
FIBERS OF GENERIC PROJECTIONS

ROYA BEHESHTI AND DAVID EISENBUD

Abstract. Let X be a smooth projective variety of dimension n in Pr,
and let π : X → Pn+c be a general linear projection , with c > 0. In this
paper we bound the scheme-theoretic complexity of the fibers of π.

In his famous work on stable mappings, John Mather extended the clas-
sical results by showing that the number of distinct points in the fiber is
bounded by B := n/c + 1, and that, when n is not too large, the degree
of the fiber (taking the scheme structure into account) is also bounded by
B. A result of Lazarsfeld shows that this fails dramatically for n � 0. We
describe a new invariant of the scheme-theoretic fiber that agrees with the
degree in many cases and is always bounded by B. We deduce, for example,
that if we write a fiber as the disjoint union of schemes Y ′ and Y ′′ such that
Y ′ is the union of the locally complete intersection components of Y , then
deg Y ′ + deg Y ′′red ≤ B.

Our method also gives a sharp bound on the subvariety of Pr swept
out by the l-secant lines of X for any positive integer l, and we discuss a
corresponding bound for highly secant linear spaces of higher dimension.
These results extend Ziv Ran’s “Dimension+2 Secant Lemma” [29].

1. Introduction

Throughout this paper, we work over an algebraically closed field k of char-
acteristic zero. We denote by X ⊂ Pr = Pr

k a smooth projective variety, and
by π : X → Pn+c a general linear projection with c > 0.

We are interested in how large and complex the fibers π−1(q) can be for
q ∈ Pn+c. Classical computations, greatly extended by work of John Mather,
show that when n is small (for example c = 1 and n ≤ 14) the degree of any
fiber is bounded by n/c + 1. For n large, however, Lazarsfeld has shown that
the fibers can have exponentially greater degree (for example with c = 1 and
n = 56 there will sometimes be fibers of degree ≥ 70.) In fact, when n is large
compared to c we know no bound on the degrees of the fibers that depends on
n and c alone. Nevertheless, the degree of a fiber is bounded by n/c + 1 in
so many cases that it is tempting to repair the situation by looking for ways
to replace the degree by some other locally defined invariant, one that “often”
agrees with the degree and always takes values ≤ n/c + 1. In this paper we
introduce an invariant that provides just such a replacement.

1Both authors are grateful to MSRI, where most of the work of this paper was done while
the first author was a postdoctoral fellow. The second author was partially supported by the
NSF grant DMS 0701580.
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Any fiber of π : X → Pn+c can be expressed as the scheme-theoretic inter-
section of X with a linear space Λ. Our invariant is defined more generally for
the intersection of two schemes X,Y in an ambient scheme P .

We first define a coherent sheaf Q(X,Y ), supported on Z := X ∩ Y , as the
cokernel of the restriction map

Q(X,Y ) := coker(Hom(IZ/X/I2
Z/X ,OZ)→ Hom(IY/P /I2

Y/P ,OZ)).

When the intersection is “too small” in the sense that codimY −dimX > dimZ,
then we define

q(X,Y ) :=
degQ(X,Y )

codimY − dimX − dimZ
.

The invariant q(X,Y ) is often equal to the degree of Z. We will show that
this is the case, for example, when X ∩ Y is locally a complete intersection,
or, more generally, is a smooth point of the “smoothing component” of its
Hilbert scheme in Y or X. (Curiously, though much attention has been paid
to computing intersection numbers in the case of excess intersection, where
codimY −dimX < dimZ, we are not aware of nontrivial invariants other than
degZ for the case codimY − dimX > dimZ.)

Under good circumstances Q(X,Y ) is the module of obstructions to an in-
finitesimal flat deformation of Y inducing a flat deformation of X ∩ Y . In
general, it measures the “excess intersection” of X and Y : when these are
both locally complete intersections, Q(X,Y ) vanishes if and only if the inter-
section is dimensionally transverse. If X,Y and P are smooth and Z = X ∩ Y
is finite, then Q(X,Y ) is equal to Q(Y,X), and up to a direct sum with a
free OZ module, these depend only on Z (see Theorem 7.1 and Proposition
7.3). From this one can show that q(X,Y ) depends only on Z and the number
codimY − dimX − dimZ.

We now return to the case of a generic projection π : X → Pn+c. A fiber Z
can be written as X ∩ Λ, where

codim Λ− dimX = c > 0 = dimZ,

so q(X,Λ) is defined and, as we have noted, it is equal to the degree of Z in
many cases. Our main result says that q(X,Λ) behaves as we would hope:

Theorem 1.1. If X is a smooth projective variety of dimension n in Pr, and
if π : X → Pn+c is a general projection, then every fiber X ∩ Λ, where Λ is a
linear subspace containing the projection center in codimension 1, satisfies;

q(X,Λ) ≤ n

c
+ 1.

The invariant q(X,Λ) can be greater than or less than the degree of the
scheme X ∩Λ. Locally at a point of X ∩Λ that is not a complete intersection,
we can show in the situation above that q(X,Λ) is at least 2

c + 1 (see also
Conjecture 1.4.)
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A corollary of the work of John Mather [26] is that a fiber of π as in Theorem
1.1 can never have more than n/c+ 1 distinct points. Mather’s work, and also
that of Ziv Ran [29] implies that if a fiber is curvilinear, then it has degree at
most n/c+1. Both these statements are improved by the following consequence
of Theorems 1.1 and 4.4. The class of “licci” schemes (schemes in the linkage
class of complete intersections), which is explained in Section 3, contains, for ex-
ample, the class of complete intersections, but also all zero-dimensional schemes
of embedding dimension at most 2.

Corollary 1.2. Suppose that X is a smooth n dimensional variety in Pr and
that π is a generic projection of X into Pn+c, with c ≥ 1. Write π−1(p) = X∩Λ,
where Λ is a linear space containing the projection center in codimension 1. If
we decompose π−1(p) as Y ∪Y ′ where Y is the union of all the licci components,
then

deg Y + (1 +
3
c

) deg Y ′red ≤ q(X,Λ) ≤ n/c+ 1.

In case c = 1 this may be improved to

deg Y + 5 deg Y ′red ≤ q(X,Λ) ≤ n+ 1.

Castelnuovo-Mumford Regularity. It would be nice to have bounds on
the complexity of the fiber in terms of more familiar invariants. One attractive
possibility not contradicted by Lazarsfeld’s examples is given by the following
conjecture:

Conjecture 1.3. Let X ⊂ Pr be a smooth projective variety of dimension n,
and let π : X → Pn+c be a general linear projection. If Z ⊂ X ⊂ Pr is any
fiber, then the Castelnuovo-Mumford regularity of Z, as a subscheme of Pr is
≤ n/c+ 1.

If true, this conjecture is sharp: an argument of Lazarsfeld, reproduced in
Proposition 6.3 shows that the generic projections to Pn+1 of codimension 2,
arithmetically Cohen-Macaulay varieties of dimension n have fibers with degree
n + 1 as long as the varieties don’t lie on hypersurfaces of degree ≤ n; since
such fibers are automatically colinear, their regularity is n+ 1.

The conjecture is also sharp for non-degenerate surfaces in P5. The Fano
embedding of the Reye congruence (Example 6.2) is a nondegenerate smooth
Enriques surface in P5 whose generic projection to P3 has fibers with three
collinear points, and thus regularity 3.

Conjecture 1.3 would follow from Theorem 1.1 and the following conjectural
comparison between the invariant q and the regularity of the intersection:

Conjecture 1.4. Let X ⊂ Pr be a smooth projective variety of dimension n,
and let π : X → Pn+c be a general linear projection. If Z ⊂ X ⊂ Pr is
any fiber, written as Z = X ∩ Λ, where Λ is a linear subspace containing the
projection center in codimension 1, satisfies

reg Z ≤ q(X,Λ).
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If Conjecture 1.3 is true, it could be used to give a new bound on the reg-
ularity of smooth varieties. The Eisenbud-Goto conjecture [14] predicts that
for any integral non-degenerate variety X in Pr, the Castelnuouvo-Mumford
regularity of X is less than or equal to deg(X)− codim(X) + 1. This conjecture
has been verified for curves and smooth surfaces (see [17] and [23]). The best
known bound on the regularity of a smooth variety X of dimension n is given
by Bertram-Ein-Lazarsfeld (Cor. 2.1 in [2]), extending a theorem of Mumford:

reg(X) ≤ min {codimX, 1 + dimX}(degX − 1)− 1.

