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Abstract

We study the Hilbert scheme of lines on hypersurfaces in the projective space.
The main result is that for a smooth Fano hypersurface of degree at most 6 over
an algebraically closed field of characteristic zero, the Hilbert scheme of lines has
always the expected dimension.

1 Introduction

Let k be an algebraically closed field and X ⊂ Pn
k a projective variety. Denote by

F (X) the Hilbert scheme of lines on X. It is a subscheme of the Grassmannian of lines
in Pn

k and is called the Fano variety of lines on X. We are interested in studying F (X)
when X is a hypersurface. For general hypersurfaces, these schemes have been studied
classically, but little is known when X is not general.

It is known that for a general hypersurface X ⊂ Pn
k of degree d, F (X) is smooth and

has the expected dimension 2n−d−3. It is also known that F (X) may be reducible or
non-reduced for particular hypersurfaces, even smooth ones. What can be said about
dimension of F (X) when X is an arbitrary smooth hypersurface? O. Debarre and J. de
Jong, independently, asked the following question in this regard.

Question 1.1. Let k be an algebraically closed field of characteristic p, and let X ⊂ Pn
k

be a hypersurface of degree d. Assume d ≤ n, and if p > 0, assume furthermore that
d ≤ p. Does F (X) have the expected dimension 2n− d− 3 whenever X is smooth?

When p is positive and d ≥ p + 1, F (X) does not always have the expected dimen-
sion. It is easy to see that the family of lines contained in the Fermat hypersurface of
degree p + 1 in Pn

k with equation
∑n

i=0 xp+1
i = 0 has dimension at least 2n− 6, which

is larger than the expected dimension when p is odd ([4], 2.15). Also, it can be shown
that if char(k) = 0 and X is the Fermat hypersurface of degree d ≥ n in Pn

k, then
dimF (X) = n−3, which is larger than the expected dimension for d > n ([4], Exercise
2.5). Hence the assumptions in Question 1.1 are necessary.

In [7], Harris et al. gave a positive answer to the above question when p = 0 and d
is very small with respect to n. The main result of this paper is the following.

Theorem 4.2. Assume k has characteristic zero and X is any smooth hypersurface
of degree d ≤ 6 in Pn

k. Then F (X) has the expected dimension when d ≤ n.
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The case d = 3 of the above theorem is elementary. The case d = 4 is due to A.
Collino; he proved in [3] that Question 1.1 holds true for all smooth quartic hypersur-
faces when the characteristic of the base field is not 2 or 3. Also, the case d = 5 of
the above theorem was proved by O. Debarre before, but our approach here is different
from the previous ones and allows us to treat all cases d ≤ 6 in a unified way.

This paper is organized as follows. The proof of the above theorem is given in
Section 4. The results of Sections 2 and 3 are necessary for the proof of this theorem.
In Section 2, we show that a subvariety of F (X) that sweeps out a divisor in X cannot
be uniruled when d ≥ n− 1. In Section 3, we discuss a theorem of J. Landsberg on the
dimension of the family of lines having contact to a specific order with a hypersurface at
a general point, and we use the same method used in the proof of his theorem to prove
a proposition on the singularities of the second fundamental forms of hypersurfaces.

1.1 Conventions.

1. All schemes are considered over a fixed algebraically closed field of characteristic
zero, and all points are closed points unless otherwise stated.
2. For any projective variety X ⊂ Pn, F (X) always denotes the Fano variety of lines
on X.
3. For a scheme X and a sheaf F of OX -modules on X, we denote by F/tor the sheaf
obtained from dividing out F by its torsion.
4. If X is a scheme and Y is a closed subscheme of X with ideal sheaf I , then we
denote by NY/X the normal sheaf of Y in X:

NY/X = Hom(I /I 2,OY ).

Acknowledgment. The results in this paper form part of my Ph.D. thesis at the
Massachusetts Institute of Technology. I am extremely grateful to my thesis advisor,
Johan de Jong, for his enumerable insights and helpful suggestions. I also thank Jason
Starr for patiently answering my questions, and the referee for many useful suggestions
in improving this manuscript.

2 Rational curves on the Fano variety of lines on complete

intersections

A projective variety Y of dimension m is called uniruled if there exist a variety Z of
dimension m− 1 and a dominant rational map P1 × Z !!" Y .

Let X ⊂ Pn be a smooth complete intersection of type (d1, . . . , dl), and let d =∑l
i=1 di. The purpose of this section is to prove the following theorem.

Theorem 2.1. Let Y be an irreducible closed subvariety of F (X) such that the lines
corresponding to its points cover a divisor in X. If d ≥ n− 1, then Y is not uniruled.
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The assumption d ≥ n−1 is necessary: let X be the Fermat hypersurface of degree
d ≤ n− 2 in Pn given by the equation

xd
0 + xd

1 + · · ·+ xd
n = 0,

and let p be the point with coordinates (0; . . . ; 0; a; b) in X. Then the lines on X
passing through p form a cone over the hypersurface xd

0 + · · ·+ xd
n−2 = 0 in Pn−2, and

this hypersurface is uniruled, so we get a uniruled family of lines on X which sweeps
out a divisor.
Remark 2.2. Let X be a smooth hypersurface. If d = n and X is general, then
F (X) is irreducible and the normal bundle of a general line l on X is isomorphic to
On−3

l ⊕ Ol(−1) ([9], V.4.4). Hence the lines on X sweep out a divisor and from the
theorem above, we can conclude that F (X) is not uniruled. If d = n − 1, then X is
always covered by lines and hence there are many such Y. If d > n and X is general,
then the lines on X sweep out a subvariety of codimension at least 2, but for special
hypersurfaces, it is possible that they cover a divisor in X; this happens for example
in the case of Fermat hypersurfaces.

Proof of Theorem 2.1. Assume on the contrary that Y is covered by rational curves,
and let m = dimX = n − l. Without loss of generality, we can assume that our base
field is uncountable. We define Σe to be the ruled surface P(OP1 ⊕OP1(−e)) over P1.

Let C be a rational curve on F (X), and denote by S ⊂ C ×X the family of lines
parametrized by C. Let ν : P1 → C be the normalization. The ruled surface S ×C P1

is isomorphic to Σe for some nonnegative integer e, and we have the following diagram

f : Σe

!!

"" S ⊂ C ×X

!!

"" X

P1 "" C.

LetMor(Σe, X) denote the scheme parametrizing morphisms from Σe to X. For ev-
ery integer e, Mor(Σe, X) has countably many irreducible components. Since our base
field is uncountable and the lines corresponding to the points of Y cover a subvariety of
codimension 1 in X, there is a nonnegative integer e0 and an irreducible subvariety of
Mor(Σe0 , X), denoted by Z, with the property that points of Z correspond to rational
curves on Y, and the image of the map

φ : Z × Σe0
"" X

([g], p) ! "" g(p)

is at least (m − 1)-dimensional. For the rest of the argument, we put e = e0 and
Σ = Σe0 , and we let [f ] denote a general point in Z.

