Non-uniruledness results for spaces of rational curves in hypersurfaces

Roya Beheshti

Abstract

We prove that the sweeping components of the space of smooth rational curves in a smooth hypersurface of degree d in \mathbf{P}^{n} are not uniruled if $(n+1) / 2 \leq d \leq n-3$. We also show that for any $e \geq 1$, the space of smooth rational curves of degree e in a general hypersurface of degree d in \mathbf{P}^{n} is not uniruled roughly when $d \geq e \sqrt{n}$.

1 Introduction

Throughout this paper, we work over an algebraically closed field of characteristic zero \mathbf{k}. Let X be a smooth hypersurface of degree d in \mathbf{P}^{n}, and for $e \geq 1$, let $R_{e}(X)$ denote the closure of the open subscheme of $\operatorname{Hilb}_{e t+1}(X)$ parametrizing smooth rational curves of degree e in X. It is known that if $d<\frac{n+1}{2}$ and X is general, then $R_{e}(X)$ is an irreducible variety of dimension $e(n+1-d)+n-4$, and it is conjectured that the same holds for general Fano hypersurfaces (see [6] and [2]). If X is not general, $R_{e}(X)$ may be reducible. We call an irreducible component R of $R_{e}(X)$ a sweeping component if the curves parametrized by its points sweep out X or equivalently, if for a general curve C parametrized by R, the normal bundle of C in X is globally generated. If $d \leq n-1$, or if $d=n$ and $e \geq 2$, then $R_{e}(X)$ has at least one sweeping component.

In this paper, we study the birational geometry of sweeping components of $R_{e}(X)$. Recall that a projective variety Y of dimension m is called uniruled if there is a variety Z of dimension $m-1$ and a dominant rational map $Z \times \mathbf{P}^{1} \rightarrow Y$. We are interested in the following question: for which values of n, d, and e, does $R_{e}(X)$ have non-uniruled sweeping components? Our original motivation for this study comes from the question of whether or not general Fano hypersurfaces of low indices are unirational.

We give a complete answer to the above question when $\frac{n+1}{2} \leq d \leq n-3$:
Theorem 1.1. Let X be any smooth hypersurface of degree d in $\mathbf{P}^{n},(n+1) / 2 \leq d \leq n-3$. Then for all $e \geq 1$, no sweeping component of $R_{e}(X)$ is uniruled.

We also consider the case $d=n-2$ and prove:
Theorem 1.2. Let X be a smooth hypersurface of degree $n-2$ in \mathbf{P}^{n}, and let C be a smooth rational curve of degree e in X. Every irreducible sweeping component of $R_{e}(X)$ which contains C is non-uniruled provided that when we split the normal bundle of C in \mathbf{P}^{n} as a sum of line bundles

$$
N_{C / \mathbf{P}^{n}}=\mathcal{O}_{C}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(a_{n-1}\right)
$$

we have $a_{i}+a_{j}<3 e$ for every $1 \leq i<j \leq n-1$.

When $n=5$ and $d=3, R_{e}(X)$ is irreducible for any smooth X (see [2]). In [3], J. de Jong and J. Starr study the birational geometry of $R_{e}(X)$ with regards to the question of rationality of general cubic fourfolds. Let $\overline{\mathcal{M}}_{0,0}(X, e)$ be the Kontsevich moduli stack of stable maps of degree e from curves of genus zero to X and $\bar{M}_{0,0}(X, e)$ the corresponding coarse moduli scheme. There is an open subscheme of $\bar{M}_{0,0}(X, e)$ parametrizing smooth rational curves of degree e in X. Presenting a general method to produce differential forms on desingularisations of $\bar{M}_{0,0}(X, e)$, de Jong and Starr prove that if X is a general cubic fourfold, then $R_{e}(X)$ is not uniruled when $e>5$ is an odd integer, and the general fibers of the MRC fibration of a desingularization of $R_{e}(X)$ are at most 1-dimensional when $e>4$ is an even integer.

If X is a general cubic fourfold, then for a general rational curve C of degree e in X, the normal bundle of C in \mathbf{P}^{5} is isomorphic to $\mathcal{O}_{C}\left(\frac{3 e-1}{2}\right)^{\oplus 4}$ if $e \geq 5$ is odd and to $\mathcal{O}_{C}\left(\frac{3 e}{2}\right)^{\oplus 2} \oplus \mathcal{O}_{C}\left(\frac{3 e}{2}-1\right)^{\oplus 2}$ if $e \geq 6$ is an even integer (see [3, Proposition 7.1]). Thus Theorem 1.2 gives a new proof of the result of de Jong and starr when $e \geq 5$ is odd. In section 4 we study the case when e is an even integer and show:
Theorem 1.3. Let X be a smooth cubic fourfold, and let C be a general smooth rational curve of degree $e \geq 5$ in X.

