
MATH 450, HOMEWORK 5

DUE FRIDAY, APRIL 13, 2018

Part I. Theory

Problem 1. Given N ∈ N, let h = 1
N and xk = kh for k = 0, . . . , N . Find

the finite-difference coefficients a0, a1, a2, a3 ∈ R such that

1

h2
(
a0u(xk) + a1u(xk+1) + a2u(xk+2) + a3u(xk+3)

)
= u′′(xk) +O(h2),

whenever u ∈ C4
(
[0, 1]

)
and k = 0, . . . , N − 3.

Problem 2. Given sequences of real numbers v0, . . . , vN and w0, . . . , wN ,
prove the “summation by parts” formula,

N∑
k=1

vk(wk − wk−1) = (vNwN − v0w0)−
N−1∑
k=0

(vk+1 − vk)wk.

Hint: Split up the sum on the left-hand side and reindex.

Problem 3. Given any v1, . . . , vk ∈ R, prove the inequality(k∑
j=1

vj

)2

≤ k
k∑

j=1

v2j .

Hint: Write
∑k

j=1 vj = (v1, . . . , vk) · (1, . . . , 1), and apply Cauchy–Schwarz.

Part II. Programming

Problem 4. In this problem, you’re going to learn a bit about SciPy’s tools
for computing efficiently with SPD banded matrices. Begin by inputting (or
adding to the beginning of your code) the following import command:

from scipy.linalg import solveh_banded

(The h in solveh stands for “Hermitian,” which means the same thing as
“symmetric” for matrices with real entries.)

As a motivating example, suppose we have a SPD tridiagonal matrix

A =


α0 β1

β1 α1
. . .

. . .
. . . β999

β999 α999

 .

This 1000× 1000 matrix has one million entries, but we don’t want to store
them all, since only 2998 of them are nonzero! In fact, since the matrix is
symmetric, we only need to store 1999 pieces of information: the entries

1

2 DUE FRIDAY, APRIL 13, 2018

α0, . . . , α999 and β1, . . . , β999 along the bands. The bands can be stored
conveniently in a 2× 1000 matrix Ab, defined by

Ab =

(
∗ β1 · · · β999

α0 α1 · · · α999

)
.

(The entry ∗ here can be any number; since there is no β0, it’s just ignored.)
The system Ax = b can be solved using the command solveh_banded(Ab,b),
where Ab corresponds to the 2× 1000 matrix Ab.

a. Use solveh_banded to solve the 1000× 1000 linear system Ax = b,
where

A =


2 −1

−1 2
. . .

. . .
. . . −1

−1 2

 , b =


1
...

1

 .

Print out the first 10 entries x[:10].
b. Compare the running time of solveh_banded and the standard non-

sparse solver solve by running the following commands in IPython:

%timeit solveh_banded(Ab,b)

%timeit solve(A,b)

where A, Ab, and b correspond to the linear system in part a.
c. Repeat part b—but this time, with a 10000× 10000 system. (The

non-sparse computation may take a few minutes, so this could be a
good opportunity to get a cup of coffee.)

Problem 5. Create a function solveBVP1(f,N) that approximates the
solution u to the two-point BVP

−u′′(x) = f(x) for 0 < x < 1, u(0) = u(1) = 0,

using the centered, second-order finite difference method with h = 1
N . Your

method should use the function solveh_banded, as in Problem 4—not solve!

a. Let f(x) = 1. Plot the approximate solutions for N = 4, 16, 256.
b. Let f(x) = x2. Plot the approximate solutions for N = 4, 16, 256.

Problem 6. Create another function solveBVP2(f,N) that approximates
the solution u to the (slightly different) two-point BVP

−u′′(x) + u(x) = f(x) for 0 < x < 1, u(0) = u(1) = 0.

Again, use solveh_banded—not solve!

a. Let f(x) = 1. Plot the approximate solutions for N = 4, 16, 256.
b. Let f(x) = x2. Plot the approximate solutions for N = 4, 16, 256.

	Part I. Theory
	Part II. Programming