There is an injective morphism from the tangent sheaf of Σ to the pullback of the
tangent sheaf of X. Denote the quotient by G
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0 → TΣ → f∗TX → G → 0. (1)

To get a contradiction, we compute h0(Σ, (
∧m−3 G )/tor) in two different ways. First,

we use the fact that deformations of f cover a divisor in X to show that h0(Σ, (
∧m−3 G )/tor)

is positive and then, we prove that it is zero, using some computations with exact se-
quences of powers of tangent sheaves.

Step 1: h0(Σ, (
∧m−3 G )/tor) > 0. Let p be a general point of Σ and consider the

evaluation map

α : H0(Σ, f∗TX) −→ (f∗TX)p
∼= TX,f(p),

and the tangent map
β : TΣ,p −→ TX,f(p)

to f at p.

Lemma 2.3. For a general point p of Σ the image of the map

H0(Σ, f∗TX)⊕ TΣ,p
α⊕β−−−−→ TX,f(p)

is at least (m− 1)-dimensional.

Proof. Since the image of φ is at least (m − 1)-dimensional, the same is true for the
image of the differential map d([f ],p)φ at the general point ([f ], p). The Zariski tangent
space to Z at [f ] is a subspace of the Zariski tangent space to Mor(Σ, X) at [f ] which
is isomorphic to H0(Σ, f∗TX) ([9], I.2.8), and d([f ],p)φ is the restriction of α⊕β to this
subspace. This proves the lemma.

Look at the following commutative diagram.

H0(Σ, TΣ)

!!

"" H0(Σ, f∗TX)

α

!!
TΣ,p

β "" TX,f(p).

For a general point p of Σ, the map H0(Σ, TΣ) → TΣ,p is surjective. Therefore, for
such a point, β(TΣ,p) ⊂ α(H0(Σ, f∗TX)). So by Lemma 2.3, the image of α is at least
(m−1)-dimensional. Consider now sequence (1). We have shown that the image of α is
at least (m− 1)-dimensional. This implies that the global sections of f∗TX generate a
subspace of dimension at least m− 1 at a general point of Σ. Therefore global sections
of G generate a subspace of dimension at least m− 3 at a general point of Σ and hence
h0(Σ, (

∧m−3 G )/tor) > 0.
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Step 2: h0(Σ, (
∧m−3 G )/tor) = 0. From sequence (1) we get a morphism

∧2 TΣ ⊗ (
∧m−3 G )/tor "" ∧m−1 f∗TX

ξ1 ∧ ξ2 ⊗ η̄1 ∧ · · · ∧ η̄m−3
! "" β(ξ1) ∧ β(ξ2) ∧ η1 ∧ · · · ∧ ηm−3,

where ηi is any lifting of η̄i in sequence (1). Furthermore, this map is injective since it
is injective at the generic point of Σ and

∧2 TΣ ⊗ (
∧m−3 G )/tor is torsion free.

If we twist the above map with the canonical sheaf ωΣ of Σ, we get another injective
morphism

0 −→ (
∧m−3

G )/tor −→
∧m−1

f∗TX ⊗ ωΣ.

We compute h0(Σ,
∧m−1 f∗TX ⊗ ωΣ) and show that it is zero. This will conclude the

proof of Theorem 2.1. We have

h0(Σ,
∧m−1

f∗TX ⊗ ωΣ) = h2(Σ,
∧m−1

f∗T∨X)

= h2(Σ, f∗TX ⊗ det f∗T∨X)

= h2(Σ, f∗TX ⊗ OX(d− n− 1)).

Pulling back the sequence of tangent sheaves, we get the following exact sequence

0 → f∗TX → f∗TPn |X →
⊕

i

f∗OX(di) → 0. (2)

Twisting the above sequence with det f∗T∨X and applying the long exact sequence of
cohomology, we see that to prove the assertion, it suffices to prove two things:

(a) h1(Σ, f∗OX(di + d− n− 1)) = 0, for 1 ≤ i ≤ l.
(b) h2(Σ, f∗TPn |X ⊗ f∗OX(d− n− 1)) = 0.

Let F be the class of a fiber of π : Σ → P1 and E the class of the section with
E2 = −e. Recall that the Picard group of Σ is the free abelian group generated by F
and E, and the intersection products are given by

E2 = −e, F 2 = 0, E · F = 1.

Let f∗OX(1) = aE + bF. The image of a line of ruling of Σ under f is a line, so

1 = f∗OX(1) · F = (aE + bF ) · F = a.

Also f∗OX(1) · E ≥ 0, so
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−e + b = (E + bF ) · E ≥ 0.

Let d′i = di + d− n− 1. We have

f∗OX(d′i) = d′iE + bd′iF.

Since the first cohomology group of the sheaf f∗OX(d′i) restricted to a fiber of π van-
ishes, we have R1π∗(f∗OX(d′i)) = 0, so

h1(Σ, f∗OX(d′i)) = h1(P1, π∗f
∗OX(d′i))

= h1(P1,OP1(bd′i)⊗ π∗(OΣ(d′iE)))

= h1(P1,OP1(bd′i)⊗ (OP1 ⊕ OP1(−e)⊕ · · · ⊕ OP1(−ed′i)))
= 0 (since b ≥ e).

This proves (a).
If we pullback the dual of the Euler sequence of Pn and twist it with f∗OX(d−n−1),

we get the following exact sequence:

0 → f∗OX(d− n− 1) → f∗OX(d− n)n+1 → f∗TPn |X ⊗ f∗OX(d− n− 1) → 0. (3)

So to prove (b), it is enough to show that:

(b′) h2(Σ, f∗OX(d− n)) = h0(Σ, f∗OX(n− d)⊗ ωΣ) = 0.

To show that (b′) is true, we observe that since d ≥ n − 1, the invertible sheaf
f∗OX(n − d) ⊗ ωΣ has negative intersection with the divisor F and hence has no
nonzero global sections. This completes the proof of Theorem 2.1.

