HOMEWORK 1

MATH 5051, FALL 2012 DUE WEDNESDAY, SEPTEMBER 5

Exercise 1. Let X be an infinite set, and define

 $\mathcal{A} = \{ E \subset X \mid E \text{ is finite or } E^c \text{ is finite} \}.$

Then \mathcal{A} is an algebra (called the *finite-cofinite algebra*).

Exercise 2. Let $\{\mathcal{M}_{\alpha}\}_{\alpha \in A}$ be a nonempty family of σ -algebras on a set X. Then $\mathcal{M} = \bigcap_{\alpha \in A} \mathcal{M}_{\alpha}$ is also a σ -algebra. (Do not assume that the index set A is countable.)

Exercise 3 (Folland, Exercise 1.3). Let \mathcal{M} be an infinite σ -algebra.

- $\mathbf{a.}\ \mathcal{M}$ contains an infinite sequence of nonempty, disjoint sets.
 - (*Hint*: If \mathcal{M} contains an infinite sequence of strictly nested sets, then we're done, so assume that no such sequence exists. Next, use this assumption to find a nonempty set in \mathcal{M} with no nonempty proper subsets in \mathcal{M} . Finally, show that this can be done infinitely many times.)
- **b.** card(\mathcal{M}) $\geq \mathfrak{c}$. (*Note:* In Folland, \mathfrak{c} denotes card(\mathbb{R}).)

Exercise 4 (Folland, Exercise 1.4). An algebra \mathcal{A} is a σ -algebra if and only if \mathcal{A} is closed under countable increasing unions (i.e., if $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}$ and $E_1 \subset E_2 \subset \cdots$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$).

Exercise 5 (Folland, Exercise 1.5). If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} . (*Hint*: Show that the latter object is a σ -algebra.)