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Abstract

We prove that the sweeping components of the space of smooth rational curves in a
smooth hypersurface of degree d in Pn are not uniruled if (n + 1)/2 ≤ d ≤ n − 3. We
also show that for any e ≥ 1, the space of smooth rational curves of degree e in a general
hypersurface of degree d in Pn is not uniruled roughly when d ≥ e

√
n.

1 Introduction

Throughout this paper, we work over an algebraically closed field of characteristic zero k. Let
X be a smooth hypersurface of degree d in Pn, and for e ≥ 1, let Re(X) denote the closure of
the open subscheme of Hilbet+1(X) parametrizing smooth rational curves of degree e in X. It
is known that if d < n+1

2 and X is general, then Re(X) is an irreducible variety of dimension
e(n+1−d)+n−4, and it is conjectured that the same holds for general Fano hypersurfaces (see
[6] and [2]). If X is not general, Re(X) may be reducible. We call an irreducible component R of
Re(X) a sweeping component if the curves parametrized by its points sweep out X or equivalently,
if for a general curve C parametrized by R, the normal bundle of C in X is globally generated.
If d ≤ n− 1, or if d = n and e ≥ 2, then Re(X) has at least one sweeping component.

In this paper, we study the birational geometry of sweeping components of Re(X). Recall
that a projective variety Y of dimension m is called uniruled if there is a variety Z of dimension
m−1 and a dominant rational map Z×P1 99K Y . We are interested in the following question: for
which values of n, d, and e, does Re(X) have non-uniruled sweeping components? Our original
motivation for this study comes from the question of whether or not general Fano hypersurfaces
of low indices are unirational.

We give a complete answer to the above question when n+1
2 ≤ d ≤ n− 3:

Theorem 1.1. Let X be any smooth hypersurface of degree d in Pn, (n + 1)/2 ≤ d ≤ n − 3.
Then for all e ≥ 1, no sweeping component of Re(X) is uniruled.

We also consider the case d = n− 2 and prove:

Theorem 1.2. Let X be a smooth hypersurface of degree n − 2 in Pn, and let C be a smooth
rational curve of degree e in X. Every irreducible sweeping component of Re(X) which contains
C is non-uniruled provided that when we split the normal bundle of C in Pn as a sum of line
bundles

NC/Pn = OC(a1)⊕ · · · ⊕ OC(an−1),

we have ai + aj < 3e for every 1 ≤ i < j ≤ n− 1.
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When n = 5 and d = 3, Re(X) is irreducible for any smooth X (see [2]). In [3], J. de Jong
and J. Starr study the birational geometry of Re(X) with regards to the question of rationality
of general cubic fourfolds. Let M0,0(X, e) be the Kontsevich moduli stack of stable maps of
degree e from curves of genus zero to X and M0,0(X, e) the corresponding coarse moduli scheme.
There is an open subscheme of M0,0(X, e) parametrizing smooth rational curves of degree e in X.
Presenting a general method to produce differential forms on desingularisations of M0,0(X, e),
de Jong and Starr prove that if X is a general cubic fourfold, then Re(X) is not uniruled when
e > 5 is an odd integer, and the general fibers of the MRC fibration of a desingularization of
Re(X) are at most 1-dimensional when e > 4 is an even integer.

If X is a general cubic fourfold, then for a general rational curve C of degree e in X, the normal
bundle of C in P5 is isomorphic to OC( 3e−1

2 )⊕4 if e ≥ 5 is odd and to OC( 3e
2 )⊕2⊕OC( 3e

2 − 1)⊕2

if e ≥ 6 is an even integer (see [3, Proposition 7.1]). Thus Theorem 1.2 gives a new proof of the
result of de Jong and starr when e ≥ 5 is odd. In section 4 we study the case when e is an even
integer and show:

Theorem 1.3. Let X be a smooth cubic fourfold, and let C be a general smooth rational curve
of degree e ≥ 5 in X.

• Re(X) is not uniruled if e is odd and NC/P5 = OC( 3e−1
2 )⊕4.

• If R̃ is a desingularization of Re(X), then the general fibers of the MRC fibration of R̃ are
at most 1-dimensional if e is even and NC/P5 = OC( 3e

2 )⊕2 ⊕OC( 3e
2 − 1)⊕2.

It is an interesting question whether or not the splitting type of NC/Pn is always as above for
a general rational curve C of degree ≥ 5 in an arbitrary smooth cubic fourfold.

Finally, we consider the case d < n+1
2 . When d2 ≤ n, Re(X) is uniruled. In fact, in this range

a much stronger statement holds: for every e ≥ 2, the space of based, 2-pointed rational curves
of degree e in X is rationally connected in a suitable sense (see [4] and [11]). By [6], when X
is general and d < n+1

2 , M0,0(X, e) is irreducible and therefore it is birational to Re(X). Starr
[12] shows that if d < min(n− 6, n+1

2 ) and d2 + d ≥ 2n+ 2, then for every e ≥ 1, the canonical
divisor of M0,0(X, e) is big. This suggests that when d2 + d ≥ 2n + 2 and X is general, Re(X)
may be non-uniruled. In Section 5, we show:

Theorem 1.4. Let X ⊂ Pn (n ≥ 12) be a general hypersurface of degree d, and let m ≥ 1 be an
integer. If a general smooth rational curve C in X of degree e is m-normal (that is if the global
sections of OPn(m) maps surjectively to those of OPn(m)|C), and if

d2 + (2m+ 1)d ≥ (m+ 1)(m+ 2)n+ 2,

then Re(X) is not uniruled.