3 Lines having contact to a specific order with a hypersurface

Let X ⊂ Pn be a hypersurface of degree d. Take a system of homogeneous coordinates
(x0;x1; . . . ;xn) on Pn, and let P be a homogeneous polynomial of degree d vanishing
on X. Fix a smooth point p in X. For 1 ≤ k ≤ d, let Y k

p be the degree k hypersurface
in Pn given by the homogeneous polynomial

∑

(i1,...ik)
0≤i1,...,ik≤n

∂kP

∂xi1 . . . ∂xik

(p) xi1 . . . xik . (4)

Note that Y 1
p is just the embedded tangent space to X at p. If k = 2, then the

restriction of (4) to the tangent space TX,p gives a quadric form which is called the
second fundamental form of X at p.
Denote by Σk

p the scheme theoretic intersection of Y 1
p , Y 2

p , . . . , Y k
p . Since for a point

q = (q0; . . . ; qn) in Pn we have

6



P (p + λq) =
d∑

k=0

λk

k!

∑

(i1,...,ik)
0≤i1,...,ik≤n

∂kP

∂xi1 . . . ∂xik

(p) qi1 . . . qik ,

Σk
p is a cone with vertex p whose underlying space is the union of all lines in Pn passing

through p and having contact to order k with X at p, and Σd
p is exactly the cone of

lines on X passing through p.
Since Σk

p is the intersection of k hypersurfaces in Pn, its expected dimension is
n−k. The next theorem says that generally the expected dimension is obtained unless
the whole cone lies in X.

Theorem 3.1 (Landsberg [10]). Let X ⊂ Pn be a hypersurface, and let p be a general
point of X. Any irreducible component of Σk

p which has dimension greater than n− k
is contained in X.

We will use this theorem several times in the proof of our main theorem. For later
use, we rephrase the above theorem in the following corollary.

Corollary 3.2. Let X ⊂ Pn be a projective variety of dimension m, and let p be a
general point of X. Denote by Σp the subvariety of X swept out by lines passing through
p, and denote by r the dimension of Σp. Then Σp has degree at most (m + 1− r)! and
it is contained in the proper intersection of the tangent plane to X at p and m − r
hypersurfaces of degrees 2, 3, . . . ,m + 1− r.

Proof. Assume first that X is a hypersurface in Pn. By Theorem 3.1, all the compo-
nents of Σn−r

p are r dimensional, since otherwise Σp would be at least r+1 dimensional.
Hence the hypersurfaces Y 1

p , . . . , Y n−r
p intersect properly. The cone Σp is a component

of this intersection and its degree is at most (n− r)!.
If X has codimension greater than 1 in Pn, then we consider a general projection

of X into Pm+1. Since the projection map is generically finite, we get a hypersurface
in Pm+1 such that the lines passing through its general point sweep out a subvariety
of dimension r and we are in the situation of the previous case.

In the next subsection, we recall some facts about frame bundles of hypersurfaces.
We then prove a proposition on the singularities of the second fundamental form of
a hypersurface at a general point. The proposition will be used later in the proof of
Theorem 4.2.

3.1 Preliminaries on frame bundles.

For a given integer n, let GLn+1 be the space of invertible matrices of size n + 1 over
the base field. Let φ : GLn+1 → Pn be the map given by φ([V0, . . . , Vn]) = V0, where
[V0, . . . , Vn] is the matrix with columns V0, . . . , Vn. Let Ω be the matrix of global
1-forms on GLn+1 given by
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Ωf = f−1 df for f ∈ GLn+1.

Denote the entries of Ω by ωij , and let xij be the regular function on GLn+1 defined
by xij(f) = fij for 0 ≤ i, j ≤ n. We have

dxij(f) =
∑

0≤k≤n

fik ωkj(f) for f = (fij)0≤i,j≤n ∈ GLn+1. (5)

Notation. In what follows, f = (fij)0≤i,j≤n is always an element of GLn+1. We
denote the columns of f by V0, . . . , Vn. Hence the i-th entry of Vj is fij .

Let X be an integral hypersurface of degree d in Pn given by the homogeneous
polynomial P . For given integers 0 ≤ i1, i2, . . . , im ≤ n, the regular function rm

i1,...,im

on GLn+1 is defined by

rm
i1,...,im

(f) =
∂mP

∂+Vi1 . . . ∂+Vim

(V0), f = [V0, . . . , Vn].

More precisely,

rm
i1,...,im

(f) =
∑

(j1,...,jm)
0≤j1,...,jm≤n

fj1,i1 . . . fjm,im

∂mP

∂xj1 . . . ∂xjm

(V0). (6)

Since the ωij form a basis for the space of 1–forms at every point of GLn+1, we can
express the derivative of the functions rm

i1,...,im
as linear combinations of the ωij . The

next lemma says what the coefficients of the combination are when i1 = · · · = im.

Lemma 3.3. For 0 ≤ i ≤ n, we have

drm
i,i,...,i =

∑

0≤t≤n

rm+1
i,...,i,t ωt0 + m

∑

0≤t≤n

rm
i,...,i,t ωti.

Proof. By partial derivation, we have

drm
i,...,i =

∑

(j1,...,jm)

∑

1≤l≤m

(fj1,i . . . ˆfjl,i . . . fjm,i
∂mP

∂xj1 . . . ∂xjm

(V0)) dxjl,i

+
∑

(j1,...,jm)

fj1,i . . . fjm,i d(
∂mP

∂xj1 . . . ∂xjm

(V0)).

Hence the assertion follows from the equality

d(
∂mP

∂xj1 . . . ∂xjm

(V0)) =
∑

0≤t≤n

∂m+1P

∂xj1 . . . ∂xjm∂xt
(V0) dxt0,

and equation (5).
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Before going on, we need another easy lemma.

Lemma 3.4. For 0 ≤ i1, . . . , im ≤ n, we have rm+1
i1,...,im,0 = (d − m)rm

i1,...im
, where

d = deg X.

Proof. By definition, we have

rm+1
i1,...,im,0 =

∑

(j1,...,jm)

fj1,i1 . . . fjm,im(
∑

t

ft0
∂

∂xt

∂mP

∂xj1 . . . ∂xjm

(V0))

= (d−m)
∑

(j1,...,jm)

fj1,i1 . . . fjm,im

∂mP

∂xj1 . . . ∂xjm

(V0)

= (d−m)rm
i1,...,im

.

Let FX be the set of all invertible matrices with columns [V0, . . . , Vn] such that V0

is a smooth point of the hypersurface X and V1, . . . Vn−1 are in the embedded tangent
space to X at V0, namely the hyperplane defined by the linear polynomial

∑

t

(
∂P

∂xt
(V0)) xt.

The scheme FX is a smooth locally closed subvariety of GLn+1; it is a principal bundle
over the smooth locus of X and is called the frame bundle of X.

Denote by νij the image of ωij under the restriction map H0(GLn+1,Ω1
GLn+1

) →
H0(FX ,Ω1

FX
).

Lemma 3.5. At every point of FX , the following hold.
(a) νn0 = 0.
(b) ν00, ν10, . . . , νn−1,0 are independent 1-forms.

