
HYPERSURFACES WITH TOO MANY RATIONAL CURVES

ROYA BEHESHTI

Abstract. We study smooth hypersurfaces of degree d ≥ n + 1 in Pn whose
spaces of smooth rational curves of low degrees are larger than expected, and
show that under certain conditions, the primitive part of the middle cohomology
of such hypersurfaces have non-trivial Hodge substructures. As an application,
we prove that the space of lines on any smooth Fano hypersurface of degree d ≤ 8
in Pn has the expected dimension 2n− d− 3.

1. introduction

For a smooth hypersurface X ⊂ Pn of degree d over C and a positive integer e,
we let Re(X) denote the closure of the locus inside the Hilbert scheme of X which
parametrizes smooth rational curves of degree e on X. The dimension of Re(X) is
at least e(n+ 1−d) +n−4, and it is conjectured that when d < n and X is general,
Re(X) is irreducible of dimension e(n + 1 − d) + n − 4 (for details see [5], [3], and
[2]). We refer to the number e(n+1−d)+n−4 as the expected dimension of Re(X).

Recently, J. Ellenberg and A. Venkatesh have used the circle method to show
that if X is any smooth hypersurface whose dimension is exponentially larger than
its degree, then Re(X) is irreducible of the expected dimension for every e ≥ 1
(unpublished; see also [10]). An interesting question which arises is: for a given
degree e, what is the best upper bound on d such that for any smooth hypersurface
X of degree d in Pn, Re(X) has the expected dimension? An obvious upper bound
comes from hypersurfaces which contain linear subvarieties of maximal dimensions:
if, for example, X is the Fermat hypersurface of degree d in Pn, then X contains a
linear subvariety of dimension n−1

2 when n is odd and a 1-parameter family of linear
subvarieties of dimension n

2−1 when n is even. Since dimRe(P
m) = (e+1)(m+1)−4,

we must have d ≤ (e+1)(n−1)
2e + 1 when e is odd, and d ≤ (e+1)n

2e when e is even,
otherwise Re(X) can be larger than expected. For e = 1, this is expected to be the
correct bound [1].

In this paper, we study the above question for lines and conics by looking at
Calabi-Yau hypersurfaces which are intersections of X with general linear subvari-
eties of Pn. In Section 2, we study smooth hypersurfaces X of degree ≥ n + 1 in
Pn for which Re(X) is larger than expected for small values of e, and prove that
under certain conditions, the primitive part of Hn−1(X,Q) has a nontrivial Hodge
substructure (Proposition 2.1). In the case of conics, we use this to show that if X
is a hypersurface of degree ≤ n in Pn and R is an irreducible component of R2(X)
such that the conics parametrized by R sweep out a divisor in X, then R has the
expected dimension (Theorem 3.2 (b)). In the case of lines we show:

1



2 ROYA BEHESHTI

Proposition 1.1. Suppose that X is a smooth hypersurface of degree n + 1 in Pn

whose space of lines is larger than expected. If n ≤ 7, then the primitive part of
Hn−1(X,Q) has a non-trivial Hodge substructure.

As a corollary we get:

Theorem 1.2. If X is any smooth Fano hypersurface of degree d ≤ 8, then the
space of lines on X has the expected dimension.

Using a different technique, the case d ≤ 6 of the above theorem was proved
in [1]. Another proof was given later in [8]. It is an interesting question whether
Proposition 1.1 holds for an arbitrary n. An affirmative answer to this question
would imply that Theorem 1.2 holds for any smooth Fano hypersurface.

1.1. Acknowledgments. The author would like to thank Ravindra Girivaru and
Matt Kerr for many helpful discussions.

2. non-Fano hypersurfaces

Let X be a smooth hypersurface of degree d ≥ n+1 in Pn, and let Hn−1(X,Q)prim

denote the primitive part of Hn−1(X,Q)

Hn−1(X,Q)prim = Ker (Hn−1(X,Q)→ Hn+1(Pn,Q)).

For e ≥ 1, the expected dimension of Re(X) is e(n+ 1− d) + n− 4 < n− 3. In this
section, we study the case when dimRe(X) ≥ n− 3 and prove the following:

Proposition 2.1. Let X be a smooth hypersurface of degree d ≥ n + 1 in Pn. In
the following situations, Hn−1(X,Q)prim has a non-trivial Hodge substructure:

(a) If e ≤ 2d−n+1 and the curves parametrized by Re(X) sweep out a subvariety
of codimension 1 in X (note that since d ≥ n+ 1, X is not swept out by the
curves parametrized by Re(X)).

(b) If e = 1 and there is an irreducible subvariety Y of dimension a in X such
that the space of lines on Y has dimension ≥ n− 3 and

n− 1 ≥ (2a− n+ 2)(2a− n+ 3)

2
.