In particular, since every smooth curve of degree e ≥ 3 in Pn is (e − 2)-normal, it follows that
Re(X) is not uniruled when X is general and

d2 + (2e− 3)d ≥ e(e− 1)n+ 2.
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2 A Consequence of Uniruledness

In this section, we prove a proposition, analogous to the existence of free rational curves on
non-singular uniruled varieties, for varieties whose spaces of smooth rational curves are uniruled.
We first fix notation and recall some definitions.

For a morphism f : Y → X between smooth varieties, by the normal sheaf of f we will mean
the cokernel of the induced map on the tangent bundles TY → f∗TX .

If Y is an irreducible projective variety, and if Ỹ is a desingularization of Y , then the maximal
rationally connected (MRC) fibration of Ỹ is a smooth morphism π : Y 0 → Z from an open subset
Y 0 ⊂ Ỹ such that the fibers of π are all rationally connected, and such that for a very general
point z ∈ Z, any rational curve in Ỹ intersecting π−1(z) is contained in π−1(z). The MRC
fibration of any smooth variety exists and is unique up to birational equivalences [9].

Let Y be an irreducible projective variety, and assume the fiber of the MRC fibration of Ỹ at
a general point is m-dimensional. Then it follows from the definition that there is an irreducible
component Z of Hom(P1, Y ) such that the map µ1 : Z × P1 → Y defined by µ1([g], b) = g(b)
is dominant and the image of the map µ2 : Z × P1 × P1 → Y × Y defined by µ2([g], b1, b2) =
(g(b1), g(b2)) has dimension ≥ dimY +m.

Proposition 2.1. Let X ⊂ Pn be a nonsingular projective variety. If an irreducible sweeping
component R of Re(X) is uniruled, then there exist a smooth rational surface S with a dominant
morphism π : S → P1 and a generically finite morphism f : S → X with the following two
properties:

(i) If C is a general fiber of π, then f |C is a closed immersion onto a smooth curve parametrized
by a general point of R.

(ii) If Nf denotes the normal sheaf of f , then π∗Nf is globally generated.

Moreover, if the fiber of the MRC fibration of a desingularization of R at a general point is at
least m-dimensional, then there are such S and f with the additional property that π∗Nf has an
ample subsheaf of rank = m− 1.

Proof. Let U ⊂ R ×X be the universal family over R. Since R is uniruled, there exist a quasi-
projective variety Z and a dominant morphism µ : Z × P1 → R. Let V ⊂ Z × P1 ×X be the
pullback of the universal family to Z × P1, and denote by q : V → Z × X and p : V → Z the
projection maps.

Consider a desingularization g : Ṽ → V , and let q̃ = q ◦ g and p̃ = p ◦ g. Let z ∈ Z be a
general point, and denote the fibers of p and p̃ over z by S and S̃ respectively. Let f : S → X be
the restriction of q to S, and let f̃ = f ◦ g : S̃ → X. Since z is general, by generic smoothness, S̃
is a smooth surface whose general fiber over P1 is a smooth connected rational curve. We claim
that S̃ and f̃ satisfy the desired properties. The first property is clearly satisfied.

Since every coherent sheaf on P1 splits as a torsion sheaf and a direct sum of line bun-
dles, to show that π∗Nf is globally generated, it suffices to check that the restriction map
H0(P1, π∗Nf ) → Nf |b is surjective for a general point b ∈ P1, or equivalently, that the re-
striction map H0(S,Nf ) → H0(C,Nf |C) is surjective for a general fiber C. To show this, we
consider the Kodaira-Spencer map associated to Ṽ at a general point z ∈ Z. Denote by Neq the
normal sheaf of the map q̃. We get a sequence of maps

TZ,z → H0(S̃, p̃∗TZ |S̃)→ H0(S̃, q̃∗TX×Z |eS)→ H0(S̃, Neq|eS).
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Let b be a general point of P1. Composing the above map with the projection map TZ×P1,(z,b) →
TZ,z, we get a map TZ×P1,(z,b) → H0(S̃, Neq|eS). Note that if N ef denotes the normal sheaf of f̃ ,

then Neq|eS is naturally isomorphic to N ef . Also, if C is the fiber of π : S̃ → P1 over b, then since
b is general, C is smooth, and we have a short exact sequence

0→ NC/eS → N ef(C)/X → N ef |C → 0.

So we get a commutative diagram

TZ×P1,(z,b)

dµ(z,b)

��

// TZ,z // H0(S̃, N ef )

��
TR,[ ef(C)] = H0(f̃(C), N ef(C)/X) // H0(C,N ef |C)

Since µ is dominant, and sinceR is sweeping and therefore generically smooth, dµ(z,b) is surjective.
Since the bottom row is also surjective, the map H0(S̃, N ef )→ H0(C,N ef |C) is surjective as well.
Thus π̃∗N ef is globally generated.