Proof. (a) We have

r0 =
∑

t

ft0
∂P

∂xt
(V0) = d P (V0) = 0,

so dr0 = 0. Therefore, it follows from Lemma 3.3 that

0 = dr0 =
∑

0≤t≤n

r0t νt0 +
∑

0≤t≤n

rt νt0. (7)

Since V1, . . . , Vn−1 are in the tangent space to X at V0, we have r1 = · · · = rn−1 = 0.
Applying Lemma 3.4, we get the equalities

r0t = rt = 0 for 0 ≤ t ≤ n− 1,

hence
2rn νn0 = 0.
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Because all the matrices in FX are invertible, Vn is not in the tangent hyperplane at
V0 and so rn ,= 0 and νn0 = 0.

To prove part (b), observe that the map φ : GLn+1 → Pn factors through the map
φ′ : GLn+1 → An+1 and dxt0 is the pullback of dxt under φ′. Let X ′ ⊂ An+1 be the
affine cone over X. The map φ′|FX : FX −→ X ′

smooth is surjective and its fibers are
linear, so it is a smooth map. We know that dx0, . . . ,dxn form a space of dimension n at
every smooth point of X ′, hence the pullbacks of these 1-forms make an n-dimensional
space at every point of FX . On the other hand, f is invertible and fΩ = df . Therefore
ν00, ν10, . . . , νn−1,0, νn0 form an n-dimensional space at every point and by part (a),
νn0 = 0. So the first n 1-forms are linearly independent.

For a point p in X, let Y k
p and Σk

p be defined as in the beginning of this section.

Lemma 3.6. For f = [V0, . . . , Vn] ∈ FX , the following hold.
(a) Vi ∈ Σk

V0
if and only if r1

i (f) = r2
i,i(f) = · · · = rk

i,i,...,i(f) = 0.

(b) Assume that V1 ∈ Σk
V0

. Then Vi is in the Zariski tangent space to Σk
V0

at V1 if
and only if

r1
i (f) = r2

1,i(f) = · · · = rk
1,1,...,1,i(f) = 0.

Proof. Part (a) follows from the definition. We prove part (b) in the case of k = 2.
The proof in the general case is similar.

The point Vi is in the Zariski tangent space to Σ2
V0

at V1 if and only if it is in the
Zariski tangent spaces to the hypersurfaces Y 1

V0
and Y 2

V0
at V1. The equations of these

tangent spaces are given by

∑

t

(
∂P

∂xt
(V0)) xt = 0,

and

∑

t

(
∂

∂xt

( ∑

m,j

∂2P

∂xm∂xj
(V0)xm xj

)
(V1)

)
xt

= 2
∑

t,m

∂2P

∂xt∂xm
(V0)fm1xt.

If we evaluate these two linear polynomials at Vi, we get ri(f) and r1,i(f).
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3.2 Singularities of the second fundamental form.

Let X ⊂ Pn be a hypersurface, and for a smooth point p in X, denote by Zk
p the

intersection of Y k
p and the embedded tangent space Y 1

p to X at p. In this subsection,
we prove the following proposition on the singularities of Z2

p when p is general.

Proposition 3.7. For a general point p of X, the singular points of Z2
p are singular

points of Zk
p for 2 ≤ k ≤ d = deg X.1

To prove the proposition, we need the following lemma.

Lemma 3.8. For a point f = [V0, . . . , Vn] ∈ FX , Vj is a singular point of Zk
V0

if and
only if

rk
j,...,j,0(f) = rk

j,...,j,1(f) = · · · = rk
j,...,j,n−1(f) = 0.

Proof. We can assume Y 1
p is given by xn = 0. The lemma then follows easily from the

definitions.

Proof of Proposition 3.7. Since Z2
p is a quadric, the singular points of Z2

p form a linear
subvariety. By ([6], 2.6), this linear subvariety is contained in X and is a fiber of the
Gauss map. Let s be the dimension of the singular locus of Z2

p .
We restrict our functions to those matrices f = [V0, . . . , Vn] in FX such that

V1, . . . Vs are singular points of Z2
V0

. So let HX ⊂ FX be the set of those matrices
such that V0 is a general point of X and V1, V2, . . . , Vs are singular points of Z2

V0
, and

let ν′′ij be the image of νij under the restriction map H0(FX ,Ω1
FX

) → H0(HX ,Ω1
HX

).
Since V1, V2, . . . , Vs are in X, it follows from Lemma 3.6 that

rk
j,...,j = 0 1 ≤ j ≤ s, 1 ≤ k ≤ d,

therefore

0 = drj =
∑

0≤t≤n−1

rjt ν′′t0 +
∑

0≤t≤n

rt ν′′tj j = 1, . . . , s. (8)

Since V1, . . . , Vn−1 are in the tangent space to X at V0, we have r1 = r2 = · · · = rn−1 =
0. The matrix f is invertible, so Vn is not contained in the tangent space to X at V0

and rn ,= 0. Also, by the last lemma, we have rj0 = · · · = rj,n−1 = 0, so equation (8)
implies that ν′′nj = 0. Applying Lemma 3.3, we get

1J. Landsberg mentioned to us that this proposition also follows from [11, Thm 3.1].
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0 = drjj

=
n∑

t=0

r3
j,j,t ν′′t0 + 2

n∑

t=0

r2
j,t ν′′tj

=
n−1∑

t=0

r3
j,j,t ν′′t0.

By Lemma 3.5, the forms ν′′00, . . . ν
′′
n−1,0 are linearly independent [Notice that in Lemma

3.5, we proved the independence of these forms on FX . The same proof works here by
generic smoothness and the fact that the fibers of φ′|HX are linear.], hence

rj,j,0 = · · · = rj,j,n−1 = 0.

This implies that Vj is a singular point of Z3
p . By repeating this argument, we see that

V1, . . . , Vs are singular points of all the Zk
p .

4 Dimension of the Fano variety of lines on hypersurfaces

Let X ⊂ Pn be a hypersurface of degree d given by a homogeneous polynomial P .
Denote by G(1, n) the Grassmannian which parametrizes lines in Pn. Since X is a
hypersurface, it is easy to describe F (X) as a subscheme of G(1, n). Let S be the
universal rank 2 subbundle of On+1

G(1,n). The restriction of S to any point [l] in G(1, n)
is identified with the rank 2 linear subspace of An+1 whose projective space is l ⊂ Pn.
Hence P gives rise to a section of Symd(S∨), and the scheme theoretic zero locus of
this section is exactly F (X). Therefore the ideal sheaf of F (X) is locally generated
by d + 1 elements and if the corresponding global section of Symd(S∨) is regular, then
the dimension of F (X) is dimG(1, n)− (d + 1) = 2n− d− 3. We refer to the number
2n − d − 3 as the expected dimension of F (X). This description of F (X) shows that
the dimension of F (X) is always greater than or equal to 2n− d− 3.