Proposition 1.1 follows from the above proposition: Let X be a smooth hyper-
surface of degree ≥ n+ 1 and let R be an irreducible subvariety of the space of lines
on X such that dimR ≥ n − 3. Let a denote the dimension of the subvariety of
X swept out by the lines parametrized by R. Then a ≤ n − 2. If a = n − 2, then
part (a) of the above proposition shows that the primitive part of Hn−1(X,Q) has
a non-trivial Hodge substructure, and if a ≤ n − 3 and n ≤ 7, then the inequality
in the second part is satisfied, so we get the desired result.

Proof of Proposition 2.1, part (a). Let R be an irreducible component of Re(X)
such that the curves parametrized by R sweep out a subvariety of codimension
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1 in X, and let R̃ be a desingularization of R. Denote by Ũ the pullback of the
universal family to R̃:

Ũ
f //

π
��

X

R̃

Then Ũ ⊂ R̃×X induces a morphism of Hodge structures

α : Hn−1(X,Q)→ Hn−3(R̃,Q)

of bidegree (−1,−1) mapping Hn−1−i,i(X) to Hn−2−i,i−1(R̃) for every i ≥ 0. We
show that the kernel of α is a non-trivial Hodge substructure of Hn−1(X,Q). Since
d ≥ n+ 1, Hn−1,0(X) is non-zero and it is mapped to zero under α, so to show the
kernel of α is non-trivial, it is enough to show that restriction of α to Hn−2,1(X) is
non-zero. We prove this by showing that for a general rational curve C parametrized
by R̃, if αC denotes the composition of the maps

Hn−2,1(X)→ Hn−3,0(R̃) = H0(R̃,Ωn−3
R̃

)→ Ωn−3
R̃
|[C],

then αC is non-zero.
By [4], αC can be described as follows. Let α1 : Hn−2,1(X) = H1(X,Ωn−2

X ) →
H1(X,Ωn−2

X |C) denote the restriction map. From the short exact sequence

0→ TC → TX |C → NC/X → 0,

we get an injective map
∧n−3NC/X ⊗ TC →

∧n−2 TX |C , so we have an injective
map

α2 : H0(C,
n−3∧

NC/X)→ H0(C,
n−2∧

TX |C ⊗ ωC).

Let TR̃,[C] denote the Zariski tangent space to R̃ at [C]. Then there is a natural

map TR̃,[C] → H0(C,NC/X) whose dual induces a map

α3 : H0(C,

n−3∧
NC/X)∨ → Ωn−3

R̃
|[C].

We get a commutative diagram

H1(X,Ωn−2X ) = Hn−2,1(X)

α1

��
αC

++

H1(C,Ωn−2X |C)

=

��
H0(C,

∧n−2
TX |C ⊗ ωC)∨

α∨
2 // // H0(C,

∧n−3
NC/X)∨ //

α3

22
∧n−3

H0(C,NC/X)∨ // Ωn−3
R̃
|[C]
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The map α3 is non-zero since the curves parametrized by R̃ sweep out a subvariety
of dimension n− 2 in X, thus the assertion follows if we show α1 is surjective. The
short exact sequence

0→ OX(−d)→ ΩPn |X → ΩX → 0

gives the following short exact sequence

0→ Ωn−2
X → Ωn−1

Pn (d)|X → OX(2d− n− 1)→ 0.

Applying the long exact sequence of cohomology, it is enough to show that the
restriction map H0(X,OX(2d − n − 1)) → H0(C,OC(2d − n − 1)) is surjective
and H1(C,Ωn−1

Pn (d)|C) = 0. The latter is true because the Euler sequence gives a

surjective map OC(−n+d)n+1 → Ωn−1
Pn (d)|C and −n+d ≥ 1, and the former is true

since every smooth rational curve of degree e in Pn is (e − 2)-normal and by our
assumption 2d− n− 1 ≥ e− 2.

�

We next discuss part (b) of Proposition 2.1. Let Y be as in the proposition, and
suppose that for a general point p of Y, the lines through p on Y span a cone of
dimension k in Y . Then the space of lines on Y has dimension a + k − 2, so by
our assumption k + a ≥ n − 1. Considering the irreducible components of all such
cones with their reduced induced structure, since our base field is uncountable, there
is an irreducible component of the Hilbert scheme of k-dimensional subschemes of
X and an integral subscheme G of this component such that a general point of G
parametrizes an integral k-dimensional cone in X, and such that the subschemes
of X parametrized by G sweep out a subvariety of dimension a in X. Let G̃ be
a desingularization of G, and let Ũ be a desingularization of the pullback of the
universal family to G̃, so we have a diagram

Ũ
F //

π
��

f

&&
G̃×X // X

G̃.