Suppose now that R is uniruled and that the general fibers of the MRC fibration of R are at
least m-dimensional. Let dimR = r. Then there exists a morphism µ1 : Z ×P1 → R such that
the image of

µ2 : Z ×P1 ×P1 → R×R

µ2(z, b1, b2) = (µ1(z, b1), µ1(z, b2))

has dimension ≥ r + m. Constructing S̃ and f̃ as before, and if C1 and C2 denote the fibers of
π over general points b1 and b2 of P1, then the image of the map

dµ2 : TZ×P1×P1,(z,b1,b2) → TR×R,([ ef(C1)],[ ef(C2)])
= H0(C1, N ef(C1)/X

)⊕H0(C2, N ef(C2)/X
)

is at least (r +m)-dimensional. The desired result now follows from the following commutative
diagram

TZ×P1×P1,(z,b1,b2)

(dµ2)(z,b1,b2)

��

// TZ,z // H0(S̃, N ef )

��
TR×R,([ ef(C1)],[ ef(C2)])

// H0(C1, N ef |C1)⊕H0(C2, N ef |C2),

and the observation that the kernel of the bottom row is 2-dimensional.

The above proposition will be enough for the proof of Theorem 1.1, but to prove Theorem
1.3 in the even case, we will need a slightly stronger variant. Let f : Y → X be a morphism
between smooth varieties, and let Nf be the normal sheaf of f

0→ TY → f∗TX → Nf → 0.
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Suppose there is a dominant map π : Y → P1, and let M be the image of the map induced by π
on the tangent bundles TY → π∗TP1 . Consider the push-out of the above sequence by the map
TY →M

0 // TY //

��

f∗TX //

��

Nf //

=

��

0

0 // M //

��

Nf,π //

��

Nf // 0

0 0

The sheaf Nf,π in the above diagram will be referred to as the normal sheaf of f relative to π.
Property (ii) of Proposition 2.1 says that H0(S,Nf ) → H0(C,Nf |C) is surjective. An argu-

ment parallel to the proof of Proposition 2.1 shows the following:

Proposition 2.2. Let X be as in Proposition 2.1. Then property (ii) can be strengthened as
follows:

(ii’) If Nf denotes the normal sheaf of f , and if Nf,π denotes the normal sheaf of f relative to
π, then the composition of the maps

H0(S,Nf,π)→ H0(C,Nf,π|C)→ H0(C,Nf |C)

is surjective for a general fiber C of π.

Moreover, if the general fibers of the MRC fibration of a desingularization of R are at least
m-dimensional, then there are S and f with properties (i) and (ii’) such that the image of the
map

H0(S,Nf,π ⊗ IC)→ H0(C, (Nf ⊗ IC)|C)

is at least (m− 1)-dimensional.

3 The case when n+1
2 ≤ d

Let X be a smooth hypersurface of degree d in Pn. Assume that a sweeping component R of
Re(X) is uniruled. The following result, along with Proposition 2.1 will prove Theorem 1.1.

Proposition 3.1. Suppose d ≤ n−3, and let S and f be as in Proposition 2.1. If C is a general
fiber of π : S → P1 and IC is the ideal sheaf of C in S, then the restriction map

H0(S, f∗OX(2d− n− 1)⊗ I∨C)→ H0(C, f∗OX(2d− n− 1)⊗ I∨C |C)

is zero.

Proof of Theorem 1.1. Granting Proposition 3.1, sinceH0(S, f∗OX(2d−n−1)⊗I∨C)→ H0(C, f∗OX(2d−
n− 1)⊗ I∨C |C) is the zero map, we have

H0(S, f∗OX(2d− n− 1)) = H0(S, f∗OX(2d− n− 1)⊗ I∨C).
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Thus,

H0(P1, π∗f
∗OX(2d− n− 1)) = H0(P1, π∗(f∗OX(2d− n− 1)⊗ I∨C))

= H0(P1, (π∗f∗OX(2d− n− 1))⊗OP1(1)),

which is only possible if H0(P1, π∗f
∗OX(2d−n− 1)) = 0. So H0(S, f∗OX(2d−n− 1)) = 0 and

d < (n+ 1)/2.

Proof of Proposition 3.1. Let ωS be the canonical sheaf of S. By Serre duality and the long exact
sequence of cohomology, it suffices to show that if S and f satisfy the properties of Proposition
2.1, then the restriction map

H1(S, f∗OX(n+ 1− 2d)⊗ ωS)→ H1(C, f∗OX(n+ 1− 2d)⊗ ωS |C)

is surjective. Let N be the normal sheaf of the map f : S → X, and let N ′ be the normal sheaf
of the map S → Pn. There is a short exact sequence

0→ N → N ′ → f∗OX(d)→ 0. (1)

Taking the (n− 3)-rd exterior power of this sequence, we get the following short exact sequence

0→
n−3∧

N ⊗ f∗OX(−d)→
n−3∧

N ′ ⊗ f∗OX(−d)→
n−4∧

N → 0.