The following well-known lemma asserts that for a general hypersurface X, the
scheme F (X) has the expected dimension.

Lemma 4.1. For every hypersurface X of degree d in Pn, dimF (X) ≥ 2n − d − 3.
For a general X, F (X) has dimension 2n−d−3 if d ≤ 2n−3 and is empty otherwise.

This result can be obtained by calculating the dimension of the tangent space to
F (X) at a general point. For a proof see [9, Thm V.4.3] or [5] where a more general
statement on the space of linear subvarieties of complete intersections is given.

In this section we prove the following theorem.

Theorem 4.2. If X ⊂ Pn is any smooth Fano hypersurface of degree d ≤ 6, then
F (X) has the expected dimension 2n− d− 3.
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We should remark that for special smooth hypersurfaces, F (X) might be nowhere
reduced and so the dimension of the Zariski tangent space to F (X) might be larger
than the expected dimension of F (X) at every point. For example, if X is the Fermat
hypersurface of degree 4 in P4, then F (X) has 40 1-dimensional components each
with multiplicity 2 (see [4], Exercise 2.5). This example also shows that F (X) can be
reducible if X is not general. However, if d ≤ 2n − 4 and X is not a quadric surface,
then F (X) is always connected even if X is not smooth (see [9, Thm V.4.3] or [1]).

Reduction to the case of n = d. Before giving the proof of the theorem, we show
that to prove Question 1.1 holds true for a given degree d, it is enough to consider only
the case n = d.

Lemma 4.3. If Question 1.1 is true for d = n, then it is true for d ≤ n.

Proof. Fix an integer d. We show that if d ≤ m and if the statement of the question
holds for every smooth hypersurface of degree d in Pm, then it holds for every smooth
hypersurface of degree d in Pm+1. Let X be a smooth hypersurface of degree d in
Pm+1, and let X ′ be a general hyperplane section of X. Since X ′ is smooth, by our
assumption, dim F (X ′) = 2m − d − 3. Let Y be an irreducible component of F (X).
By the following lemma, either a codimension at most 2 subvariety of Y lies in F (X ′)
or all the lines corresponding to the points of Y pass through the same point x. In the
former case, we get dimY ≤ dimF (X ′) + 2 = 2(m + 1) − d − 3. In the latter case,
all these lines are contained in the intersection of X and the tangent hyperplane at x.
Hence dimY ≤ m−1 and the equality holds if and only if X is a hyperplane, therefore

dimY ≤ m− 2 ≤ 2(m + 1)− d− 3.

Lemma 4.4. Let Y be an irreducible subvariety of G(1, n). If there is a hyperplane
Λ ⊂ Pn such that the intersection of Y and the family of lines in Λ has codimension
greater than 2 in Y, then all the lines corresponding to the points of Y pass through the
same point.

Proof. Let dimY = s. Notice that by our hypothesis, s ≥ 3, so the lines corresponding
to the points of Y cannot all lie on the same plane. Therefore if we show that every
two lines of Y intersect, we can conclude that all of them pass through the same point.

Let I ⊂ (Pn)∗ ×Y be the incidence correspondence, and let p and q be the projec-
tions from I to (Pn)∗ and Y respectively. Every fiber of q is linear of dimension n− 2,
hence I is irreducible of dimension s + n− 2. By our assumption, there is a fiber of p
whose dimension is at most s − 3, so p is not dominant and therefore any non-empty
fiber of p has dimension at least s + n− 2− (n− 1) = s− 1.

For a point [l] ∈ Y, let Λl ⊂ (Pn)∗ be the set of hyperplanes which contain l. Two
lines l and l′ in Pn intersect if and only if dim(Λl ∩ Λl′) = n − 3. Let Il ⊂ Λl × Y
be the incidence correspondence, and let pl and ql be the projections from Il to Λl

and Y. We have shown that any fiber of pl has dimension at least s − 1. Thus
dim Il ≥ s − 1 + dim Λl = s + n − 3. So the dimension of any fiber of ql is at least
s + n− 3− dimY = n− 3.
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4.1 Proof of Theorem 4.2 for d ≤ 5.

Lemma 4.5. A smooth hypersurface of degree d in Pn is not covered by lines if d ≥ n.

Proof. Let X ⊂ Pn be a smooth hypersurface which is covered by lines. Let I ⊂
X ×F (X) be the universal family of lines on X, and let (q, [l]) be a general point of I.
Consider the following commutative diagram:

TI,(q,[l])

dp1

!!

"" TF (X),[l]
∼= H0(l, Nl/X)

φ

!!
TX,q

ψ "" Nl/X ⊗ κ(q),

where p1 is the projection map from I to X, dp1 is its differential, and ψ is the map
induced by the natural map from the tangent sheaf of X to the normal sheaf of l in X.

Let Nl/X
∼= Ol(a1)⊕· · ·⊕Ol(an−2) be the decomposition of Nl/X into line bundles.

Since X is covered by lines, the dimension of the image of dp1 is at least n− 1, so the
dimension of the image of ψ◦dp1 is at least n−2. Therefore dimφ(H0(l, Nl/X)) ≥ n−2.
This implies that each ai should be non-negative. On the other hand, by the following
exact sequence, a1 + · · ·+ an−2 = n− 1− d,

0 → Nl/X → Nl/Pn ∼= Ol(1)n−1 → NX/Pn |l ∼= Ol(d) → 0

thus n− 1− d ≥ 0.

We are now ready to prove Theorem 4.2 for d ≤ 5.

n = d = 3. The lemma above shows that X is not covered by lines, so there are
only finitely many lines on X.

n = d = 4. By the lemma above, the union of all lines on X form a subvariety of
dimension at most 2. Any 2-dimensional subvariety of P4 which contains a 2-parameter
family of lines is a linear subvariety. Since X is smooth, it cannot contain a plane: if
X contains a plane, then we can assume that the plane is given by x0 = x1 = 0, so
X is defined by an equation of the form x0P0 + x1P1, where P0 and P1 are degree 3
polynomials; this is not possible since any point in the intersection x0 = x1 = P0 =
P1 = 0 would be a singular point of X. Hence dimF (X) = 1.

n = d = 5. Assume on the contrary that dimF (X) ≥ 3. Let Y be an irreducible
subvariety of F (X) whose dimension is 3, and let X ′ be the subvariety of X swept
out by the lines corresponding to the points of Y. By Lemma 4.5, dimX ′ ≤ 3, and
since a surface can contain at most a 2-parameter family of lines, X ′ is 3-dimensional.
Since X ′ contains a 3-parameter family of lines, there is at least a 1-parameter family
of lines passing through its general point. Corollary 3.2 yields that the degree of the
cone of such lines is at most 2, hence it is a cone over a rational curve. This contradicts
Theorem 2.1.
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Remark 4.6. In [2], an alternative proof of the case n = d = 5 is given. It is shown,
by computing the derivative of the Abel-Jacobi map, that if a smooth quintic threefold
contains a 1-parameter family of lines, then its Abel-Jacobi map is nonzero. Hence
such a hypersurface cannot be a general hyperplane section of a smooth hypersurface
of degree 5 in P5.