Kwak [21] has improved this for smooth varieties of dimension ≤ 6 to a bound
of the form degX − codimX + constant. Using projection methods of [23] and
[21], Conjecture 1.3 would imply that for any smooth non-degenerate projective
variety of dimension n in Pr,

reg(X) ≤ deg(X)− codim(X) + 1 + cn,r

where cn,r =
∑n+1

i=3 (i− 2)
(
r−n−2+i

i

)
.

Secant Lines and Planes. We can also use Q(X,Λ) to give bounds on the
dimension of the subvariety of Pr swept out by l-secant lines of X. An l-secant
line of X is a line in Pr whose intersection with X has degree at least l or is
contained in X. With X as above, let Sl be the subvariety of Pr swept out by
the l-secant lines of X. Ziv Ran’s celebrated “Dimension+2 Secant Lemma”
[29] says that the dimension of Sn+2 is at most n+1. We give a more conceptual
proof, which allows us to go further and get a sharp bound on the dimension
of the subvariety swept out by the l-secant lines of X for any l.

Theorem 1.5. Let X be a smooth projective variety of dimension n in Pr, and
let Sl be the subvariety of Pr swept out by all the l-secant lines of X. If l ≥ 2
then

dimSl ≤
nl

l − 1
+ 1.

An argument of Lazarsfeld (Proposition 6.3) shows that this bound is achieved
in the case l = n+1 for arithmetically Cohen-Macaulay varieties of codimension
2. In Theorem 5.1 we give a corresponding bound for secant planes, as well.

Remark 1.6 (Length and Degree). We generally use the word degree when
speaking of schemes of dimension zero, and length when speaking of modules
of dimension zero. Since we are working over an algebraically closed field, the
degree degZ of a scheme of dimension zero is the same as the length of the
module OZ .

We are grateful to Craig Huneke, who first showed us how to prove that
Q(X,Y ) is nonzero in the setting of Theorem 4.4, and to Joe Harris and Sorin
Popescu, who helped us with interesting examples. Rob Lazarsfeld has shared
numerous insights. In particular he pointed out to us the bad behavior of fibers
in high dimensions, and explained how to prove that codimension 2 complete
intersections nearly always have fibers of the conjecturally maximal regularity.
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Many explicit computations informed our intuition about the subject of this
paper. These would not have been possible without the help of Macaulay2 and
its makers, Dan Grayson and Mike Stillman [24]. We also used the facilities of
Magma, and we are particularly grateful to Allan Steel, of the Magma group,
for his generous help in writing and running these programs.

2. Mather’s Upper Bounds and Lazarsfeld’s Examples

Mather’s trasversality theorem holds for multi-jet spaces and a class of their
subvarieties that are called modular. Mather showed that ifX is an n-dimensional
smooth projective variety, then the multi-jet of a general linear projection
f : X → Pn+c is transverse to all the modular subvarieties of the multi-
jet spaces sJ

k(X,Pn+c), and that all the Thom-Boardman strata in multi-jet
spaces are modular (see the last sentence of [26]). He used these results in
[25] to conclude that in the nice range of dimensions (n < 6

7(n + c) + 8
7 , or

n < 6
7(n+c)+ 9

7 and c ≤ 3), a general projection is C∞ stable, and this enabled
him to describe local normal forms for general projections in the nice range of
dimensions. In particular he proved that when c = 1 and n ≤ 14, the degrees of
fibers of a general projection is bounded by n+ 1, just as in the classical cases.

The following result is a consequence of Mather’s transversality theorems [26]
and the formula proved by Boardman [3] for the codimensions of the Thom-
Boardman strata. We say that a map π : X → Y between smooth spaces has
tangential corank d at a point p ∈ X if the induced map on tangent spaces has
rank = dimX − d at p.

Theorem 2.1 (Mather). Let X ⊂ Pr be a smooth projective variety of dimen-
sion n and let π : X → Pn+c be a general linear projection, with c > 0. If the
fiber π−1(q) contains points p1, . . . , pd and π has corank di at pi, then

d∑
i=1

(
d2
i

c
+ di + 1) ≤ n

c
+ 1.

For example, the number of distinct points in the fiber of a generic projection
is at most n/c+1. Mather’s theory also implies that any curvilinear fiber (that
is, one that can be embedded in a smooth curve) has degree ≤ n/c+1. (Roberts
[30] proves these results by a more elementary method, but only for embeddings
of varieties that have been composed with sufficiently high Veronese maps.) But
it is easy to see that knowing the Thom-Boardman symbol of the projection
at every point is not enough to bound the degree of the fiber except in the
curvilinear case.

In fact, Lazarsfeld shows in [22] (Volume 2, Prop. 7.2.17) that for if X ⊂ Pr

is a sufficiently ample embedding of a smooth variety of dimension n, then a
general projection of X to Pn+1 will have points of corank d whenever d(d+1) ≤
n. He used this to show that the image of the projection would have points of
mulitplicity at least on the order of 2b

√
nc. The co-rank d condition also gives

a lower bound on the lengths of the fibers:
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Proposition 2.2. If X is a smooth projective variety of dimension n and p ∈ X
is a point of corank d for the projection map π : X → Pn+1, then the degree of
the fiber π−1π(p) is at least

(d+1
d d

2
e
)
.

Proof. Let ÔX,p be the completion of the local ring of X at p, and let m be
its maximal ideal. Let f1, . . . , fn+1 ∈ ÔX,p be the functions locally defining
π at p. Since p is a point of corank d, we can assume that n − d of the
fi, say fd+2, . . . , fn+1, form a regular system of parameters, so that R :=
ÔX,p/(fd+2, . . . , fn+1) is a power series ring in d variables, while f1, . . . , fd+1 ∈
m2. Set I = (f1, . . . , fd+1).

Setting S = R[[y]], we can write R/I = S/J where J = (y) + IS. Denote
by p the maximal ideal of S, and let f ′i = fi + qi, where the qi are general
quadratic forms of S. Let I ′ = (f ′1, . . . , f

′
d+1)S, and set J ′ = (y) + I ′. Note that

the leading terms of the f ′i form a regular sequence.
By the semicontinuity of fiber dimension, the length of S/J = R/I is at least

the length of S/J ′, so it suffices to show that the latter is at least
(d+1
d d

2
e
)
.

Since the leading terms of the f ′i form a regular sequence, the fi are a standard
basis in the sense of Grauert and Hironaka. It follows that the Hilbert function
of S/I ′ is the same as that of a complete intersection of quadrics,

length((I ′ + pm)/(I ′ + pm+1)) =
(
d+ 1
m

)
.

Further, the length of S/J ′ = S/((y) + I ′) is at least the length of the cokernel
of the map given by multiplication

y : S/(I ′, pm)→ S/(I ′, pm+1)

for any m. Thus

lengthS/J ′ ≥ lengthS/(I ′, pm+1)−lengthS/(I ′, pm) = length((I ′, pm)/(I ′, pm+1)).