For an exact sequence of sheaves of OS-modules 0→ E → F →M → 0 with E and F locally
free of ranks e and f , there is a natural map of sheaves

∧f−e−1
M ⊗

∧e
E ⊗ (

∧f
F )∨ → M∨

which is defined locally at a point s ∈ S as follows: assume γ1, . . . , γf−e−1 ∈Ms, α1, . . . , αe ∈ Es,
and φ :

∧f
Fs → OS,s; then for γ ∈ Ms, we set γf−e = γ, and we define the map to be

γ 7→ φ(γ̃1 ∧ γ̃2 ∧ · · · ∧ γ̃f−e ∧ α1 ∧ · · · ∧ αe) where γ̃i is any lifting of γi in Fs. Clearly, this map
does not depend on the choice of the liftings, and thus it is defined globally. So from the short
exact sequence 0→ TS → f∗TX → N → 0, we get a map

n−4∧
N → N∨ ⊗ f∗OX(n+ 1− d)⊗ ωS ,

and from the short exact sequence 0→ TS → f∗TPn → N ′ → 0, we get a map

n−3∧
N ′ ⊗ f∗OX(−d)→ (N ′)∨ ⊗ f∗OX(n+ 1)⊗ ωS .

With the choices of the maps we have made, the following diagram, whose bottom row is
obtained from dualizing sequence (1) and tensoring with f∗OX(n+ 1−2d)⊗ωS , is commutative
with exact rows

0 // Vn−3 N ⊗ f∗OX(−d) //

��

Vn−3 N ′ ⊗ f∗OX(−d) //

��

Vn−4 N

��

// 0

0 // f∗OX(n + 1− 2d)⊗ ωS
// (N ′)∨ ⊗ f∗OX(n + 1− d)⊗ ωS

// N∨ ⊗ f∗OX(n + 1− d)⊗ ωS
// 0
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Since the cokernel of the first vertical map restricted to C is a torsion sheaf, to show the
assertion, it suffices to show that the map

H1(S,
n−3∧

N ⊗ f∗OX(−d))→ H1(C,
n−3∧

N ⊗ f∗OX(−d)|C)

is surjective. Applying the long exact sequence of cohomology to the top sequence, the surjectivity
assertion follows if we show that

(1) H0(S,
∧n−4

N)→ H0(C,
∧n−4

N |C) is surjective,

(2) H1(C,
∧n−3

N ′ ⊗ f∗OX(−d)|C) = 0.

To prove (1), we consider the commutative diagram∧n−4
H0(S,N) //

��

∧n−4
H0(C,N |C)

��
H0(S,

∧n−4
N) // H0(C,

∧n−4
N |C).

The top horizontal map is surjective since H0(S,N) → H0(C,N |C) is surjective, and the right
vertical map is surjective since N |C is a globally generated line bundles over P1. By commuta-
tivity of the diagram the bottom horizontal map is surjective.

To prove (2), note that there is a surjective map f∗OPn(1)⊕n+1 → N ′. Taking the (n− 3)-rd
exterior power, and then tensoring with f∗OX(−d), we get a surjective map

f∗OPn(n− 3− d)⊕(n+1
n−3) →

n−3∧
N ′ ⊗ f∗OX(−d).

Restricting to C, since n− 3− d ≥ 0, we have H1(C,
∧n−3

N ′ ⊗ f∗OX(−d)|C) = 0.

Proof of Theorem 1.2. Suppose that X is a smooth hypersurface of degree n − 2 in Pn. Let C
be a smooth rational curve of degree e in Pn whose normal bundle NC/Pn is globally generated.
If we write

NC/Pn = OC(a1)⊕ · · · ⊕ OC(an−1),

then
∑

1≤i≤n−1 ai = e(n+ 1)− 2. Assume that ai + aj < 3e for every 1 ≤ i < j ≤ n− 1. Then
H1(C,

∧n−3
NC/Pn ⊗OPn(−d)|C) = 0, and so if N ′ is as in the proof of Theorem 1.1, then

H1(C,
n−3∧

N ′ ⊗ f∗OX(−d)|C) = 0.

The assertion now follows from the proof of Theorem 1.1.

We remark that when d = n− 1 or n, the uniruledness of the sweeping subvarieties of Re(X)
has been studied in [1]. It is proved that if e ≤ n, then a subvariety of Re(X) is non-uniruled if
the curves parametrized by its points sweep out X or a divisor in X.

7



4 Cubic Fourfolds

In this section we prove Theorem 1.3. When e ≥ 5 is odd, the theorem follows from Theorem
1.2 and [3, Proposition 7.1]. So let e ≥ 6 be an even integer, and assume to the contrary that
the general fibers of the MRC fibration of Re(X) are at least 2-dimensional. Let S and f be
as in Proposition 2.2, and let C be a general fiber of π. Set N = Nf and Q = Nf,π. Then by
Proposition 2.1 the following properties are satisfied:

• Property (i): The composition of the maps

H0(S,Q)→ H0(S,Q|C)→ H0(C,N |C)

is surjective.

• Property (ii): The composition of the maps

H0(S,Q⊗ IC)→ H0(C,Q⊗ IC |C)→ H0(C,N ⊗ IC |C)

is non-zero.

We show these lead to a contradiction. Note that IC |C is isomorphic to the trivial bundle OC ,
but we write IC |C instead of OC to keep track of various maps and exact sequences involved in
the proof.

