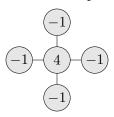
MATH 450, HOMEWORK 6

DUE FRIDAY, APRIL 27, 2018

Part I. Theory

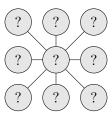
Problem 1. In class, we computed the entries of the stiffness matrix for the 2-D Laplace operator, using piecewise-linear triangular elements on the grid

and showed that this coincides with the 5-point finite difference stencil



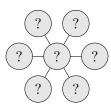
Now, do this for the lowest-order rectangular elements on the grid

What is the resulting "9-point stencil"?



Problem 2. Similarly to Problem 1, compute the stiffness matrix entries using piecewise-linear triangular elements on the grid

consisting of equilateral triangles. What is the resulting "7-point stencil"?



Problem 3. Find the six quadratic shape functions on the reference triangle with nodal degrees of freedom at the vertices and midpoints, as shown:

Part II. Programming

Consider an initial-boundary-value problem for the 1-D heat equation:

$$u_t(x,t) = u_{xx}(x,t)$$
 for $(x,t) \in (0,1) \times (0,1)$,
 $u(0,t) = u(1,t) = 0$ for $t \in [0,1]$,
 $u(x,0) = \sin^2(\pi x)$ for $x \in [0,1]$.

The function plotFTCS(M,N) in hw6.py computes and plots a numerical solution to this problem using the forward-time centered-space (FTCS) finite-difference method—i.e., Euler's method in t and centered second-order finite differences in x—with M space steps of size h=1/M and N time steps of size k=1/N.

Problem 4. Use plotFTCS to plot the numerical solution with M=10 for $N=50,\,100,\,$ and 200. Describe and explain the behavior of the solutions as N increases.

Problem 5. Using plotFTCS as a general template, create a new function plotBTCS(M,N) that computes and plots a numerical solution using the backward-time centered-space (BTCS) method—i.e., backward Euler in t and centered second-order finite differences in x.

Note: This method is linearly implicit in time, so you will have to solve a linear system involving A_h at each time step. Since you are dealing with small values of M, though, feel free to use the standard linear solver solve instead of solveh_banded.

Plot the numerical solution with M = 10 for N = 5, 10, and 20.

Problem 6. Create a function plotCN(M,N) that computes and plots a numerical solution using the Crank-Nicolson method—i.e., the trapezoid method in t and centered second-order finite differences in x. As in Problem 5, feel free to use solve instead of $solveh_banded$ to solve the linear system at each time step.

Plot the numerical solution with M = 10 for N = 5, 10, and 20.