Then the universal family in G̃×X induces a morphim of Hodge structures

α : Hn−1(X,Q)→ Hn−1−2k(G̃,Q)

which sends Hn−k−1,k(X) to Hn−1−2k,0(G̃). We show that when the inequality in
part (b) is satisfied, the restriction of α to Hn−k−1,k(X) is non-zero.

Let π : Y → Pa+1 be a general linear projection. Then π is a generically injective
morphism onto a hypersurface Y ′ ⊂ Pa+1. Since π is generically injective, the
family of lines through a general point of Y ′ is (k− 1)-dimensional. Suppose that p
is a general point of Y which is mapped to p′ in Y ′. Then there are hypersurfaces
Y ′i ⊂ Pa+1 (1 ≤ i ≤ deg Y ′) such that deg Y ′i = i and the intersection Y ′1 ∩· · ·∩Y ′i is
a cone with vertex p′ whose underlying subvariety is the subvariety of Pa+1 swept
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out by all the lines in Pa+1 which intersect Y ′ at p′ with multiplicity ≥ i + 1 (If
p′ = (1 : 0 : · · · : 0), Y ′ = {g = 0}, and we write

g = xd
′−1

0 g1 + · · ·+ gd′

where d′ = deg g and gi is homogeneous of degree i in x1, . . . , xa+1 for 1 ≤ i ≤ d′−1,
then Y ′i is the hypersurface defined by gi in Pa+1). By [8, Theorem 2], if the
codimension of an irreducible component of the cone Y ′1 ∩· · ·∩Y ′i in Pa+1 is smaller
than i, then that component is contained in Y ′. Since we are assuming that the
cone of lines through p′ has dimension k, the intersection Y ′1 ∩ Y ′2 ∩ · · · ∩ Y ′a+1−k
should be a complete intersection.

Denote by Y1 ⊂ Pn the embedded tangent space to Y at p. Then π : Y1 → Y ′1
is an isomorphism. Denote the pre-image of Y ′1 ∩ · · · ∩ Y ′a+1−k in Y1 by Σ. Then
Σ is a k-dimensional complete intersection of n − a hyperplanes H1, . . . ,Hn−a and
hypersurfaces Hn−a+1, . . . ,Hn−k of degrees 2, . . . , a − k + 1 in Pn. Let ΣX be the
intersection of Σ with X. Then ΣX is an almost complete intersection which may be
reducible with some irreducible components of dimension k− 1, but since every line
in Y through p is contained in ΣX , there will be at least one irreducible component
of dimension k in ΣX .

Proposition 2.2. If a and k as above are such that a + k ≥ (a−k+1)(a−k+2)
2 , then

the restriction map

Hk(X,Ωn−1−k
X )→ Hk(ΣX ,Ω

n−1−k
X |ΣX

)

is surjective.

Corollary 2.3. Suppose that the inequality in the above proposition holds. If Z is
a projective variety and f : Z → ΣX is a generically injective morphism, then the
pullback map

Hk(X,Ωn−1−k
X )→ Hk(Z, f∗Ωn−1−k

X )

is surjective.

Proof. Since f is generically injective, the support of the cokernel of the map
Ωn−1−k
X |ΣX

→ f∗f
∗Ωn−1−k

X is of dimension at most k − 1. Thus it follows from

Proposition 2.2 that the map Hk(X,Ωn−1−k
X )→ Hk(ΣX , f∗f

∗Ωn−1−k
X ) is surjective.

Note that for 0 ≤ i ≤ k − 1, Rk−if∗
f∗Ωn−1−k

X is supported along a subvariety of

dimension ≤ i− 1, so H i(ΣX , R
k−i
f∗

f∗Ωn−1−k
X ) = 0. By the Leray spectral sequence

Hk(Z, f∗Ωn−1−k
X ) = Hk(ΣX , f∗f

∗Ωn−1−k
X ),

and the result follows. �

Proof of the Proposition 2.2. From the short exact sequence

0→ OX(−d)→ ΩPn |X → ΩX → 0

we get the following short exact sequence

0→ Ωn−k−1
X → Ωn−k

Pn (d)|X → Ωn−k
X (d)→ 0.
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Applying the long exact sequence of cohomology to the above exact sequence and
its restriction to ΣX , the assertion follows if we show that

(a) Hk(ΣX ,Ω
n−k
Pn (d)|ΣX

) = 0,

(b) Hk−1(X,Ωn−k
X (d))→ Hk−1(ΣX ,Ω

n−k
X (d)|ΣX

) is surjective.