Let Q′ be the normal sheaf of the map S → P5 relative to π. We have Q|C = NC/X and
Q′|C = NC/P5 . Since NX/P5 = OX(3), there is a short exact sequence

0→ Q→ Q′ → f∗OX(3)→ 0. (2)

Taking exterior powers, we obtain the following short exact sequence

0→
2∧
Q⊗ f∗OX(−3)→

2∧
Q′ ⊗ f∗OX(−3)→ Q→ 0. (3)

Since this sequence splits locally, its restriction to C is also a short exact sequence

0→
2∧
Q⊗ f∗OX(−3)|C →

2∧
Q′ ⊗ f∗OX(−3)|C → Q|C → 0. (4)

To get a contradiction, we show that the image of the boundary map

γ : H0(C,Q|C)→ H1(C,
2∧
Q⊗ f∗OX(−3)|C)

is of codimension at least 2 in H1(C,
∧2

Q ⊗ f∗OX(−3)|C). This is not possible since by our
assumption NC/P5 = OC( 3e

2 )⊕2 ⊕OC( 3e
2 − 1)⊕2, and so

H1(C,
2∧
Q′ ⊗ f∗OX(−3)|C) = H1(C,

2∧
NC/P5 ⊗ f∗OX(−3)|C)

= H1(C,OC(−2)⊕OC(−1)⊕4 ⊕OC)
= k.
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Lemma 4.1. The kernel of the map f∗TX → Q is a line bundle which contains
∧2

TS ⊗ π∗ωP1

as a subsheaf.

Proof. The kernel of f∗TX → Q is equal to the kernel of the map induced by π on the tangent
bundles TS → π∗TP1 which we denote by F

0→ F → TS → π∗TP1 .

Since F is reflexive, it is locally free on S, and it is clearly of rank 1. Also the composition of
the maps

2∧
TS ⊗ π∗ωP1 →

2∧
TS ⊗ ΩS = TS → π∗TP1

is the zero-map. So
∧2

TS ⊗ π∗ωP1 is a subsheaf of F .

Given a section r ∈ H0(C,Q⊗ IC |C), we can define a map

βr : H1(C,
2∧
Q⊗ f∗OX(−3)|C) −→ H1(C,ωS |C) = k

as follows. Let F be the line bundle from the proof of Lemma 4.1. It follows from the proof of
the lemma that there is an injection

∧2
TS ⊗ π∗ωP1 → F , and from the short exact sequence

0→ F → f∗TX → Q→ 0

we get a generically injective map of sheaves

3∧
Q⊗ F →

4∧
f∗TX .

Combining these, we get a morphism

3∧
Q⊗ (ωS ⊗ π∗TP1)∨ →

4∧
f∗TX .

Since
∧4

f∗TX = f∗OX(3), we get a generically injective map

Ψ :
3∧
Q⊗ f∗OX(−3)⊗ IC → ωS ⊗ π∗TP1 ⊗ IC ,

and by restricting to C, we get a map

Ψ|C : (
3∧
Q⊗ f∗OX(−3)⊗ IC)|C → ωS |C .

Finally, r gives a map

Φr :
2∧
Q⊗ f∗OX(−3)|C

∧r−→
3∧
Q⊗ f∗OX(−3)⊗ IC |C ,

and we define βr to be the map induced by the composition Ψ|C ◦ Φr. Note that βr is non-zero
if r 6= 0.
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Lemma 4.2. For r, r′ ∈ H0(C,Q ⊗ IC |C), ker(βr) = ker(βr′) if and only if r and r′ are scalar
multiples of each other.

Proof. By Serre duality, it is enough to show that the images of the maps

H0(C, I∨C |C) = H0(C,ω∨S |C ⊗ ωC)
β∨r //

β∨
r′

// H0(C, (
∧2

Q∨ ⊗ f∗OX(3))|C ⊗ ωC)

are the same if and only if r and r′ are scalar multiples of each other. Since Q|C = NC/X , we
have

∧3
Q|C =

∧3
NC/X = f∗OX(3)⊗ ωC , so

(
2∧
Q∨ ⊗ f∗OX(3))|C ⊗ ωC = Q|C ,

and the map
β∨r : H0(C, I∨C |C)→ H0(C,Q|C)

is simply given by r. Similarly, β∨r′ is given by r′, and the lemma follows.

Recall that by definition, we have a short exact sequence

0→ π∗TP1 |C → Q|C → N |C → 0,

and π∗TP1 |C = I−1
C |C . If we tensor this sequence with IC |C , we get the following short exact

sequence
0→ OC → Q⊗ IC |C → N ⊗ IC |C → 0.

Let i be a non-zero section in the image of H0(C,OC) → H0(C,Q ⊗ IC |C). Then i induces a
map

βi : H1(C,
2∧
Q⊗ f∗OX(−3)|C) −→ H1(C,ωS |C) = k

as described before. Let

γ : H0(C,Q|C)→ H1(C,
2∧
Q⊗ f∗OX(−3)|C)

be the connecting map in sequence (4).

Lemma 4.3. We have image(γ) ⊂ kerβi.

Proof. Since the short exact sequence 0 → N → N ′ → f∗OX(3) → 0 splits locally, there is an
exact sequence

0→
2∧
N ⊗ f∗OX(−3)→

2∧
N ′ ⊗ f∗OX(−3)→ N → 0.

Applying the long exact sequence of cohomology to the restriction of this sequence to C, we get
a map

H0(C,N |C)→ H1(C,
2∧
N ⊗ f∗OX(−3)|C).
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Also from the the exact sequence 0 → TS → f∗TX → N → 0, we get a map
∧2

TS ⊗
∧2

N →∧4
f∗TX = f∗OX(3) and hence a map

2∧
N ⊗ f∗OX(−3)→ ωS .