If we let m = dd/2e, we get lengthS/J ≥
(
d+1
dd/2e

)
as required. �

Applying the Stirling approximation for factorials we deduce an assymptotic
formula:

Corollary 2.3. If X is a smooth projective variety of dimension n embedded
by a sufficiently positive line bundle, then a general projection X into Pn+1 will

have some fibers whose degrees are of the order of
√

2
π

2
√

n

n1/4 . �

3. Proof of The Main Theorem

Proof of Theorem 1.1. Let Σ ⊂ Pr be a general linear subvariety of codimension
n+c+1 in Pr, and let πΣ : X → Pn+c be projection from Σ, so that in particular
πΣ is generically injective and is a finite map. Thus if Λ is any codimension
n + c linear subvariety of Pr that contains Σ, the intersection of Λ and X is
a scheme of dimension zero. Fix a (general) Σ, and a Λ ⊃ Σ that makes the
degree of X ∩ Λ maximal.
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Consider the natural surjections of sheaves

NΛ/Pr = Hom(IΛ,OΛ) � Hom(IΛ,OZ) � Q(X,Λ),

and let F be the kernel of the composite map γ : NΛ/Pr → Q(X,Λ). Identifying
the local sections of NΛ/Pr with the embedded deformations of Λ in Pr (the
tangent space to the Grassmannian), we see from the definition of Q(X,Λ) that
the local sections of F are the deformations of Λ that induce flat deformations
of Z. Since Q(X,Λ) is supported on Z ⊂ X, which is disjoint from Σ, we have
F |Σ = NΛ|Σ. (See Theorem 7.1 for another description of F .)

Because Σ is a hyperplane section of Λ there is an exact sequence

0→ NΛ/Pr(−1)→ NΛ/Pr → NΛ/Pr |Σ → 0.

Putting this together with the exact sequence

0→ F → NΛ/Pr → Q(X,Λ)→ 0,

coming from the definition of F , and taking global sections, we get a commu-
tative diagram with exact row and column

(∗)

H0(NΛ(−1))

H0(F ) - H0(NΛ)
?

γ
- H0(Q) = Q

β

-

H0(NΛ/Pr |Σ) = H0(F |Σ)
?

α

-

where α, β and γ are defined by applying H0 to the evident maps, and Q =
Q(X,Λ).

There is an exact sequence of normal bundles

0 // NΣ/Λ // NΣ/Pr
ψ // NΛ/Pr |Σ // 0.

Since NΣ/Λ = OΣ(1), every global section of NΛ/Pr |Σ lifts to a global section
of NΣ/Pr , that is, a deformation of Σ. The length of X ∩ Λ is semicontinuous
as we move Λ, and we have supposed that it is maximal among those lengths
attained by a Λ containing a general plane Σ; so if we move Σ in a flat family
Σt ⊂ Pr, then (for small, or first-order t) there is a flat deformation Λt ⊂ Pr

of Λ such that Σt ⊂ Λt and the degree of Z = X ∩ Λt is constant—that is, the
family Zt := X ∩Λt is flat. Thus any first order deformation of Σ can be lifted
to a first order deformation of Λ fixing the length of X ∩ Λ.

Using the identification of sections of F with deformations of Λ fixing the
length of Z, we see that

H0(F )
α- H0(F |Σ) = H0(NΛ/Pr |Σ)

contains the image of H0(NΣ/Pr) under ψ. Since H1(NΣ/Λ) = H1(OΣ(−1)) =
0, ψ is surjective on global sections, and thus α is surjective.
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A diagram chase using the surjectivity of α and the exactness of the row and
column in diagram (*) shows that the image of β is equal to the image of γ.
Moreover, NΛ(−1) ∼= On+c

Λ is generated by global sections.Thus we can apply
the following result with A = NΛ(−1) and B = Q(X,Λ).

Proposition 3.1. Suppose that δ : A → B is an epimorphism of coherent
sheaves on Pr, and suppose that A is generated by global sections. If δ(H0(A)) ⊂
H0(B) has the same dimension as δ(H0(A(1))) ⊂ H0(B(1)), then dimB = 0
and δ(H0(A(m))) = H0(B(m)) ∼= H0(B) for all m ≥ 0.

Proof. We may harmlessly assume that the ground field is infinite, so we may
choose a linear form x on Pr that does not vanish on any associated subvariety
of B. It follows that multiplication by x is a monomorphism on global sections,
so, under our hypothesis,

x · δ(H0(A)) = H0(OPr(1)) · δ(H0(A)) = δ(H0(A(1))).

It follows that xm · δ(H0(A)) = H0(OPr(m)) · δ(H0(A)) for all m ≥ 0. Since
δ is a surjection of sheaves and A is globally generated, this space is equal to
H0(B(m)) for large m. It follows that the Hilbert polynomial of B is constant,
so B is zero-dimensional, and H0(B(m)) = δ(H0(A(m))) for all m ≥ 0 as
required. �

Returning to the proof of Theorem 1.1 we apply Proposition 3.1 and deduce
that β is surjective. Thus

lengthQ(X,Λ) ≤ dimkH
0(NΛ(−1)) = n+ c,

as required. �

4. Bounds on the invariant q

We begin by explaining why the “expected” value of q(X,Y ) is deg(X ∩ Y ).
We write HilbX for the Hilbert scheme of X, and THilbX,[Z]

for its tangent
space at the point corresponding to the scheme Z. If [Z] is a smooth point
of the Hilbert scheme, and if Z deforms in X to a reduced set of smooth
points, then dimTHilbX,[Z]

= (degZ)(dimX), which we may thus consider to
be the “expected value”. We denote by T 1(Z) the Zariski tangent space to
the deformation space of Z. We denote by Der OZ the module of k-linear
derivations from OZ to itself.

Theorem 4.1. Suppose that X,Y ⊂ P are k-schemes of finite type with X
smooth and Y locally a complete intersection in P . If Z := X∩Y is finite, then

dimkQ(X,Y ) = (degZ)(codimY − dimX)− (dimk THilbX,[Z]
− (degZ)(dimX))

= (degZ)(codimY − dimX)− dimk T
1(Z) + dimk Der OZ .

Proof. To compute the dimension of Q(X,Y ), we note first that since IY :=
IY/P is locally a complete intersection the module IY /I2

Y is locally free over
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OY of rank equal to the codimension of Y . It follows that Hom(IY /I2
Y ,OZ) ∼=

(OZ)codimY . Using this and the definition of Q we get

dimkQ(X,Y ) = (degZ)(codimY )− dimk Hom((IX + IY )/(IX + I2
Y ),OZ).

On the other hand, we may identify Hom((IX + IY )/(IX + I2
Y ,OZ) with the

tangent space to the functor of embedded deformations of Z in X, that is,
with the tangent space to the Hilbert scheme HilbX at [Z]. There is an exact
sequence

0→ Hom(ΩZ/k,OZ)→Hom(ΩX/k |Z ,OZ)→
Hom((IX + IY )/(IX + I2

Y ),OZ)→ T 1(Z)→ 0

(see Eisenbud [13], Ex. 16.8.) Since X is smooth we have

dimk Hom(ΩX/k |Z ,OZ) = (degZ)dimX

and the desired formula follows. �

Corollary 4.2. Let X,Y ⊂ P be schemes of finite type with X smooth and Y
locally a complete intersection in P . Suppose that Z = X ∩ Y is finite, and
consider the corresponding point [Z] in the Hilbert scheme HilbX . If [Z] is a
smooth point and lies in the closure of the locus of reduced subschemes, then

q(X,Y ) =
dimkQ(X,Y )

codimY − dimX
= degOZ .

In particular, this is the case when Z is a complete intersection.

Proof. The dimension of the closure of the locus of sets of degZ reduced points
has dimension (degZ)(dimX). �

The case of complete intersections extends to that of schemes in the “linkage
class of a complete intersection” described below.

Remark 4.3. The tangent space to Z in the Hilbert scheme of X is often larger
than degOdimX

Z , for example when [Z] is at a point where the “smoothing
component” meets another component—a result of Iarrobino [20] shows that
there always are such points when dimX > 2. But it can also be smaller.
The first such example was discovered by Iarrobino and Emsalem [12] (see
[9] for an exposition): the Hilbert scheme of finite subschemes of degree 8 in
C4 contains a reduced component whose generic point is the scheme defined
by 7 general quadrics. This component is isomorphic to the product of C4

and the Grassmanian Gr(7, 10), which has dimension 25, whereas the locus of
reduced 8-tuples of points has dimension 32. Such a point can appear as the
intersection of a 4-plane X with a scheme Y of codimension 7. In this case we
have dimkQ(X,Y ) = 31 > degZ(codimY − dimX) = 24.
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Lower Bounds on the invariant q. Since the computation of Q is local,
it suffices to treat the local case. If O is a regular local ring, then ideals
J, J ′ ⊂ O (or the subschemes they define) are said to be linked by a complete
intersection K if J ′ = (K : J) and J = (K : J ′), where (K : J) denotes the
ideal {f ∈ O | fJ ⊂ K}.