4.2 Proof of Theorem 4.2 for d = 6.

Outline of proof. Without loss of generality, we can assume that our base field
is uncountable, and by Lemma 4.3, it is enough to consider the case n = d = 6.
Assume on the contrary that X is a smooth hypersurface of degree 6 in P6 such that
dimF (X) > 2n− d− 3 = 3. Let X ′ be the subvariety of X swept out by its lines. We
show that our assumptions imply that X ′ has codimension 1 in X and the dimension
of the family of lines on X ′ passing through a general point is 1. Let Σ be the cone of
lines passing through a general point of X ′, and let C be a general hyperplane section
of Σ. We use the results of Sections 2 and 3 to show that C is a non-rational curve
of degree at most 6 which lies on a non-singular quadric surface in P3 (Step 1). Then
we use the fact that deformations of Σ cover a codimension 1 subvariety of X to show
that the space H0(Σ,

∧2 NΣ/X/tor) is non-zero (Step 2), and finally we compute the
dimension of this space directly and get a contradiction (Step 3).

Step 1.

Let Y be an irreducible component of F (X) of dimension s ≥ 4. Let I ⊂ X × Y be
the family of lines parametrized by Y, and denote by πX and πY the projections from
I to X and Y respectively. Since Y is irreducible and the fibers of πY are lines, I is
irreducible of dimension s + 1. Let r = dimπX(I). Note that by Lemma 4.5, X is not
covered by lines, hence r ≤ 4. If r = 3, then the fiber of a general point in πX(I) has
dimension s + 1− 3 ≥ 2, so πX(I) is a linear subvariety of dimension 3 in X. Since X
is smooth, it cannot contain a 3-dimensional linear subvariety by a similar argument
as in the case of d = n = 4. We will argue that r = 4 also leads to a contradiction.

Let X ′ = πX(I) and denote by p a general point of X ′. If r = dim X ′ = 4, then
there is at least a 1-parameter family of lines on X ′ which pass through p.

Claim 4.7. No 2-parameter family of lines on X ′ pass through p.

Proof. Assume on the contrary that there is a 2-parameter family of such lines. Then
by Corollary 3.2, the degree of the cone of lines on X ′ passing through p is at most 2.
Hence it is a cone over a surface of degree at most 2. Any quadric surface is covered
by rational curves, so we get a contradiction by Theorem 2.1.

Let Σ be an irreducible cone of lines on X ′ passing through p. From the above
claim, together with Corollary 3.2, we conclude that Σ is a surface of degree at most
6, and it sits in the proper intersection of two hypersurfaces of degrees 2 and 3 in the
embedded tangent plane to X at p. Let C be a hyperplane section of Σ which does not
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pass through p. The above argument shows that C lies on a P3 and it is a component
of the proper intersection of a quadric Q and a cubic T in P3.

Lemma 4.8. With the same notation as above, we have the following:
(a) C is not rational.
(b) The quadric Q is irreducible and non-singular.

Proof. Part (a) follows from Theorem 2.1. As for (b), if Q is singular at a point q,
then by Proposition 3.7, q is contained in T and it is a singular point of T . We can
assume that q = (1; 0; 0; 0) and Q is the zero locus of the polynomial x2

1 − x2x3 or the
polynomial x1x2 depending on whether it is irreducible or not. Hence T is given by a
polynomial of the form x0G1 + G2, where G1 and G2 are homogeneous polynomials of
degrees 2 and 3 in x1, x2, x3. Therefore, the irreducible components of the intersection
of Q and T are rational curves and in particular C is rational. This is not possible by
part (a).

Step 2.

Recall that X ′ is a 4-dimensional subvariety of X and that there is a 1-parameter
family of lines contained in X ′ passing through a general point. We denoted by p a
general point of X ′ and by Σ an irreducible cone of lines on X ′ passing through p. We
use these assumptions to show that

∧2 NΣ/X/tor has a nonzero global section.

Proposition 4.9. Let X ⊂ Pn be a projective variety. Let P be a polynomial, and
let G be a closed subscheme of HilbP (X) whose general point is a reduced subvari-
ety of X of dimension m. If the subschemes of X corresponding to the points of G
cover a k-dimensional subvariety of X, then for a general point [Y ] of G, we have
H0(Y, (

∧k−m NY/X)/tor) ,= 0.

Proof. The proof is similar to the proof of Lemma 4.5. Let I ⊂ X ×G be the family of
subschemes of X parametrized by G, and denote by (q, [Y ]) a general point of I. Note
that the Zariski tangent space to HilbP (X) at [Y ] is isomorphic to H0(Y,NY/X) ([9],
I.2.8), and we have the following commutative diagram:

TI,(q,[Y ])

dp1

!!

"" TG,[Y ] ⊂ H0(Y,NY/X)

φ

!!
TX,q

ψ "" NY/X ⊗ κ(q),

where p1 : I → X is the projection map, dp1 is its differential, and ψ is the dual of the
map

IY/X ⊗ κ(q) −→ mX,q/m2
X,q.

By our assumption, the image of p1 is k-dimensional and since (q, [Y ]) is a general point
of I, the same is true for the image of the differential map dp1. Therefore the image of
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ψ◦dp1 is at least (k−m)-dimensional. The diagram is commutative, so the image of φ is
at least (k−m)-dimensional. This implies that the map H0(Y,

∧k−m NY/X) → NY/X⊗
κ(q) is nonzero for a general point q in Y , hence H0(Y,

∧k−m NY/X/ tor) ,= 0.

Corollary 4.10. In the situation of our problem, H0(Σ,
∧2 NΣ/X/tor) ,= 0, and for a

general point q ∈ Σ, there are global sections s1 and s2 of NΣ/X such that (s1∧s2)(q) ,=
0.

Proof. The statement is the consequence of the proposition above (and its proof for the
second statement) with k = 4 and m = 2, along with the assumptions that our base
field is uncountable and the cones of lines cover a 4-dimensional subvariety of X.

Step 3.