It follows from the definition of βi that the map βi ◦ γ factors through

H0(C,Q|C)→ H0(C,N |C)→ H1(C,
2∧
N ⊗ f∗OX(−3)|C)→ H1(C,ωS |C),

so we have a commutative diagram

H0(S,N) //

����

H1(S,
∧2

N ⊗ f∗OX(−3)) // H1(S, ωS) = 0

��
H0(C,Q|C) // H0(C,N |C) // H1(C,ωS |C).

Thus we can conclude the assertion from the fact that the restriction mapH0(S,N)→ H0(C,N |C)
is surjective, and so the image of the composition of the above maps is contained in the image
of the restriction map H1(S, ωS)→ H1(C,ωS |C) which is zero.

In the following lemma we prove a similar result for the sections of Q ⊗ IC |C which are
obtained by restricting the global sections of Q⊗ IC to C.

Lemma 4.4. If r̃ ∈ H0(S,Q⊗ IC), and if r = r̃|C , then image(γ) ⊂ ker(βr).

Proof. We have a commutative diagram

H0(S,Q) //

��

H1(S,
∧2

Q⊗ f∗OX(−3)) //

��

H1(S, ωS) = 0

��
H0(C,Q|C)

γ // H1(C,
∧2

Q⊗ f∗OX(−3))
βr // H1(C,ωS |C)

and therefore for any u ∈ H0(C,Q|C) in the image of the restriction mapH0(S,Q)→ H0(C,Q|C),
we have βr(γ(u)) = 0. Consider the exact sequence

0→ I−1
C |C → Q|C → N |C → 0.

From the hypothesis that the composition map H0(S,Q) → H0(C,Q|C) → H0(C,N |C) is sur-
jective, we see that to prove the statement, it is enough to show that for any non-zero u in the
image of H0(C, I−1

C |C)→ H0(C,Q|C), we have γ(u) ∈ kerβr.
Consider the diagram

H0(C,Q|C)
γ //

∧i
��
∧r





H1(C,
∧2

Q⊗ f∗OX(−3)|C)

∧i
��
∧r



 βi ,,

βr

((
H0(C,

∧2
Q⊗ IC |C)

λ
// H1(C,

∧3
Q⊗ f∗OX(−3)⊗ IC |C)

ψ
// H1(C,ωS |C)
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where λ is obtained from applying the long exact sequence of cohomology to the third wedge
power of sequence (2), and ψ is induced by the map Ψ|C . Then we have

βr ◦ γ(u) = ψ ◦ λ(u ∧ r)
= ψ ◦ λ(r ∧ i) (up to a scalar factor)
= βi ◦ γ(r)
= 0,

where the last equality comes from the fact that γ(H0(C,Q|C)) ⊂ kerβi by Lemma 4.3.

Let now r̃0 ∈ H0(S,Q⊗IC) be so that its image in H0(C,N⊗IC |C) is non-zero. Such r̃0 exists
by Property (ii). Then r0 := r̃0|C defines a map βr0 . Since the image of r0 in H0(C,N ⊗ IC |C)
is non-zero, r0 and i are not scalar multiples, so according to Lemma 4.2, kerβr0 6= kerβi. Thus
the codimension of kerβi ∩ kerβr0 is at least 2. On the other hand, by the previous lemmas,
image(γ) ⊂ kerβi ∩ kerβr0 . This is a contradiction since dimH1(C,

∧2
Q′ ⊗ f∗OX(−3)|C) = 1.

5 The case when d < n+1
2

Throughout this section, X ⊂ Pn will be a general hypersurface of degree d < (n + 1)/2. By
the main theorem of [6], Re(X) is irreducible for every e ≥ 1. If d2 ≤ n and e ≥ 2, then by [4]
and [11], the space of rational curves of degree e in X passing through two general points of X
is rationally connected. In particular, Re(X) is rationally connected for e ≥ 2. If e = 1, then
R1(X) is the Fano variety of lines in X which is rationally connected if and only if d2 + d ≤ 2n
[8, V.4.7]. In this section, we will consider the case when d2 + d > 2n.

Assume that Re(X) is uniruled. Then there are S and f with the two properties given in
Proposition 2.1. We can take the pair (S, f) to be minimal in the sense that a component of
a fiber of π which is contracted by f cannot be blown down. Let N be the normal sheaf of
f , and let C be a general fiber of π with ideal sheaf IC in S. Denote by H the pullback of a
hyperplane in Pn to S, and denote by K a canonical divisor on S. From the exact sequences
0→ TS → f∗TX → N → 0 and 0→ f∗TX → f∗TPn → f∗OPn(d)→ 0 we get

χ(N ⊗ IC) = (n+ 1)χ(f∗OPn(1)⊗ IC)− χ(f∗OPn(d)⊗ IC)− χ(IC)− χ(TS ⊗ IC)

= (n+ 1)(
(H − C) · (H − C −K)

2
+ 1)− (dH − C) · (dH − C −K)

2
− 1

− −C · (−C −K)
2

− 1− (2K2 − 14)

=
(n+ 1− d2)

2
H2 − (n+ 1− d)

2
H ·K − 2K2 − (n+ 1− d)e+ 14.

We claim that 2H + 2C +K is base-point free and hence has a non-negative self-intersection
number. By the main theorem of [10], if 2H + 2C + K is not base point free, then there exists
an effective divisor E such that either