The ideal J is in the linkage class of a complete intersection, written licci, if
it can be linked to a complete intersection in finitely many steps. See Peskine-
Szpiro [27] for general information about this notion.

We write µ(Q) for the minimal number of generators of an O-module Q, and
it is obvious that lengthQ ≥ µ(Q). Example 4.7 suggests that the length of
Q(X,Y ) can be equal to µ(Q(X,Y )) even in large cases.

Theorem 4.4. Let O be an equicharacteristic 0 regular local ring of dimension
r. Suppose X ⊂ SpecO is smooth and Y ⊂ SpecO is a complete intersection.
Set c = codimY − dimX and Z = X ∩ Y . Suppose that c ≥ 1, and that
dimZ = 0.

(1) If IZ is licci then

q(X,Y ) = deg(X ∩ Y ).

(2) If IZ is not licci, then

q(X,Y ) ≥ 1
c
µ(Q(X,Y )) ≥ max(1 +

3
c
,
5
c

).

In particular, q(X,Y ) ≥ 1.

Here are some facts about the licci property that will be important to us:

Proposition 4.5. Suppose that A is a local Gorenstein ring with maximal ideal
m, and L ⊂ A is an ideal of finite projective dimension such that A/L is Cohen-
Macaulay.

(1) If f1, . . . fm ∈ L is a regular sequence, and L/(f1, . . . , fm) is licci, then
L is licci.

(2) If codimL ≤ 2 then L is licci.
(3) If µ(L) ≤ 4 then L is licci.
(4) Suppose A is regular, and A/L is of finite length. Let T := m/(m2 +L)

be the Zariski tangent space of A/L. If dimT ≤ 2, or if L is generated
by codimL+ 1 elements and dimT ≤ 3, then L is licci.

Proof Sketch. The first assertion is immediate from the definition. The second
was proved by Apéry and Gaeta [16], and is reproved in modern language in
Peskine-Szpiro [27].

When L is generated by ≤ 2 elements then it has codimension ≤ 2 and is thus
covered by the Theorem of Apéry and Gaeta. If µ(L) = codimL, then L is itself
a complete intersection. The only remaining case with µ(L) ≤ 4 is the case of a
4-generator ideal of codimension 3. It follows from the paper of Peskine-Szpiro
that L is then linked to an ideal L′ of finite projective dimension that has a
symmetric resolution, and the main theorem of Buchsbaum-Eisenbud [6] shows
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that L′ is generated by the 2n× 2n pfaffians of a 2n+ 1× 2n+ 1 matrix. Ideas
similar to those of Gaeta show that such ideals are licci; see also Watanabe [33]
that implicitly contains a different (and prior) proof of the slightly restricted
case where A is regular. This proves part (3).

Part (4) follows from the previous parts: if dimT ≤ 2, then there is a regular
sequence g1, . . . gs in L, with s = dimA − dimT , such that A/(g2, . . . , gs) is
again regular. If dimT = 2 we may apply parts (1) and (2) to conclude that
L is licci. If dimT = 3 then µ(L/(g1, . . . , gs)) = µ(L)− s = codimL+ 1− s =
dimA+1− (dimA−3) = 4 so we may apply parts (1) and (3) to conclude that
L is licci. �

Proof of Theorem 4.4. First suppose that IZ is licci. We may harmlessly com-
plete the ring O and thus can apply the result of Buchweitz [8], Theorem 6.4.4
(p. 235), which shows that a licci scheme represents a smooth point on its
Hilbert scheme (this result is proven in the analytic category). Ulrich [31] The-
orem 2.1 implies that a licci scheme of dimension at most 3 is smoothable. Part
(1) thus follows from Theorem 4.1.

To prove part (2), set µ = µ(Q(X,Y )) and n = dimY . Let J = (IX+IY )/IX
be the image of IZ in OX = O/IX , and consider the defining exact sequence

0→ Hom(J/J2,OZ)→ Hom(IY /I2
Y ,OZ)→ Q(X,Y )→ 0.

Since Hom(IY /I2
Y ,OZ) is a free OZ-module of rank r−n, Hom(J/J2,OZ) must

have an OZ-free summand of rank m := r − n − µ. Since OZ is artinian, this
implies that J/J2 has also an OZ-free summand of rank m.

We may write this free summand in the form J/K for some ideal K of OX
such that J ⊃ K ⊃ J2. Since OX is regular, J has finite projective dimension.
The proof of Theorem 1.1 of Vasconcelos [32] shows that there is a regular
sequence f1, . . . , fm in J such that

J = (f1, . . . , fm) +K

and such that J/(f1, . . . , fm) is an ideal of finite projective dimension in the ring
OX/(f1, . . . , fm). By Proposition 4.5.1 it suffices to show that when µ ≤ c+ 2
or µ ≤ 4 the ideal J/(f1, . . . fm) is licci.

If µ ≤ c+ 2 then

dimOX/(f1, . . . , fm) = r − n− c−m = (r − n− c)− (r − n− µ) = µ− c ≤ 2

so Proposition 4.5.2 shows that J is licci. On the other hand, if µ ≤ 4, then

µ(J/(f1, . . . , fm)) = µ(J)−m ≤ µ(IY )−m = r−n−m = (r−n)−(r−n−µ) ≤ 4

so Proposition 4.5.2 shows that J is licci. �

If π : X → P is a map of smooth varieties, and x ∈ X is a point, then the
tangential corank of π at x is the dimension of the Zariski tangent space of the
fiber to π through x. Theorem 4.4 allows us to analyze the invariant q at points
of small tangential corank.
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Corollary 4.6. Let x ∈ X ⊂ Pr be a point on a smooth projective variety
of dimension n, and let π : X → Pn+c be a linear projection from a center
that does not meet X, so that the fiber Z of π through x is the intersection of
X with a linear subspace Λ of dimension r − n − c. If the tangential corank
of π at x is ≤ 2, or c = 1 and the tangential corank of π at x is ≤ 3, then
q(X,Λ) = deg(X ∩ Λ).

Proof. From Proposition 4.5.4 we see that the fiber is licci at x, and the assertion
then follows from Theorem 4.4. �

Example 4.7. Let A = k[a1, . . . , an, x1, . . . , xn+1] and let

I = (x1 − f1(a), . . . , xn+1 − fn+1(a)); X = V (I) ⊂ SpecA

where the fi(a) are generic quadrics in the variables ai. Let Λ = V (x1, . . . , xn+1).
The variety X is smooth (it is the graph of the map f := (fi)) and meets the
plane Λ, its tangent plane, in a scheme Z supported at the origin.

For 2 ≤ n ≤ 8 and random examples over a large finite field, the values of
deg(Z), q(Λ, X), which is equal to q(X,Λ) by Theorem 7.1, and the minimal
number of generators of the module Q(Λ, X), written µ(Q(Λ, X)), are given
in the following table, computed with Macaulay2 [24]. Note that for even n
we have µ(Q(Λ, X)) = q(Λ, X) = codim I. It follows immediately that in these
cases

Q(Λ, X) = I/(a1, . . . , an, x1, . . . , xn+1)I,

a vector space concentrated in degree 2.

n degZ q(Λ, X) µ(Q(Λ, X))
2 3 3 3
3 6 6 3
4 10 5 5
5 20 20 6
6 35 7 7
7 70 57 8
8 126 9 9

In the notation of Theorem 4.4 we have c = 1. In these examples we have
deg(Λ ∩ X) = q(Λ, X) if and only if n = 2, 3, and these are exactly the cases
where Λ ∩X is licci.