To prove (a), it is enough to show that Hk(Σ,Ωn−k
Pn (d)|Σ) = 0 since there is a

surjection Ωn−k
Pn (d)|Σ → Ωn−k

Pn (d)|ΣX
and the kernel is supported along a scheme of

dimension at most k. From the restriction of the the Euler sequence to Σ we get a
surjection

n−k+1∧
On+1

Σ (−1)→ Ωn−k
Pn |Σ.

So it is enough to show that Hk(Σ,OΣ(−n+ k− 1 + d)) vanishes which is by Serre
duality equivalent to the vanishing of

H0(Σ,OΣ(n−k+1−d)⊗ωΣ) = H0(Σ,OΣ(−d−k+n−a−1+(1+2+· · ·+a−k+1)).

Since d ≥ n+ 1, this follows from the assumption of the Proposition.

To prove (b), let V2, . . . , Vn−a be general hyperplanes in Pn which contain ΣX ,
and for n − a + 1 ≤ i ≤ n − k, let Vi be a general hypersurface of degree equal to
degHi which contains ΣX . Set

V := V2 ∩ · · · ∩ Vn−k ∩X.

Lemma 2.4. V is a complete intersection of dimension k containing ΣX .

Proof. We show by decreasing induction on i that the intersection Vi+1∩· · ·∩Vn−k∩X
is a complete intersection for every 1 ≤ i ≤ n−k−1. If i = n−k−1, this is certainly
true. Suppose that the statement holds for i. Note that if q is a point which is
contained in every hypersurface whose degree is equal to degHi and contains ΣX ,
then since degHi ≥ degHj for every 1 ≤ j ≤ i, q is contained in H1 ∩H2 ∩ · · · ∩Hi.
If the intersection Vi ∩ Vi+1 ∩ · · · ∩ Vn−k ∩ X (i ≥ 2) is not a proper intersection,
then there should be a component of Vi+1 ∩ · · · ∩ Vn−k ∩ X which is contained in
H1 ∩ · · · ∩Hi. This is true for general Vi+1, . . . , Vn−k containing ΣX , in particular,
there should be an irreducible component of Hi+1∩· · ·∩Hn−k∩X which is contained
in H1 ∩ · · · ∩ Hi. But this is not possible since the dimension of every irreducible
component of Hi+1 ∩ · · · ∩Hn−k ∩X is at least k + i− 1 > k, and

dimH1 ∩ · · · ∩Hn−k ∩X = k.

Hence the statement holds for i− 1. �

If IΣX/V denotes the ideal sheaf of ΣX in V , then we have a short exact sequence

0→ Ωn−k
X (d)⊗ IΣX/V → Ωn−k

X (d)|V → Ωn−k
X (d)|ΣX

→ 0.

So (b) is proved if we show that

(c) Hk−1(X,Ωn−k
X (d))→ Hk−1(V,Ωn−k

X (d)|V ) is surjective.

(d) Hk(V,Ωn−k
X (d)⊗ IΣX/V ) = 0.
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Part (c) holds by the first part of the next lemma. To prove part (d), note that there

is a surjective mapOV (−1)→ IΣX/V , so it is enough to showHk(V,Ωn−k
X (d−1)|V ) =

0 which holds by the second part of the next lemma.
�

Lemma 2.5. Suppose that X is a smooth hypersurface of degree d ≥ 2 in Pn and
V ⊂ X is a k-dimensional (k ≥ 2) complete intersection of type (d1, . . . , dn−k),

d1 = d. If l > −k + 2 +
∑n−k

i=2 di, then the following hold.

(1) The restriction map Hk−1(X,Ωn−k
X (l))→ Hk−1(V,Ωn−k

X (l)|V ) is surjective.

(2) We have Hk(V,Ωn−k
X (l − 1)|V ) = 0.

Proof. We show that for every 1 ≤ m ≤ k,

(i) Hm−1(X,Ωn−m
X (l+d(k−m)))→ Hm−1(V,Ωn−m

X (l+d(k−m)|V ) is surjective

if l > −k + 2 +
∑n−k

2 di.

(ii) Hm(V,Ωn−m
X (l + d(k −m))|V ) = 0 if l > −k + 1 +

∑n−k
2 di.

We proceed by induction on m. Since V is a complete intersection, the statements
clearly hold when m = 1. Assume (i) and (ii) hold for m, and consider the exact
sequence

0→ Ωn−1−m
X (l+d(k−m−1))|V → Ωn−m

Pn (l+d(k−m))|V → Ωn−m
X (l+d(k−m))|V → 0,

Applying the long exact sequence of cohomology, to show the statements hold for
m + 1 (m ≤ k − 1), it is enough to show that Hm of the middle term vanishes if l
satisfies the inequality in part (i) and Hm+1 of the middle term vanishes if l satisfies
the inequality in part (ii). Both of these vanishing statements follow if we show that

for t, j ≥ 1 and b > j − t + k − n +
∑n−k

1 di, we have Ht(V,Ωj
Pn(b)|V ) = 0. There

is a resolution:

0→ OPn(−(n+ 1) + b)|V → · · · → ⊕OPn(−(j + 1) + b)|V → Ωj
Pn(b)|V → 0.