(2H + 2C) · E = 1, E2 = 0 or (2H + 2C) · E = 0, E2 = −1.
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The first case is clearly not possible. In the second case, H · E = 0, and C · E = 0. So E
is a component of one of the fibers of π which is contracted by f and which is a (−1)-curve.
This contradicts the assumption that (S, f) is minimal. Thus (2H + 2C +K)2 ≥ 0. Also, since
H1(S, f∗OX(−1)) = 0, H · (H +K) = 2χ(f∗OX(−1))− 2 ≥ −2, so we can write

χ(N ⊗ IC) =
2n+ 2− d2 − d

2
H2 − (n− d− 15)(e− 1)− 2

−2(2H + 2C +K)2 − n− d− 15
2

(H · (H +K) + 2)

≤ 2n+ 2− d2 − d
2

H2 − (n− d− 15)(e− 1)− 2,

and therefore χ(N ⊗ IC) is negative when d2 + d ≥ 2n+ 2 and n ≥ 30.
The Leray spectral sequence gives a short exact sequence

0→ H1(P1, π∗(N ⊗ IC))→ H1(S,N ⊗ IC)→ H0(P1, R1π∗(N ⊗ IC))→ 0,

and by our assumption on S and f , H1(P1, π∗(N ⊗ IC)) = 0. If we could choose S such that
H0(P1, R1π∗(N ⊗ IC)) = 0, then we could conclude that χ(N ⊗ IC) ≥ 0 and hence Re(X) could
not be uniruled for d2 + d ≥ 2n+ 2 and n ≥ 30.

We cannot show that for a general X, a minimal pair (S, f) as in Proposition 2.1 can be
chosen so that H0(P1, R1π∗(N ⊗ IC)) = 0. However, we prove that if X is general and (S, f) is
minimal, then for every t ≥ 1,

H0(P1, R1π∗(N ⊗ IC ⊗ f∗OX(t))) = 0.

We also show that if t ≥ 0 and f(C) is t-normal, then

H1(P1, π∗(N ⊗ IC ⊗ f∗OX(t))) = 0.

These imply that χ(N ⊗ IC ⊗ f∗OX(t)) is non-negative when X is general and f(C) is t-normal.
To finish the proof of Theorem 1.4, we compute χ(N ⊗ IC ⊗ f∗OX(t)) directly and show that it
is negative when the inequality in the statement of the theorem holds.

Proof of Theorem 1.4. Let X be a general hypersurface of degree d in Pn. If Re(X) is uniruled,
then there are S and f as in Proposition 2.1. Assume the pair (S, f) is minimal. Let N be the
normal sheaf of f , and let C be a general fiber of π. Then H0(S,N)→ H0(C,N |C) is surjective.
The restriction map H0(S, f∗OX(m)) → H0(C, f∗OX(m)|C) is also surjective since f(C) is m-
normal, so the restriction map H0(S,N ⊗ f∗OX(m))→ H0(C,N ⊗ f∗OX(m)|C) is surjective as
well. Therefore,

H1(P1, π∗(N ⊗ f∗OX(m)⊗ IC)) = 0.

Now let C be an arbitrary fiber of π, and let C0 be an irreducible component of C. Then by
Proposition 5.2, f∗(TX(t))|C0 is globally generated for every t ≥ 1, and hence N ⊗ f∗OX(t)|C0

is globally generated too. So Lemma 5.1 shows that for every t ≥ 1

H0(P1, R1π∗(N ⊗ f∗OX(t)⊗ IC)) = 0.
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By the Leray spectral sequence,

H1(S,N ⊗ f∗OX(m)⊗ IC) = H1(P1, π∗(N ⊗ f∗OX(m)⊗ IC))

⊕H0(P1, R1π∗(N ⊗ f∗OX(m)⊗ IC))
= 0,

and therefore, χ(N ⊗ f∗OX(m) ⊗ IC) ≥ 0. We next compute χ(N ⊗ f∗OX(m) ⊗ IC). For an
integer t ≥ 0, set

at = χ(N ⊗ IC ⊗ f∗OX(t)).

We have

at = χ(N ⊗ IC) +
2t(n+ 1− d) + t2(n− 3)

2
H2 − t(n− 5)

2
H ·K − t(n− 3)e.

So
at =

bt
2
H2 +

ct
2
H ·K − 2K2 + dt,

where
bt = (n+ 1− d2) + 2t(n+ 1− d) + t2(n− 3),

ct = −(n+ 1− d)− t(n− 5),

and
dt = −t(n− 3)e− (n+ 1− d)e+ 14.

A computation similar to the computation in the beginning of this section shows that

at =
bt − ct

2
H2 − 2(2H + 2C +K)2 +

ct + 16
2

(H · (H +K) + 2) + (dt − ct − 32 + 16e)

≤ bt − ct
2

H2 + (dt − ct − 32 + 16e).

Since
dt − ct − 32 + 16e = −(e− 1)(n− 15− d+ t(n− 3))− 2t− 2,

and since n− 15− d+ t(n− 3) ≥ 2n− d− 18 ≥ 0 for t ≥ 1 and n ≥ 12, we get

at <
bt − ct

2
H2.

When d2 + (2t + 1)d ≥ (t + 1)(t + 2)n + 2, bt < ct, and so at < 0. If we let t = m, we get the
desired result.