The case n = 4 shows that the bound q(Λ, X) ≥ 5 in part (2) of Theorem
4.4 can be sharp. For an example where the other option is sharp consider the
smallest non-licci scheme, which is Z = Spec k[x, y, z]/(x, y, z)2. This scheme
can be written as the intersection of a smooth complete intersection X of 6
general quadrics in some Pr (r ≥ 7) with a 3-plane Λ, and thus c = 3. It is
easy to compute the dimension of the tangent space to the Hilbert scheme of Λ
at [Z] has dimension 18, so by Theorem 4.1—or direct computation—

q(Λ, X) = µ(Q(Λ, X)) = 6 = c+ 3.
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5. secant lines

Let X ⊂ Pr be a smooth subvariety of dimension n, and denote by Sl, l ≥ 2,
the subvariety of Pr swept out by all the l-secant lines of X. Let c = b n

l−1c+ 1,
and let Σ be a linear subspace of codimension n+ c+ 1 in Pr. If Sl intersects Σ
at a point q, then there is an l-secant line Λ1 of X which passes through q, and
this line together with Σ span a linear subspace Λ of codimension n + c in Pr

that intersects X in a scheme of degree ≥ l > n+c
c . If we knew that q(X,Λ) was

bounded below by deg(X ∩ Λ1), then Theorem 1.1 would show that a general
such Σ does not intersect Sl, and so dimSl ≤ n + c. Though we do not know
how to prove such a comparison theorem for q(X,Λ), Theorem 1.5 shows that
this upper bound on the dimension of Sl is satisfied. The examples in Section
6 show that it is sharp.

Proof of Theorem 1.5. Let Gl be the subvariety of the Grassmannian of lines in
Pr parametrizing the lines whose intersection with X has degree ≥ l, and let G0

be an irreducible component of Gl. We must show that the lines parametrized
by G0 sweep out a subvariety of dimension ≤ n+ c in Pr.

Let [Λ] be a general point in G0. We may assume Λ 6⊂ X, since otherwise
this conclusion is obvious. Set Z = X ∩Λ, and let F = ker(NΛ/Pr → Q(X,Λ)).
Since F is a torsion free sheaf of rank r − 1 on P1, it splits as F = OΛ(a1) ⊕
· · ·⊕OΛ(ar−1), a1 ≥ a2 ≥ · · · ≥ ar−1. We see from the definition that the Euler
characteristic of F is r − 1 +

∑
i ai = 2(r − 1) − length(Q(X,Λ)). Since any

subscheme of P1 is a local complete intersection, part (1) of Theorem 4.4 yields

(1)
∑
i

ai = r − 1− length(Q(X,Λ)) = r − 1− (r − n− 1)l.

We next show that ai ≥ −l + 1 for every i by showing that H1(F (l − 2)) = 0.
Consider the short exact sequence

0→ F (l − 2)→ NΛ/Pr(l − 2)→ Q(X,Λ)→ 0.

Since H1(NΛ/Pr(l − 2)) = 0, to prove H1(F (l − 2)) = 0 we need to show that
the map H0(NΛ/Pr(l − 2))→ H0(Q) is surjective. This map factors through

H0(NΛ/Pr(l − 2))→ H0(NΛ/Pr(l − 2)|Z)→ H0(Q).

The first map is surjective since the Castelnuovo-Mumford regularity of a finite
scheme is bounded by the degree of the scheme, and the second map is surjective
since NΛ/Pr |Z → Q(X,Λ) is surjective and Z is zero-dimensional. This shows
that ai ≥ −l + 1 for every i.

Let now k be the largest index such that ak ≥ 0, then

(2)
∑
i

ai ≥ (r − 1− k)(−l + 1).

Combining (1) and (2), we get r − 1− (r − n− 1)l ≥ (r − 1− k)(−l + 1), and
so k ≤ nl

l−1 .
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Let I ⊂ Pr ×G0 be the incidence correspondence, and denote by p1 and p2

the two projections from I to Pr and G0. We get a commutative diagram

TI,([Λ],p)
dp2 //

dp1

��

TG0,[Λ] = H0(F )

��
TPr,p // NΛ/Pr |p = F |p.

If ([Λ], p) is a general point of I, then since k ≤ nl
l−1 , the image of the restriction

map H0(F )→ F |p has dimension at most nl
l−1 . Therefore, the dimension of the

image of dp1, which is equal to the dimension of the subvariety swept out by
all the lines parametrized by G0, is at most nl

l−1 + 1. �

A similar argument proves an analogous result for the 2-dimensional linear
subvarieties intersecting X in a scheme of dimension zero:

Theorem 5.1. If Sl,t is the closure of the subvariety of Pr swept out by the
2-planes Λ such that the intersection of Λ and X is a scheme of degree at least
l and regularity at most t, then

dimSl,t ≤
(
t+1

2

)
(r − 2)− l(r − 2− n)(

t
2

) + 2.

Proof. Let G0 be an irreducible component of the space of 2-planes in Pr which
intersects X in a scheme of degree at least l and regularity at most t, and let
[Λ] be a general point in G0. Consider the exact sequence

0→ F → NΛ/Pr → Q(X,Λ)→ 0.

Since Z = Λ ∩ X is t-regular, an argument parallel to the one given in the
proof of Theorem 1.5 shows that the map H0(NΛ/Pr(t− 2))→ H0(Q(X,Λ)) is
surjective. Thus,

h0(F (t− 2)) =
(
t+ 1

2

)
(r − 2)− l(r − 2− n).

On the other hand, if the planes parametrized by G0 cover a subvareity of
dimension at least k, then for a general point p ∈ Λ, the image of the restriction
map H0(F )→ F |p is at least (k − 2)-dimensional, so

h0(F (t− 2)) ≥ H0(O(t− 2)k−2) =
(
t

2

)
(k − 2),

and we get the desired bound. �

6. Examples

Here are examples showing that the bounds in Theorem 1.5 are sharp, and
that Conjecture 1.3 has the best possible bound on the regularity of the fibers.
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Example 6.1. Let r = b nll−1 + 1c, and let X be the complete intersection of
r− n general hypersurfaces Y1, . . . , Yr−n of degree l in Pr. We show that Pr is
swept out by the l-secant lines of X and so

dimSl = r = b nl

l − 1
+ 1c.

Consider the intersection of any r− n− 1 of the Yi, say Y = Y1 ∩ · · · ∩ Yr−n−1.
Under these circumstances, it is known that Y is covered by lines; we give a
proof for the reader’s convenience:

Let p be a point in Y , let V be the cone of lines in Y through p, and let Vi
be the cone of lines in Yi through p. We can compute the equations of Vi as
follows. We may assume that p = (1 : 0 : · · · : 0) and write the equation of Yi
in the form

xl−1
0 F i1 + · · ·+ x0F

i
l−1 + F il ,

where F id is a form of degree d in x1, . . . , xn. Consider the line W through p and
another point, which we may take to be p′ = (0 : 1 : 0 : · · · : 0). Substituting
the parametrization (1 : t : 0 : · · · : 0) of W into the equation of Yi, we see that
{F i1(p′) = · · · = F il (p

′) = 0} if and only W lies in Yi. Thus codimVi ≤ l. Since

codimV ≤
∑

1≤i≤r−n−1

codimVi = (r − n− 1)l ≤ r − 1,

the cone V is at least 1-dimensional; that is, there is at least one line through
p contained in Y .

Any line in Y intersects X in l points, so any point of Y is contained in Sl.
Since any point of Pr is contained in the intersection of r − n− 1 independent
hypersurfaces in the linear system spanned by Y1, . . . , Yr−n, there is an l-secant
line of X passing through every point of Pr.

In particular, in the case l = n + 1, r = n + 2, this argument shows that if
Xn ⊂ Pn+2 is a complete intersection of two surfaces of degree n+ 1, then any
projection of X to Pn+1 has fibers of length n+ 1. This consequence is greatly
generalized by the argument of Lazarsfeld given in Proposition 6.3 below.

A nondegenerate surface in P5 with many trisecants.