In this part, we try to compute h0(Σ,
∧2 NΣ/X/tor) directly and get a contradiction

using Corollary 4.10.

Lemma 4.11. Assume Y ⊂ X are nonsingular varieties. Then for every subvariety
Z of Y the sequence of normal sheaves

0 → NZ/Y → NZ/X → NY/X ⊗ OZ → 0

is exact.

Proof. It is enough to show that the exact sequence of conormal sheaves

IY/X ⊗ OZ → IZ/X ⊗ OZ → IZ/Y ⊗ OZ → 0 (9)

is exact on the left too and splits locally. Since X and Y are nonsingular, we have an
exact sequence of OY modules

0 → IY/X ⊗ OY
d−→ Ω1

X ⊗ OY → Ω1
Y → 0,

which splits locally. Therefore locally there exists a map s : Ω1
X ⊗ OY → IY/X ⊗ OY

such that s ◦ d = id. Now it is clear that the composition of the maps

IZ/X ⊗ OZ
d−→ Ω1

X ⊗ OZ
s⊗id−−−−→ IY/X ⊗ OZ

splits sequence (9) locally.

By the above lemma, the sequence of normal sheaves on Σ

0 → NΣ/X → NΣ/P6 → NX/P6 |Σ ∼= OΣ(6) → 0 (10)

is exact. Dividing the second exterior power of this sequence by torsions, we get the
following short exact sequence
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0 →
∧3

NΣ/X(−6)/tor →
∧3

NΣ/P6(−6)/tor →
∧2

NΣ/X/tor → 0. (11)

Also, by taking determinants of (10), we get the following isomorphism

∧4
NΣ/P6(−12)/tor ∼=

∧3
NΣ/X(−6)/tor. (12)

By step 1, deg Σ ≤ 6 and it is a cone over a non-rational curve. Hence 3 ≤ deg Σ ≤
6. The case deg Σ = 3 cannot happen because in this case C would be a curve of
type (1, 2) on the non-singular quartic Q and any such curve is rational. So we have
deg Σ ≥ 4. We now analyze different cases separately. In each case, first we compute
h0(Σ,

∧2 NΣ/X/tor) by applying the long exact sequence of cohomology to sequence
(11), and then we use Corollary 4.10 to get a contradiction.

The case deg Σ = 4 :
In this case, C is of type (1, 3) or (2, 2) as a divisor on Q. By Lemma 4.8, the former
cannot happen because a curve of type (1, 3) on a quadric surface is rational. In the
latter case, C is a complete intersection of two hyperplanes and two quadrics in P6,
and

NΣ/P6 ∼= OΣ(2)2 ⊕ OΣ(1)2.

Hence we have H1(Σ,
∧3 NΣ/X(−6)) = H1(Σ,OΣ(−6)) = 0, and H0(Σ,

∧3 NΣ/P6(−6))
= H0(Σ,OΣ(−1)2 ⊕ OΣ(−2)2) = 0. This implies, by (11), that H0(Σ,

∧2 NΣ/X) = 0,
contradicting Corollary 4.10.

The case deg Σ = 5 :
In this case, C is a possibly singular divisor of type (2, 3) on Q. Let U be the com-
plement of the vertex of Σ, and let π : U → C be the projection map. We show
that:

(a) H0(U,
∧3 NΣ/P6(−6)|U ) = 0.

(b) There is a sheaf of OΣ-modules G and a map

φ :
∧3

NΣ/X(−6)/tor −→ G ,

such that φ is an isomorphism on U and H1(Σ,G ) = 0.
Let us first show how we can use these to get a contradiction. The map φ induces a

map between Ext1(
∧2 NΣ/X/ tor,

∧3 NΣ/X(−6)/ tor) and Ext1(
∧2 NΣ/X/ tor,G ). So

we can extend sequence (11) to a commutative diagram

0 "" ∧3 NΣ/X(−6)/tor

φ

!!

"" ∧3 NΣ/P6(−6)/tor ""

ψ

!!

∧2 NΣ/X/tor "" 0

0 "" G "" G ′ "" ∧2 NΣ/X/tor "" 0,
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and ψ is an isomorphism on U because φ is. Since H1(Σ,G ) = 0, every global section
of

∧2 NΣ/X/tor is the image of a global section of G ′ and hence zero on U because
H0(U,

∧3 NΣ/P6(−6)|U ) = 0. This contradicts Corollary 4.10.

Proof of Part (a): Denote by P5 ⊂ P6 a hyperplane that contains C and does not
pass through the vertex of Σ. Recall that π is the projection map from U to C, so the
normal sheaf of U in P6 is the pullback of the normal sheaf of C in P5 under π. Hence
to show the assertion, it is enough to show that

∧3 NC/P5(−6) has no nonzero global
sections. Since C lies on the nonsingular quadric Q in P3, NC/P3 and hence NC/P5

are locally free sheaves, and
∧3 NC/P5 ∼= N∨

C/P5 ⊗ det NC/P5 .
There is an exact sequence of conormal sheaves:

0 → OC(−2)⊕ OC(−1)2 ∼= N∨
Q/P5 |C → N∨

C/P5 → N∨
C/Q → 0.

Since deg N∨
C/Q = −C2 = −12, from the sequence above we get deg(detNC/P5) = 32.

Tensoring the above exact sequence with detNC/P5 ⊗ OC(−6), we get the following
exact sequence

0 → det NC/P5⊗(OC(−8)⊕OC(−7)2) →
∧3

NC/P5(−6) → det NC/P5(−6)⊗N∨
C/Q → 0.

Since the right and left terms of this sequence are direct sums of negative degree line
bundles, they have no nonzero global sections. So the middle term has no nonzero
global sections either.

Proof of Part (b): Since Σ lies on a P4, by Lemma 4.11, the sequence of normal sheaves

0 → NΣ/P4 → NΣ/P6 → NP4/P6 |Σ ∼= O2
Σ(1) → 0

is exact. Taking determinants in this sequence, together with equation (12), we get

∧3
NΣ/X(−6)/tor ∼=

∧2
NΣ/P4(−10)/tor.

Let IC be the ideal sheaf of C in P3. Since

H0(P3,IC(3)) ≥ H0(P3,OP3(3))−H0(C,OC(3)) = 6,

the homogeneous ideal of C in P3 is generated by equations of the quadric Q and two
cubics, and the intersection of each of the cubics with Q is the union of C and a line,
so we get the following exact sequence of OP3-modules

OP3(−4)2 → OP3(−3)2 ⊕ OP3(−2) → OP3 → OC → 0.