Lemma 5.1. If E is a locally free sheaf on S such that for every irreducible component C0 of a
fiber of π, E|C0 is globally generated, then R1π∗E = 0.
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Proof. By cohomology and base change [7, Theorem III.12.11], it suffices to prove that for every
fiber C of π, H1(C,E|C) = 0. We first show that if l is the number of irreducible components
of C counted with multiplicity, then we can write C = C1 + · · · + Cl such that each Ci is an
irreducible component of C and for every 1 ≤ i ≤ l− 1, (C1 + · · ·+Ci) ·Ci+1 ≤ 1. This is proven
by induction on l. If l = 1, there is nothing to prove. Otherwise, there is at least one component
C0 of C which can be contracted. Let r be the multiplicity of C0 in C. Blowing down C0, we
get a rational surface S′ over P1. Denote by C ′ the blow-down of C. Then by the induction
hypothesis, we can write

C ′ = C ′1 + · · ·+ C ′l−r

such that (C ′1 + · · ·+C ′i) ·C ′i+1 ≤ 1 for every 1 ≤ i ≤ l− r− 1. Let Ci be the proper transform of
C ′i. Then if in the above sum we replace C ′i by Ci when Ci does not intersect C0 and by Ci +C0

when Ci intersects C0, we get the desired result for C.
Since E|Ci+1 is globally generated, it follows that

H1(Ci+1, E(−C1 − · · · − Ci)|Ci+1) = 0 for every 0 ≤ i ≤ l − 1.

On the other hand, for every 0 ≤ i ≤ l − 2, we have a short exact sequence of OS-modules

0→ E(−C1−· · ·−Ci+1)|Ci+2+···+Cl
→ E(−C1−· · ·−Ci)|Ci+1+···+Cl

→ E(−C1−· · ·−Ci)|Ci+1 → 0.

So a decreasing induction on i shows that for every 0 ≤ i ≤ l − 2, H1(S,E(−C1 − · · · −
Ci)|Ci+1+···+Cl

) = 0. Letting i = 0, the statement follows.

Proposition 5.2. Let X ⊂ Pn be a general hypersurface of degree d.

(i) For any morphism h : P1 → X, h∗(TX(1)) is globally generated.

(ii) If C is a smooth, rational, d-normal curve on X, then H1(C, TX |C) = 0.

Proof. (i) This follows from [13, Proposition 1.1]. We give a proof here for the sake of complete-
ness. Consider the short exact sequence

0→ h∗TX → h∗TPn → h∗OX(d)→ 0.

Since X is general, the image of the pull-back map H0(X,OX(d)) → H0(P1, h∗OX(d)) is con-
tained in the image of the map H0(P1, h∗TPn) → H0(P1, h∗OX(d)). Choose a homogeneous
coordinate system for Pn. Let p be a point in P1, and without loss of generality assume that
h(p) = (1 : 0 : · · · : 0). We show that for any r ∈ h∗(TX(1))|p, there is r̃ ∈ H0(P1, h∗(TX(1)))
such that r̃|p = r.

Consider the exact sequence

0 −→ H0(P1, h∗TX(1)) −→ H0(P1, h∗TPn(1))
φ−→ H0(P1, h∗OX(d+ 1)).

Denote by s the image of r in h∗(TPn(1))|p. There exists S ∈ H0(Pn, TPn(1)) such that the
restriction of s̃ := h∗(S) to p is s. Denote by T the image of S in H0(Pn,OPn(d + 1)), and let
t̃ = h∗(T ). Then T is a form of degree d+ 1 on Pn, and since t̃|p = 0, we can write

T = x1G1 + · · ·+ xnGn,

15



where the Gi are forms of degree d. Our assumption implies that for every 1 ≤ i ≤ n, there is
s̃i ∈ H0(P1, h∗TPn) such that φ(s̃i) = h∗Gi. Then

φ(s̃− h∗(x1)s̃1 − · · · − h∗(xn)s̃n) = t̃− h∗(x1G1)− · · · − h∗(xnGn) = 0,

and therefore, s̃− h∗(x1)s̃1 − · · · − h∗(xn)s̃n is the image of some r̃ ∈ H0(P1, h∗(TX(1))). Since
(s̃− h∗(x1)s̃1 − · · · − h∗(xn)s̃n)|p = s̃|p = s, we have r̃|p = r.

(ii) There is a short exact sequence

0→ TX |C → TPn |C → OC(d)→ 0.

The fact that X is general implies that any section of OC(d)) which is the restriction of a section
of OPn(d) can be lifted to a section of TPn |C . Since the first cohomology group of TPn |C vanishes,
the result follows.

Although for every e and n with e ≥ n + 1 ≥ 4, there are smooth non-degenerate rational
curves of degree e in Pn which are not (e−n)-normal [5, Theorem 3.1], a general smooth rational
curve of degree e in a general hypersurface of degree d has possibly a much smaller normality:
if a maximal-rank type conjecture holds for rational curves contained in general hypersurfaces
(at least when d < n+1

2 ), then it follows that if c is the smallest positive number such that(
n+c
n

)
−
(
n+c−d
n

)
≥ ce+ 1, a general smooth rational curve of degree e in a general hypersurface

of degree d in Pn is c-normal.
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