Example 6.2. The Fano model of the classical Reye Congruence is a non-
degenerate Enriques surface in P5 whose 3-secant lines sweep out a 4-dimensional
subvariety in P5 (see Conte and Verra [4] Propositions 3.10 and 3.14, and Cossec
[5], Section 3.3.) It can be described as follows. Let A = [fij ]1≤i,j≤4 be a sym-
metric 4× 4 matrix whose entries are general linear forms in P5, and let S be
the subvariety of P5 defined by all the 3× 3 minors of A. Then S is a smooth
nondegenerate surface in P5. We show that the 3-secant lines of X sweep out
the degree 4 hypersurface in P5 defined by the determinant of A. Since A is
general, for a general vector V = [g1, g2, g3, g4] in the row space of A, the gi are
independent linear forms and their intersection defines a line lV in P5. Then
lV intersects X in a scheme of degree 3: without loss of generality, we can as-
sume that V forms the first row of A; since A is symmetric, the first column
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of A vanishes on lV too. So the intersection of lV and X is the same as the
intersection of lV and the 3×3 minor [fij ]2≤i,j≤4 which is a scheme of degree 3.
If p is a general point in {detA = 0}, then there is a general vector in the row
space of A which vanishes on p, and so p is contained in a 3-secant line of X.

This is the only example we know of a non-degenerate smooth n-fold in P2n+1

with n ≥ 2 such that some fibers of a general projection to Pn+1 have regularity
n+ 1—that is, the fiber consists of points contained in a line. Are there other
such examples?

Codimension 2. If X ⊂ Pn+2, then every fiber of a projection to Pn+1 is
contained in a line, so the regularity of each fiber is equal to its degree. Thus
one can check the degrees of fibers by checking their regularity. The following
result was shown us by Rob Lazarsfeld; with his generous permission we include
a proof along the lines he suggested.

Proposition 6.3 (Lazarsfeld). Suppose that X ⊂ Pn+2 is arithmetically Cohen-
Macaulay of dimension n. If X does not lie on any hypersurface of degree
< n+ 1, then any projection of X to Pn+1 from a point off X must have fibers
of degree (and regularity) at least n + 1; that is, the closure of the union of
n+ 1-secant lines to X fills Pr.

We note that Zak’s famous theorem on linear normality ([34], Chapter 2)
can be phrased in a similar way: it says that if Xn is a smooth subvariety of
codimension ≤ 1 + dn2 e in Pr, not contained in a hypersurface of degree < 2,
then the the closure of the union of 2-secant lines to X fills Pr. Is there a nice
statement about k-secant lines, 2 < k < n+ 1, that interpolates between these
two results?

According to Hartshorne’s Conjecture ([19], Introduction), smooth projec-
tive varieties of codimension 2 and dimension > 6 are complete intersections,
so Proposition 6.3 may include all codimension 2 varieties of dimension > 4.
For dimension 2, we examined 48 examples of surfaces in P4 catalogued by
Decker, Ein, Schreyer [10] and Popescu [28] to see whether their trisecants fill
P4. These examples were produced using code originally written in the pro-
gram Macaulay Classic of Bayer and Stillman, and translated into Singular by
Oleksandr Motsak. We used the program Magma to make the computations
using algorithms based on the paper of Eisenbud-Harris [15] and unpublished
work of Eisenbud-Ulrich. Of the 48 examples, 45 lie on no quadrics. Of these
45, there is just one whose trisecants do not fill P4: the elliptic scroll of degree
5, whose ideal is generated by 5 cubics.

We now turn to the proof of Proposition 6.3. To compute things about a
linear projection πΣ from a linear space Σ ⊂ Pr to Pn+1, we resolve it by
blowing up. The general setup is this: Let Σ be a plane of dimension λ − 1,
where λ := r − n − 1. Let β : B → Pr be the blowup of Σ, and let E be the
exceptional fiber. Then

B ∼= PPn+1(E),
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where
E ∼= OPn+1 ⊕OPn+1(−1)λ, and OPPn+1 (E)(1) = OB(E).

With this notation the projection fits into the diagram

PPn+1(E) ∼= B
β
- Pr

Pn+1

α

?�
πΣ

where α : PPn+1(E) → Pn+1 is the structure map of the projective bundle.
In these terms we can describe the functor α∗β∗, and more generally the de-
rived functors Riα∗β

∗, quite explicitly, at least for their action on sums of line
bundles.

Lemma 6.4 ([18] II, 17.11 and III, Ex. 8.4). Let α, β and E be as above.
(1) There are canonical isomorphisms

α∗β
∗(OPr(d)) ∼= OPn+1(d)⊗ Symd(E) ∼=

d⊕
j=0

(
OPn+1(d− j)⊗ Symj(OλPn+1)

)
.

These induce isomorphisms

H0(α∗β∗(OPr(d))) ∼= H0(OPn+1(d)⊗ Symd(E)) ∼= H0(OPr(d)).

In particular, α∗β∗(OPr(d)) = 0 when d < 0.
(2) There are canonical isomorphisms

Rλ(α∗)β∗(OPr(−d)) ∼= OPn+1(−d)⊗ (Symd−λ−1(E))∗ ⊗
λ+1∧
E∗.

�

Proof of Proposition 6.3. We adopt the notation of Lemma 6.4, with λ = 1,
and we write π : X → Pn+1 for the projection restricted to X. To show that
the regularity of some fiber is at least n + 1 it suffices to show that for some
point y ∈ Pn+1 we have

H1(Iπ−1(y)(n− 1)) 6= 0.

Since Σ ∩ X = ∅ we have π−1(y) = α−1(y) ∩ β−1(X) and Iβ−1X = β∗IX .
Thus it suffices to show that H1(β∗(IX(n− 1))|α−1(y))) 6= 0 for some y. By the
Theorem on Cohomology and Base-change (see for example Hartshorne [18],
Theorem III. 12.11]) if suffices finally to show that R1α∗(β∗(IX(n− 1))) 6= 0.

Because we have assumed that X ⊂ Pn+2 is arithmetically Cohen-Macaulay,
IX has a resolution

0→ F1 → F0 → IX → 0
where F0 and F1 are sums of line bundles. The map β is locally an isomorphism
on X, and outside X the sheaf IX is locally free, so we may pull the resolution
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back by β (after tensoring with OPn+2(n− 1)) to get a short exact sequence of
sheaves on B of the form

0→ β∗(F1(n− 1))→ β∗(F0(n− 1))→ β∗(IX(n− 1))→ 0.

Using the fact that the fibers of α are 1-dimensional, we get from this a right
exact sequence

R1α∗(β∗(F1(n− 1)))
φ- R1α∗(β∗(F0(n− 1)))→ R1α∗(β∗(IX(n− 1)))→ 0.

and it suffices to show that the map labeled φ is not surjective.
We may write

F1 = ⊕t−1
i=1OPn+2(−ei), F0 = ⊕ti=1OPn+2(−di)

for some integers t, di, ei, and considering first Chern classes on Pn+2 we see
that

∑t−1
i=1 ei =

∑t
i=1 di. Applying Lemma 6.4 we see that

R1α∗(β∗(F1(n− 1))) =
t−1⊕
i=1

OPn+1(−ei + n− 1)⊗ Symei−n−1(E)∗ ⊗ ∧2(E)∗,

and similarly

R1α∗(β∗(F0(n− 1))) =
t⊕
i=1

OPn+1(−di + n− 1)⊗ Symdi−n−1(E)∗ ⊗ ∧2(E)∗.

Because we have assumed that X does not lie on a hypersurface of degree
< n+1, all the integers di are ≥ n+1, so all the summands are nonzero. Thus

rank R1α∗(β∗(F0(n− 1))) =
t∑
i=1

di − tn = rank R1α∗(β∗(F1(n− 1)))− n.