To show Ht(V,Ωj(b)|V ) = 0, it is enough to show Ht+r(V,OV (−(j+ r+ 1) + b) = 0
for every r ≥ 0. This is clearly true if t + r 6= k as V is a complete intersection of
dimension k. If t+ r = k, we have

Hk(V,OV (−(j + k − t+ 1) + b) = H0(V,OV (j + k − t− b− n−
n−k∑

1

di) = 0

�

Proof of Proposition 2.1, part (b). Let k be the dimension of the cone of lines on Y

though a general point, and let G̃, Ũ and α : Hn−1(X,Q) → Hn−1−2k(G̃,Q) be
defined as before. We show the restriction of α to Hn−k−1,k(X) is non-zero. Since
Hn−1,0(X) is non-zero and clearly mapped to zero under α, we conclude that the
kernel of α is a non-trivial Hodge substructure of Hn−1(X,Q).

Let q be a general point of G̃, and denote by Ũq, the fiber of π over q. Then Ũq
is smooth of dimension k. We denote the restriction of f : Ũ → X to Ũq by f as
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well. The image of Ũq in X is a cone of lines Yp through a point p of Y and the map

f : Ũq → Yp is generically injective. Since we assume

n− 1 ≥ (2a− n+ 2)(2a− n+ 3)

2
,

and since a+k ≥ n−1, the inequality in Corollary 2.3 is satisfied, so we can conclude
the map

α1 : Hk(X,Ωn−k−1
X )→ Hk(Ũq, f

∗Ωn−k−1
X )

is surjective.
Since F is generically injective, there are injective maps TŨq

→ f∗TX and TŨ →
F ∗TG̃×X = π∗TG̃⊕ f

∗TX . Denote the cokernels of these maps by Nq and N respec-
tively. The exact sequence

0→ TŨq
→ f∗TX → N → 0

gives an injective map

(1) (

n−2k−1∧
N)/tor⊗

k∧
TŨq
→

n−k−1∧
f∗TX .

From the following diagram

0

��

0

��
0 // TŨq

��

// f∗TX //

��

Nq

=

��

// 0

0 // TŨ |Ũq
//

��

F ∗TG̃×X |Ũq
//

��

N |Ũq
// 0

NŨq/Ũ
= //

��

π∗TG̃|Ũq

��
0 0

we getN |Ũq
= Nq. Also, there is a natural map TG̃,q → H0(Ũq, π

∗TG̃,q) = H0(Ũq, π
∗TG̃|Uq).

The composition of the maps

π∗TG̃|Ũq
→
(
π∗TG̃ ⊕ f

∗TX
)
|Ũq

= F ∗TG̃×X |Ũq
→ N |Ũq

= Nq

hence gives a map

(2) TG̃,q → H0(Ũq, Nq).

Denote by αq the composition of the maps

Hn−k−1,k(X)→ Hn−2k−1,0(G̃) = H0(G̃,Ωn−2k−1
G̃

)→ Ωn−2k−1
G̃

|q.

By [4], αq factors through the following maps:
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• the surjective pullback map

α1 : Hn−k−1,k(X) = Hk(X,Ωn−k−1
X )→ Hk(Ũq, f

∗Ωn−k−1
X ) = H0(Ũq, f

∗
n−k−1∧

TX⊗ωŨq
)∨.

• the surjective map

α2 : H0(Ũq, f
∗
n−k−1∧

TX ⊗ ωŨq
)∨ → H0(Ũq,

n−2k−1∧
N/tor)∨

which comes from the injective map (1)
• the natural map

α3 : H0(Ũq,

n−2k−1∧
N/tor)∨ → (

n−2k−1∧
H0(Ũq, N))∨.

• The map

α4 : (
n−2k−1∧

H0(Ũq, N))∨ → (
n−2k−1∧

TG̃,q)
∨ = Ωn−2k−1

G̃
|q

which comes from the dual of the map TG̃,q → H0(Ũq, Nq) in (2).

Lemma 2.6. The map α4 ◦ α3 is non-zero.

