MATH 456, HOMEWORK 8

DUE DECEMBER 4, 2013

Problem 1. Given S, N, and $d<R<u$, suppose we take the CRR prices $S(N, j)=S u^{j} d^{N-j}$ and probabilities $Q_{j}=Q_{j}^{\prime}=\binom{N}{j} \pi^{j}(1-\pi)^{N-j}$, where $\pi=\frac{R-d}{u-d}$. Prove that the implied binomial tree computed using the "Simple as One, Two, Three" algorithm is precisely the same as the CRR tree. That is, show that $S(n, j)=S u^{j} d^{n-j}$ for all $n=0, \ldots, N$ and $j=0, \ldots, n$.
Hint: Use induction on N.
Problem 2. Assume that $Q_{j}>0$ for $j=0, \ldots, N$ and $\sum_{j=0}^{N} Q_{j}=1$. Prove that the probabilities $Q(n, j)=\binom{n}{j} q(n, j)$ obtained using the "Simple as One, Two, Three" algorithm also satisfy $Q(n, j)>0$ for $j=0, \ldots, n$ and $\sum_{j=0}^{n} Q(n, j)=1$ for all $n=0, \ldots, N$. (In other words, this shows that we always obtain "valid" probabilities, and we never run into the sort of problems we can encounter with implied volatility trees.)
Hint: Use induction on N, along with the identity $\binom{n}{j-1}+\binom{n}{j}=\binom{n+1}{j}$.
Problem 3. Do Exercise 12.13.
Correction: There are a few typos in this problem. First, $q(2,2)$ and $Q(2,2)$ are equal to 0.3 , not $0.3333 \ldots$ as stated. Moreover, the formulas for $Q(2, j)$ are wrong: they should be $Q(2,0)=1 \cdot q(2,0), Q(2,1)=2 \cdot q(2,1)$, and $Q(2,2)=1 \cdot q(2,2)$.