Set p :=
∑

i di − tn. Taking modules of twisted global sections, we may
represent φ by a map from a graded free module of rank p+n over the homoge-
neous coordinate ring of Pn+1 to another such module, of rank p. It follows by
Macaulay’s Generalized Principal Ideal Theorem (see for example [11] Exercise
10.9) that if such a map is not surjective, then its cokernel has codimension at
most n + 1. Thus to prove that the cokernel is nonzero as a sheaf on Pn+1, it
suffices to show that the map φ does not induce a surjection on twisted global
sections. This is immediate from the direct sum decompositions given above:
after twisting by OPn+1(1) we get

h0R1α∗(β∗(F0(n− 1)))⊗OPn+1(1) = t

and

h0R1α∗(β∗(F1(n− 1)))⊗OPn+1(1) = t− 1.

�
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7. Symmetry and Decomposition of Q

The sheaf Q(X,Y ) is defined in terms that can be understood as the compar-
ison of the deformations of X in the ambient space to the deformations of X∩Y
in Y . It turns out that under favorable circumstances Q(X,Y ) = Q(Y,X), and
this module is determined up to a free summand by the scheme X ∩ Y itself.

Theorem 7.1. Suppose that X,Y ⊂ Pr are smooth subvarieties with ideal
sheaves IX , IY , and set Z = X ∩ Y . Let F ⊂ NY/Pr = Hom(IY ,OY ) be the
subsheaf consisting of those local sections that map IX ∩ IY into IZ/Y ⊂ OY .

(1) If η ∈ H0(NY/Pr) is a flat first-order deformation of Y , then η induces
a flat first-order deformation of X ∩ Y if and only if η ∈ H0(F ).

(2) There is a natural short exact sequence

0→ F → NY/Pr → Q(X,Y )→ 0.

(3) Q(X,Y ) = Q(Y,X).

Proof. (1) We must show that η ∈ H0(F ) if and only if there is a map ψ : IZ →
OZ making the diagram

IY - IZ � IX

OY

η
?

- OZ

ψ
?
� OX

0
?

commute. Writing η for the composition of η with the projection map OY →
OZ , this commutativity is equivalent to the commutativity of the diagram

IY - IZ � IX

OZ

ψ
?�

0η -

From the short exact sequence

0→ IX ∩ IY → IX ⊕ IY → IZ → 0

we see that such a ψ exists if and only if η : IY → OY induces the zero map
IX ∩ IY → OY → OZ , that is, η maps IX ∩ IY into IZ/Y , proving part (1).

(2) It follows from the definition that

Q(X,Y ) =
Hom(IY ,OZ)

{f | f(IX ∩ IY ) = 0}
,

so the kernel of NY/Pr → Q(X,Y ) is equal to F .
(3) Because X is smooth, the derivation d : IX → ΩPr induces a locally split
injection d : IX/I2

X → ΩPr |X . It follows that the induced map of sheaves

Hom(ΩPr ,OZ)→ Hom(IX ,OZ)
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is an epimorphism. Since d : IX → ΩPr factors as the inclusion of IX ⊂ IZ
and the map d : IZ → ΩPr , we see that the restriction map

Hom(IZ ,OZ)→ Hom(IX ,OZ),

is also an epimorphism. The same considerations hold for X in place of Y .
Consider the commutative diagram

g ∈ Hom(IY ,OZ) - Q(X,Y ) =
Hom(IY ,OZ)

{f | f(IX ∩ IY ) = 0}

g̃ ∈ Hom(IZ ,OZ)

-

Hom(IX ∩ IY ,OZ)
-

g ∈ Hom(IX ,OZ) -

-

-

Q(Y,X) =
Hom(IX ,OZ)

{f | f(IX ∩ IY ) = 0}
where the diagonal maps are restriction homomorphisms. By the argument
above, the two maps coming from Hom(IX ,OZ) are epimorphisms. We define
a map φ : Hom(IY ,OZ) → Q(Y,X) as follows. Given a local section g ∈
Hom(IY ,OZ) then on a sufficiently small open set of Pr we may lift g back to
a local section g̃ ∈ Hom(IZ ,OZ). Let g be the image of g̃ in Hom(IX ,OZ), and
let φ(g) be the image of g in Q(Y,X).

If g̃′ a different lifting, then g̃− g̃′ goes to zero in Hom(IX∩IY ,OZ), and thus
φ(g) is well-defined. It follows at once that φ is a homomorphism, and since
the map Hom(IZ ,OZ)→ Hom(IX ,OZ) is an epimorphism, so is φ. Moreover,
φ annihilates the maps f such that f(IX ∩ IY ) = 0, so φ induces an epimor-
phism Q(X,Y ) → Q(Y,X). The inverse map is constructed by a symmetrical
procedure, proving part (3).

�

Corollary 7.2. Suppose that X,Y ⊂ Pr are smooth varieties that meet in a
finite scheme Z of degree l, and let F be the kernel of the surjection NY →
Q(X,Y ) defined above. Suppose that S is a reduced algebraic subset of the
Hilbert scheme of subschemes of Pr containing the point [Y] that corresponds
to Y . If the points of S near p correspond to subschemes that meet X in
schemes of degree at least l, then the tangent space to S at p is a subspace of
H0(F ). In particular, the dimension of the tangent space to S at p is at most
h0(NY )− dimkQ(X,Y ).

Proof. Let π : Y → S be the restriction of the universal family. By semiconti-
nuity, the degree of the intersection π−1(q) ∩X, for q ∈ S near p, is equal to l.
Since S is reduced, this guarantees that the family of intersections

Y ∩ (X × S) ⊂ Pr × S

S
?�
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is flat over a neighborhood of p. The tangent space to S at p thus consists of
first-order deformations of Y that induce flat deformations of X ∩ Y , and the
first statement follows from part (1) of Theorem 7.1. The dimension statement
is then immediate from the exact sequence in part (2) of the Theorem. �

To put part (3) of Theorem 7.1 into context, we note that, under somewhat
more general circumstances, the structure of Q(X,Y ) depends mostly on the
intersection Z = X ∩ Y .

Proposition 7.3. Let Z be a finite scheme over k. There is a module Q(Z)
depending only on Z such that if X,Y ⊂ P are k-schemes of finite type with X
smooth and Y locally a complete intersection in P such that Z = X ∩ Y , then
Q(X,Y ) ∼= Q(Z)⊕OmZ for some m.

Proof. From the definition we see that Q(X,Y ) is the direct sum of local con-
tributions, so we may harmlessly suppose that Z has only one closed point.
Choose a minimal surjection φ : A := k[[x1, . . . , xn]] → OZ so that n is the
dimension of the Zariski tangent space of OZ . Let IZ be the kernel of this map,
and let f : F → IZ be a minimal surjection from a free OZ-module. Set

Q(Z, φ, f) = coker
(

HomP (IZ/I2
Z ,OZ)

Hom(f,OZ)- HomP (F,OZ)
)
.

We will show that Q(Z) := Q(Z, φ, f) is independent of the choices of the
minimal surjections φ and f . Note that Q(Z, φ, f) has no free summand.

First, if f ′ : F ′ → IZ is any surjection from a free OZ-module, then we may
write F ′ ∼= F ⊕G in such a way that f ′ becomes the map (f, 0) so Q(Z, φ, f ′) =
Q(Z, φ, f)⊕(G⊗P OZ). In particular, this shows that Q(Z, φ, f) is independent
of the choice of f so long as f is minimal.

Next, if A′ → OZ is a surjection from a different power series ring (of any
dimension) then we may choose a third power series ring A′′ surjecting onto
both A′ and A. It thus suffices to show that, if ψ : A′′ → A is a surjection
of power series rings, then Q(Z, φψ, f) = Q(Z, φ, f) ⊕ OmZ , where m is the
difference d of dimensions between A and A′′. Let (y1, . . . , yd) be the kernel
of ψ. Lifting generators of IZ back to A′′ as power series independent of the
yi, we see that the kernel I ′′Z of the surjection A′′ → OZ may be written as
(y1, . . . , yd) + I ′Z , where y1, . . . , yd are a regular sequence modulo I ′Z . It follows
that I ′′Z/I

′′
Z

2 = I ′Z/I
′
Z

2 ⊕ OdZ ∼= IZ/I
2
Z ⊕ OdZ . This shows that Q(Z, φ, f) is

independent of the choices of φ and f .
If X,Y ⊂ P are schemes, with X smooth, Y a complete intersection, and

Z = X∩Y , thenOZ is a homomorphic image of the completion ÔX,Z of the local
ring of X at the closed point of Z, and ÔX,Z⊗OP

IY /I
2
Y → (IX +IY )/(I2

X +IY )
is a map of a free module onto IZ/X/I

2
Z/X , so Q(X,Y ) is the direct sum of

Q(Z) and a free module, as required. �

7.1. Decomposing Q. The following result is sometimes useful in computing
the length of Q(X,Y ). Since it reduces at once to the affine case, we will work



22 ROYA BEHESHTI AND DAVID EISENBUD

with ideals L, I in a Noetherian ring A. We define Q(L, I) to be the cokernel
of the map

Hom(
I + L

I2 + L
,

A

I + L
)→ Hom(

I

I2 + IL
,

A

I + L
).