Proof. Let u be a general point of Ũq. We have a commutative diagram

TŨ ,u

��

// f∗TX |u

����
TG̃,q

// H0(Ũq, Nq) // Nq|u

Since we assume the image of Ũ → X is of dimension a, and since u is a general
point of Ũq and hence a general point of Ũ , the image of the induced map on Zariski
tangent spaces TŨ ,u → TX,f(u) = f∗TX |u is of dimension a as well. So the image of

the composition map TŨ ,u → f∗TX |u → Nq|u is of dimension at least a− k, and the

same is true for the image of the map

TG̃,q → Nq|u.
By our assumption a+ k ≥ n− 1, so a− k ≥ n− 2k − 1, hence the map

n−2k−1∧
TG̃,q → H0(Ũq,

n−2k−1∧
N/tor),

is non-zero, so its dual is also non-zero. �

Putting all these together we conclude that α is a non-zero map. �

We end this section with an example which shows that for every n ≥ 4, there
is a smooth hypersurface of degree n + 1 in Pn which has a larger than expected
family of lines such that a general line in the family is not contained in any cone
of lines in X. This is based on the example of Albano-Katz [6] for n = 4. Let
X0 = {

∑n
i=0 x

n+1
i = 0} be the Fermat hypersurface of degree n + 1 in Pn, and

consider the family of hypersurfaces Xt := {
∑n

i=0 x
n+1
i − tx0 . . . xn = 0} over P1.
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Proposition 2.7. For a general t in Pn, there is a line L in Xt which belong to a
larger than expected family of lines on Xt and

NL/Xt
= On−3

L ⊕OL(−2).

The expected dimension of the space of lines on a hypersurface of degree n + 1
in Pn is n − 4. Assuming the proposition, if we let R be an irreducible family of
dimension ≥ n − 3 of lines on Xt and L a line parametrized by R whose normal
bundle has the above splitting type, then since the Zariski tangent space to the space
of lines on X passing through a point p of L is isomorphic to H0(L,NL/X(−p)), there
are only finitely many lines on X though any point of L. So L is not contained in
any cone, and the same holds for a general line parametrized by R.

Proof of Proposition 2.7. We give the proof for n even; the proof for the odd case is
similar. We first show that there is a family of dimension at least n−2 of lines in Pn

such that each line in this family lies on Xt for some t. Set Z = X0∩{x0 . . . xn = 0},
and let Zi ⊂ Z be the intersection of X0 with the coordinate hyperplane xi = 0. If L
is a line which intersects Z0 in p = (a0 : a1 : · · · : an) and Z1 in q = (b0 : b1 : · · · : bn),
and if p and q are distinct points which do not belong to any other coordinate
hyperplane, then the point (a0bj − ajb0 : · · · : anbj − ajbn) is on L ∩ {xj = 0} for
every j ≥ 0. Since ∑

i

∑
j

(aibj − ajbi)n+1 = 0,

if L intersects Z0, . . . , Zn−1, then it intersects Zn as well. Since the family of lines
intersecting any subvariety of codimension 2 in Pn is an ample divisor in the Grass-
mannian of lines in Pn, the family of lines intersecting Z0, . . . , Zn−1 has dimension
≥ n−2. Any such line which intersects the coordinate hyperplanes in distinct points
is a (n+1)-secant line of every Xt, and is therefore contained in Xt for some t ∈ P1.

Set g = xn+1
0 + · · · + xn+1

n − (n + 1)x0 . . . xn and let Xn+1 be the hypersurface
defined by g. Let L be the line which passes through the points p = (1 : · · · : 1) and
q = (1 : ω : · · · : ωn) where w is a primitive (n+ 1)-th root of unity. Then L lies on
Xn+1: for every (s : t) ∈ P1,

g(tp+ sq) =
∑

0≤i≤n
(t+ wis)n+1 − (n+ 1)

∏
0≤i≤n

(t+ wis)

=
∑

0≤k≤n+1

(n+ 1

k

) ∑
0≤i≤n

wik − (n+ 1)
∑

i1<···<ik

wi1 . . . wik

 tn+1−ksk

= 0.

(note that
∑

i1<···<ik w
i1 . . . wik is 0 if 1 ≤ k ≤ n and 1 if k = n+ 1). We show that

NL/Xn+1
= On−3

L ⊕OL(−2).

Since w is a primitive root, L intersects the coordinate hyperplanes in distinct
points. By the argument of the previous paragraph, there is an irreducible family
G of dimension ≥ n − 2 of lines in Pn containing [L] such that each line in the
family is contained in some Xt. We have dimG ∩ dimR1(Xn+1) ≥ n − 3 hence
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h0(L,NL/Xn+1
) ≥ n−3. If NL/Xn+1

= ⊕n−2
i=1 OL(ai), then

∑
ai = −2. So to show the

normal bundle has the given form, it is enough to show that h1(L,NL/Xn+1
(−1)) = 2.

