What is the relationship between the plot and the order of each method?

Problem 6. The Lorenz system is a famous system of nonlinear ODEs, whose study (numerically, at first) helped launch Chaos Theory. Consider the system of ODEs

$$
\begin{aligned}
x^{\prime} & =10(y-x) \\
y^{\prime} & =x(28-z)-y \\
z^{\prime} & =x y-\frac{8}{3} z
\end{aligned}
$$

which is a special case of the Lorenz system. If $\boldsymbol{y}=(x, y, z)$, then this is in the usual form $\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y})$. Create a function $f \operatorname{Lorenz}(\mathrm{t}, \mathrm{y})$ corresponding to this \boldsymbol{f}.

The function lorenzPlot uses your rk4 and fLorenz to solve the Lorenz system for $t \in[0,100]$, with $\boldsymbol{y}_{0}=(0,2,20)$, and creates a 3 D plot of the numerical solution. Run lorenzPlot(), and print out your plot.