To simplify the notation, if K ⊂ A then we write QA/K(L, I) for Q((L +
K)/K, (I +K)/K) computed in the ring A/K.

Proposition 7.4. (1) If L′ ⊂ L is an ideal such that I ∩ L′ = IL′, then
Q(L, I) ∼= QA/L′(L, I). In particular, if I ∩ L = IL, then Q(L, I) = 0.

(2) If I ′ ⊂ I then QA/I′(L, I) ⊂ Q(L, I).
(3) If I = I ′ + I ′′ with I ′ ∩ I ′′ ⊂ I ′I ′′ and I ′ ∩ (I ′′ + L) = I ′(I ′′ + L), then

Q(L, I) = QA/I′(L, I) +QA/I′′(L, I).

Proof. (1) It is clear that A/J and (I + L)/(I2 + L) remain the same modulo
L′. The kernel of the surjection I/I2 → (I+L′)/(I2 +L′) is the image of I ∩L′.
By hypothesis, I ∩ L′ ⊂ IL′ ⊂ IJ . Since Hom(I/I2, A/J) = Hom(I/IJ,A/J),
we are done.

For parts (2) and (3) we refer to the diagram

0 - Hom(
I ′ + I2 + L

I2 + L
,A/J)

β
- Hom(

I ′ + I2

I2
, A/J)

0 - Hom(
I + L

I2 + L
,A/J)

γ 6

- Hom(
I

I2
, A/J)

6

- QA(L, I) - 0

0 - Hom(
I + L

I ′ + I2 + L
,A/J)

6

- Hom(
I

I ′ + I2
, A/J)

6

- QA/I′(L, I)

6
α

- 0

0

6

0

6

0

6

The first two rows, and the first two columns, are obviously exact. For Part (2)
we will show the injectivity of the map labelled α. We first identify (I+L)/(I2+
L) with I/(I2 + (I ∩ L)), and (I + L)/(I ′ + I2 + L) with I/(I ′ + I2 + (I ∩ L)).
The injectivity of α is thus equivalent to the statement that that any map
I/I2 → A/J that annihilates both the images of I ′ and of L annihilates the
image of I ′ + L, proving (2).

If the hypotheses of Part (3) are satisfied, then

I

I2
=
I ′ + I2

I2
⊕ I ′′ + I2

I2
,

and similarly modulo L. Thus both the left hand vertical sequences in the
diagram are split exact, and we deduce both that QA(L, I) = QA/I′(L, I) ⊕
cokerβ, and that cokerβ = QA/I′′(L, I). �



FIBERS OF GENERIC PROJECTIONS 23

References

[1] D. Bayer and D. Mumford, What can be computed in algebraic geometry? In
Computational algebraic geometry and commutative algebra (Cortona,
1991), 1–48, Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993.

[2] A. Bertram, L. Ein, Lawrence and R. Lazarsfeld, Vanishing theorems, a theorem
of Severi, and the equations defining projective varieties. J. Amer. Math. Soc. 4
(1991) 587–602.

[3] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes tudes Sci. Publ.
Math. No. 33 (1967) 21–57.

[4] A. Conte, A. Verra, Reye Constructions for Nodal Enriques Surfaces.
Trans. Am. Math. Soc. (1993) 79-100.

[5] F. Cossec, Reye Congruences, Trans. Am. Math. Soc. 280 (1983) 731–751.
[6] D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions,

and some structure theorems for ideals of codimension 3. Amer. J. Math. 99 (1977)
447–485.

[7] D. A. Buchsbaum and D. Eisenbud, Some structure theorems for finite free reso-
lutions, Advances in Math. 12 (1974) 84–139.

[8] R. Buchweitz. These d’Etat.
[9] D. A. Cartwright, D. Erman, M. Velasco and B. Viray, Hilbert schemes of 8 points

in Ad. Preprint, arXiv:0803.0341 , 2008.
[10] W. Decker, L. Ein and F.-0. Schreyer, Construction of surfaces in P4. J. Algebraic

Geom. 2 (1993) 185–237.
[11] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry.

Springer-Verlag, NY, GTM vol. 150, 1995.
[12] J. Emsalem and A. Iarrobino, Some zero-dimensional generic singularities: finite

algebras having small tangent space. Composito Math. 36 (1978) 145–188.
[13] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry,

Springer-Verlag, New York, 1995.
[14] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J.

Algebra 88 (1984) 89–133.
[15] D. Eisenbud and J. Harris, Powers of ideals and fibers of morphisms. Math. Res.

Letters, to appear.
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d’un espace projectif. Deuxieme Colloque de Géométrie Algébrique Liège.
C.B.R.M. 145181 (1952).

[17] L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnuovo, and the
equations defining space curves, Invent. Math. 72 (1983) 491–506.

[18] R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York, 1977.
[19] R. Hartshorne, Bull. Amer. Math. Soc. 80 (1974) 1017–1032. BULLETIN OF

THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 6, Novem-
ber 1974

[20] A. Iarrobino, Reducibility of the family of 0-dimensional schemes on a variety.
Inventiones Math. 15 (1972) 72–77.

[21] S. Kwak, Generic projections, the equations defining projective varieties and
Castelnuovo regularity, Math. Z. 234(2000) 413–43.

[22] R. Lazarsfeld, Positivity in algebraic geometry, Springer-Verlag, 2004.
[23] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55

(1987) 423–429.



24 ROYA BEHESHTI AND DAVID EISENBUD

[24] D. Grayson and M. Stillman, Macaulay 2, a software system for research in alge-
braic geometry, Available at http://www.math.uiuc.edu/Macaulay2/

[25] J. N. Mather, Stability of C∞ mappings. VI: The nice dimensions. Proceedings
of Liverpool Singularities-Symposium, I (1969/70), pp. 207–253. Lecture Notes in
Math., Vol. 192, Springer, Berlin, 1971.

[26] J. N. Mather, Generic projections, Ann. of Math. (2) 98 (1973) 226–245.
[27] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I. Invent. Math. 26

(1974) 271–302.
[28] S. Popescu, Examples of smooth non-general type surfaces in P 4. Proc. London

Math. Soc. (3) 76 (1998) 257–275.
[29] Z. Ran, The (dimension +2)-secant lemma, Invent. Math. 106 (1991) 65–71.
[30] J. Roberts, Generic projections of algebraic varieties. Amer. J. Math. 93 (1971)

191–214.
[31] B. Ulrich, Liaison and Deformations. J. Pure and App. Algebra 39 (1986) 165–175.
[32] W. Vasconcelos, Ideals generated by R-sequences, J. Algebra (1967) 309–316.
[33] J. Watanabe, A note on Gorenstein rings of embedding codimension three. Nagoya

Math. J. 50 (1973) 227–232.
[34] F. Zak, Tangents and secants of algebraic varieties. Translations of Mathematical

Monographs, 127. American Mathematical Society, Providence, RI, 1993.

Author Addresses:
Roya Beheshti
Department of Mathematics, Washington University, St. Louis, MO 63130
beheshti@math.wustl.edu
David Eisenbud
Department of Mathematics, University of California, Berkeley, Berkeley CA
94720
eisenbud@math.berkeley.edu