Twisting the exact sequence of normal bundles with OL(−1), we get the following
short exact sequence

0→ NL/Xn+1
(−1)→ NL/Pn(−1)→ OL(n)→ 0,

If we show the image of the map H0(L,NL/Pn(−1))→ H0(L,OL(n)) has dimension

n− 1, then we can conclude that h1(L,NL/Xn+1
(−1)) = 2. We have a diagram

H0(L,On+1
L ) // //

φ

22H0(L, TPn(−1)|L) // // H0(L,NL/Pn(−1)) // H0(L,OL(n))

where the map φ is given by ( ∂g
∂x0

, . . . , ∂g
∂xn

), so

∂g

∂xi
|L = (n+1)(xni −x0 . . . x̂i . . . xn)|L = (n+1)

∑
1≤k≤n−1

((
n

k

)
+ (−1)k+1

)
wiktn−ksk

The Vandermonde determinant shows that the image of φ is (n−1)-dimensional, so
the result follows.

Since the dimension of G ∩ R1(Xn+1) at [L] is ≥ n − 3, and since the Zariski
tangent space to the space of lines on Xn+1 at [L] is isomorphic to H0(L,NL/Xn+1),
the dimension of G ∩R1(Xn+1) at [L] is equal to n− 3. So for a general t, dimG ∩
R1(Xt) = n − 3 as well. Therefore, by upper semicontinuity, for a general t and
for a general [L] in any irreducible component of G ∩ R1(Xt), NL/Xt

has the given
splitting type.

�

3. Proof of the main theorem

To prove Theorem 1.2, we need the following result:

Theorem 3.1. Suppose that X is a smooth hypersurface of degree d in Pn, and
d ≥ 4, or d = 3 and n ≥ 5. If X ′ is a very general hyperplane section of X, then
Hn−2(X ′,Q)prim does not have any non-trivial Hodge substructure.

Peters and Steenbrink [9, Corollary 10.23] prove that the primitive part of the
middle cohomology of a very general hypersurface of degree d in Pn has no non-
trivial Hodge substructure if d ≥ 4, or if d = 3 and n ≥ 4. The same proof works in
the situation of the above theorem and the reasoning goes roughly as follows. Let
U ⊂ (Pn)∨ denote the open set parametrizing smooth hyperplane sections of X,
and let u0 ∈ U corresponds to X ′. Then there is a monodromy action

π1(U, u0)→ Aut Hn−2(X ′,C)

which leaves Hn−2(X ′,C)prim stable and acts irreducibly on it. Let

ρ : π1(U, u0)→ Aut Hn−2(X ′,C)prim
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be the restriction of the monodromy action. Let Q denote the intersection paring

on Hn−2(X ′,C)prim if n is even and (−1)
n−1
2 times the intersection paring if n

is odd, so Q is a non-degenerate bilinear form which is either symmetric or anti-
symmetric. Then any automorphism in the image of ρ respects Q, and if d ≥ 4,
or d = 3 and n ≥ 5, then the Zariski closure of the image of ρ is exactly the set
of automorphisms of Hn−2(X ′,C)prim which respect Q [9, Theorem 22], hence it is
either the full orthogonal subgroup or the full symplectic subgroup of the group of
automorphisms. Finally by [9, Theorem 20], if V is a rational variation of Hodge
structure on a connected complex manifold S, and if for a point s0 ∈ S the identity
connected component of the Zariski closure of the monodromy representation

π1(S, s0)→ GL(Vs0)

acts irreducibly on Vs0 ⊗ C, then for a very general s ∈ S, Vs has no non-trivial
rational Hodge substructure.

Theorem 3.2. Let X be a smooth hypersurface of degree d ≤ n in Pn. Then the
following hold.

(a) If R is an irreducible component of R1(X) such that the lines parametrized
by R sweep out a subvariety of dimension a in X, and if

d− 2 ≥ (2a+ d− 2n+ 1)(2a+ d− 2n+ 2)

2
,

then R has the expected dimension 2n− d− 3.
(b) If R is an irreducible component of Re(X), e = 1 or 2, and if the curves

parametrized by R sweep out a subvariety of codimension at most 1 in X,
then R has the expected dimension e(n+ 1− d) + n− 4.

Proof. (a) Assume to the contrary that dimR > 2n − d − 3. Cutting X with a
general linear subvariety of dimension d − 1 in Pn, we get a smooth hypersurface
X ′ of degree d in Pn′:=d−1. If we consider R1(X ′) as a subscheme of R1(X) and set
R′ = R ∩ R1(X ′), then we have

dimR′ = dimR− 2(n+ 1− d) ≥ d− 4 = n′ − 3.