(This sequence is exact on the left too, and it is the minimal free resolution of OC in
P3, but we won’t need that.) If I ⊂ k[x0, . . . , x3] is the homogeneous ideal of C in P3,
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then the homogeneous ideal of Σ in P4 is generated by I in k[x0, . . . , x4]. Hence the
above sequence gives a similar exact sequence for Σ in P4

OP4(−4)2 → OP4(−3)2 ⊕ OP4(−2) → IΣ → 0, (13)

where IΣ is the ideal sheaf of Σ in P4. Recall that from an exact sequence of modules
T → M → N → 0 over a ring A, we get an exact sequence of second exterior powers
T ⊗M →

∧2 M →
∧2 N → 0. So restricting sequence (13) to Σ, and then considering

its second exterior power, we get the following exact sequence

OΣ(−7)4 ⊕ OΣ(−6)2 → OΣ(−5)2 ⊕ OΣ(−6) →
∧2

IΣ/I 2
Σ → 0.

Finally, if we dualize this sequence and twist it with OΣ(−10), we get

0 → (
∧2

IΣ/I 2
Σ)∨ ⊗ OΣ(−10) → OΣ(−5)2 ⊕ OΣ(−4) η→ OΣ(−3)4 ⊕ OΣ(−4)2. (14)

Denote by F the image of η. We claim that H0(Σ,F ) = 0 and H1(Σ,OΣ(−5)2 ⊕
OΣ(−4)) = 0. The first part is clear since F is a subsheaf of OΣ(−3)4 ⊕ OΣ(−4)2
which has no nonzero global sections. For the second part of the claim, notice that
IC/Q

∼= OQ(−2,−3), so H1(Q,IC/Q(m)) = 0 for every integer m ([8], III, Ex. 5.6).
Therefore the map

H0(P4,OP4(m)) −→ H0(C,OC(m))

is surjective for every m. The above map factors through the map H0(Σ,OΣ(m)) →
H0(C,OC(m)) and hence this map is also surjective. So H1(Σ,OΣ(m)) = 0 for every
integer m.

Let G = (
∧2 IΣ/I 2

Σ)∨ ⊗ OΣ(−10). It follows from the claim that H1(Σ,G ) = 0.
Notice that there is a natural map

∧2
NΣ/P4(−10) = (

∧2
(IΣ/I 2

Σ)∨)⊗ OΣ(−10) −→ G ,

and since G is torsion free, the above map induces a map

φ :
∧2

NΣ/P4(−10)/tor → G .

Finally, IU/I 2
U is isomorphic to π∗(IC/I 2

C), and since the latter is locally free, φ is
an isomorphism on U .

The case deg Σ = 6 :
In this case, Σ is the complete intersection of two hyperplanes, a quadric, and a cubic
in P6, and

NΣ/P6 ∼= OΣ(1)2 ⊕ OΣ(2)⊕ OΣ(3).
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Therefore H1(Σ,
∧4 NΣ/P6(−12)) = H1(Σ,OΣ(−5)) = 0, and h0(Σ,

∧3 NΣ/P6(−6)) =
h0(Σ,O⊕2

Σ ⊕ OΣ(−1)⊕ OΣ(−2)) = 2. So from sequence (11) we get

h0(Σ,
∧2

NΣ/X) = 2.

Lemma 4.12. Every nonzero global section of NΣ/X has finitely many zeros.

Proof. Let r ∈ H0(Σ, NΣ/X) be a nonzero global section. Recall that det NΣ/X is
isomorphic to OΣ(1) by (12). So by (11) we have an exact sequence:

0 → OΣ(−5) µ−→ O2
Σ ⊕ OΣ(−1)⊕ OΣ(−2) →

∧2
NΣ/X → 0. (15)

The map µ can be described in the following way. Let L1, L2, G, and K be homogeneous
polynomials defining the two hyperplanes, the quadric, and the cubic in P6 whose
intersection is Σ, and let P be a homogeneous polynomial defining X. There are
homogeneous polynomials H1, H2, R, S such that

P = H1 L1 + H2 L2 + R G + S K.

Then the map µ in sequence (15) is given by

µ : OΣ(−5)
(H1,H2,R,S)−−−−−−−−−→ O2

Σ ⊕ OΣ(−1)⊕ OΣ(−2).

By the next lemma, there is s ∈ H0(Σ, NS/X) such that r∧s is a nonzero global section
of

∧2 NΣ/X . Since H1(Σ,OΣ(−5)) = 0, r ∧ s is the image of some t in H0(Σ,O2
Σ ⊕

OΣ(−1) ⊕ OΣ(−2)). Without loss of generality, we can assume t = (1, 0, 0, 0). So if
r(q) = 0 for a point q ∈ Σ, then H2(q) = R(q) = S(q) = 0. The set {q ∈ Σ | H2(q) =
R(q) = S(q) = 0} is zero-dimensional, since otherwise there would be a point in the
intersection of this set and the hypersurface H1 = 0 and this point would be a singular
point of X. Therefore r has finitely many zeros.

Lemma 4.13. For every nonzero r ∈ H0(Σ, NΣ/X), there exists s ∈ H0(Σ, NΣ/X)
such that r ∧ s ,= 0.

Proof. Let q be a general point of Σ. By Corollary 4.10, there are global sections s1 and
s2 of NΣ/X such that (s1∧s2)(q) ,= 0. So the image of the map H0(Σ, NΣ/X) → NΣ/X⊗
κ(q) is at least 2-dimensional. On the other hand, since q is a general point, r(q) ,= 0,
so there exists s ∈ H0(Σ, NΣ/X) such that s(q) and r(q) are linearly independent in
NΣ/X ⊗ κ(q). Such a global section satisfies s ∧ r ,= 0.

Let H be the Hilbert scheme of subschemes of X with the same Hilbert polynomial
as Σ. Since dimX ′ = 4 and we chose Σ to be a general cone of lines on X ′, the
dimension of H at the point [Σ] is at least 4, so h0(Σ, NΣ/X) ≥ 4. Also, we showed
that h0(Σ,

∧2 NΣ/X) = 2, so there are independent global sections r, s of NΣ/X such
that r∧s = 0. Let C ′ be a hyperplane section of Σ which does not contain any zeros of
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r. We have (r∧s)|C′ = 0 and r|C′ is nowhere zero. Hence there exists a constant c such
that r|C′ = c s|C′ . Therefore r − c s is a global section of NΣ/X with a 1-dimensional
set of zeros and so by the previous argument it is the zero section. This contradicts
our assumption that r and s are linearly independent.

Remark 4.14. The above proof shows that for any smooth hypersurface of degree at
least 6 in P6, the Fano variety of lines is at most 3-dimensional, and as it was mentioned
earlier, any Fermat hypersurfaces of degree at least 6 in P6 contains a 3-dimensional
family of lines.
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