If Y ′ denotes the subvariety of X ′ swept out by the lines parametrized by R′ and
if a′ = dimY ′, then a′ = a − (n + 1 − d). The inequality in the statement of the
theorem now gives

n′ − 1 ≥ (2a′ − n′ + 2)(2a′ − n′ + 3)

2
,

so by Proposition 2.1, Hn′−1(X ′,Q) has a non-trivial Hodge substructure which is
a contradiction by Theorem 3.1.

(b) Assume to the contrary that there is an irreducible component R of Re(X)
which is larger than expected, and the curves parametrized by R sweep out a divisor
Y in X. Then the dimension of the family of curves parametrized by R which pass
through an arbitrary point of Y is ≥ e(n+ 1− d). Let X ′ be a general hyperplane
section of X, and let R′ = Re(X

′) ∩ R. We show that R′ is larger than expected
(so its dimension is at least e(n − d) + n − 4) and that the curves parametrized
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by R′ sweep out a divisor in X ′. Once we prove this, an induction will show that
the intersection of X with a general linear subvariety of dimension d− 1 in Pn is a
hypersurface of degree d in Pd−1 in which the smooth curves of degree e sweep out
a divisor. Applying Proposition 2.1 and Theorem 3.1 we get a contradiction.

To show that R′ has the mentioned properties, it is enough to show that the curves
parametrized by R′ through a general point of Y ∩ X ′ has dimension ≥ e(n − d).
If p is a point of Y , and if I is the incidence correspondence {(C,H)| [C] ∈ R,H ∈
(Pn)∨, C ⊂ H, p ∈ C}, then projection to the first factor shows that dim I ≥
e(n+ 1− d) + n− (e+ 1), so it is enough to show that the projection map from I
to the space of hyperplanes which contain p is dominant. This is clear if e = 1, so
from now on we assume e = 2.

Let p be a general point of Y , and let H be a general hyperplane which contains
p. Let H ′ be a hyperplane which does not contain p. Then every conic C through p
spans a 2-plan ΓC which intersects H ′ alone a line LC . For every family of lines in
Pn which do not all pass through the same point, there is a subfamily of codimension
at most 2 parametrizing lines which lie on H. So there are three possibilities:

(i) There is a curve C for which LC lies on H.
(ii) The lines LC form a family of dimension at most 1.
(iii) The lines LC all pass though the same point.

If (i) holds, then we are done. If (ii) holds, then the family of conics though p would
be of dimension at most 5. Since the family of conics though every point of Y has
dimension at least 2(n− d+ 1), we have d = n− 1 or n. And since 2(n+ 1− d) ≥ 2,
there should be a 1-parameter family of conics through p which all lie on the same
plane, so Y is covered by 2-planes. This is not possible because by [1, Theorem 2.1],
when d ≥ n − 1 and X is smooth, a subvariety of R1(X) cannot be uniruled if the
lines parametrized by it sweep out a divisor in X.

Assume now that (iii) holds, and let q be the point on H ′ through which all the
lines LC pass. We show that we can assume the line L through p and q is contained
in Y . If L is not in Y , then by [5, Lemma 5.1], there is a family of dimension at
least 2(n+1−d)−1 of reducible conics through p and q on Y , so there is a family of
dimension ≥ 2(n+1−d)−1 of lines on Y through p. Since p is a general point of Y ,
the family of lines on Y is of dimension ≥ 2(n+ 1− d)− 1 + dimY − 1 ≥ 2n− d− 2
and we are reduced to the case e = 1 of the theorem. So we can assume that L is
contained in Y . This shows that for a general conic C parametrized by R and for a
general point p on C, there is a line though p in Y whose intersection with C has
length 2, therefore, the 2-plane spanned by C is in Y . By [1, Theorem 2.1], this is
not possible if d ≥ n− 1. If d ≤ n− 2, then the space of lines in Y though a general
point should be of dimension ≥ 2(n + 1 − d) − 3 which is larger than expected, so
we are again reduced to the case of lines.

�

Corollary 3.3. If X ⊂ Pn is a smooth Fano hypersurface of degree d ≤ 8, then the
space of lines on X has dimension 2n− d− 3.

Proof. Intersecting X with general linear subvarieties of dimension d in Pn, it is
enough to consider the case when d = n ≤ 8. Let R be an irreducible component
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of R1(X), and suppose that the lines parametrized by R sweep out a subvariety Y
of dimension a in X. If a = n− 1, then there is nothing to prove since in this case
the normal bundle of a general line L parametrized by R is globally generated and
therefore h0(L,NL/X) = h0(L,NL/Pn)− (d+ 1) = 2n− d− 3. If a = n− 2, part (b)
of Theorem 3.2 shows that F has the expected dimension. If d ≤ 8 and a ≤ n− 3,
then the inequality in part (a) of Theorem 3.2 is satisfied, so R has the expected
dimension. �
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