- $R_{e}(X)$ is not uniruled if e is odd and $N_{C / \mathbf{P}^{5}}=\mathcal{O}_{C}\left(\frac{3 e-1}{2}\right)^{\oplus 4}$.
- If \tilde{R} is a desingularization of $R_{e}(X)$, then the general fibers of the $M R C$ fibration of \tilde{R} are at most 1-dimensional if e is even and $N_{C / \mathbf{P}^{5}}=\mathcal{O}_{C}\left(\frac{3 e}{2}\right)^{\oplus 2} \oplus \mathcal{O}_{C}\left(\frac{3 e}{2}-1\right)^{\oplus 2}$.
It is an interesting question whether or not the splitting type of $N_{C / \mathbf{P}^{n}}$ is always as above for a general rational curve C of degree ≥ 5 in an arbitrary smooth cubic fourfold.

Finally, we consider the case $d<\frac{n+1}{2}$. When $d^{2} \leq n, R_{e}(X)$ is uniruled. In fact, in this range a much stronger statement holds: for every $e \geq 2$, the space of based, 2-pointed rational curves of degree e in X is rationally connected in a suitable sense (see [4] and [11]). By [6], when X is general and $d<\frac{n+1}{2}, \bar{M}_{0,0}(X, e)$ is irreducible and therefore it is birational to $R_{e}(X)$. Starr [12] shows that if $d<\min \left(n-6, \frac{n+1}{2}\right)$ and $d^{2}+d \geq 2 n+2$, then for every $e \geq 1$, the canonical divisor of $\overline{\mathcal{M}}_{0,0}(X, e)$ is big. This suggests that when $d^{2}+d \geq 2 n+2$ and X is general, $R_{e}(X)$ may be non-uniruled. In Section 5, we show:
Theorem 1.4. Let $X \subset \mathbf{P}^{n}(n \geq 12)$ be a general hypersurface of degree d, and let $m \geq 1$ be an integer. If a general smooth rational curve C in X of degree e is m-normal (that is if the global sections of $\mathcal{O}_{\mathbf{P}^{n}}(m)$ maps surjectively to those of $\left.\left.\mathcal{O}_{\mathbf{P}^{n}}(m)\right|_{C}\right)$, and if

$$
d^{2}+(2 m+1) d \geq(m+1)(m+2) n+2
$$

then $R_{e}(X)$ is not uniruled.
In particular, since every smooth curve of degree $e \geq 3$ in \mathbf{P}^{n} is $(e-2)$-normal, it follows that $R_{e}(X)$ is not uniruled when X is general and

$$
d^{2}+(2 e-3) d \geq e(e-1) n+2
$$

Acknowledgments

I am grateful to Izzet Coskun, N. Mohan Kumar, Mike Roth, and Jason Starr for many helpful conversations. I also thank the referee for a careful reading of the paper and several significant suggestions.

2 A Consequence of Uniruledness

In this section, we prove a proposition, analogous to the existence of free rational curves on non-singular uniruled varieties, for varieties whose spaces of smooth rational curves are uniruled. We first fix notation and recall some definitions.

For a morphism $f: Y \rightarrow X$ between smooth varieties, by the normal sheaf of f we will mean the cokernel of the induced map on the tangent bundles $T_{Y} \rightarrow f^{*} T_{X}$.

If Y is an irreducible projective variety, and if \widetilde{Y} is a desingularization of Y, then the maximal rationally connected (MRC) fibration of \tilde{Y} is a smooth morphism $\pi: Y^{0} \rightarrow Z$ from an open subset $Y^{0} \subset \widetilde{Y}$ such that the fibers of π are all rationally connected, and such that for a very general point $z \in Z$, any rational curve in \widetilde{Y} intersecting $\pi^{-1}(z)$ is contained in $\pi^{-1}(z)$. The MRC fibration of any smooth variety exists and is unique up to birational equivalences [9].

Let Y be an irreducible projective variety, and assume the fiber of the MRC fibration of \widetilde{Y} at a general point is m-dimensional. Then it follows from the definition that there is an irreducible component Z of $\operatorname{Hom}\left(\mathbf{P}^{1}, Y\right)$ such that the map $\mu_{1}: Z \times \mathbf{P}^{1} \rightarrow Y$ defined by $\mu_{1}([g], b)=g(b)$ is dominant and the image of the map $\mu_{2}: Z \times \mathbf{P}^{1} \times \mathbf{P}^{1} \rightarrow Y \times Y$ defined by $\mu_{2}\left([g], b_{1}, b_{2}\right)=$ $\left(g\left(b_{1}\right), g\left(b_{2}\right)\right)$ has dimension $\geq \operatorname{dim} Y+m$.
Proposition 2.1. Let $X \subset \mathbf{P}^{n}$ be a nonsingular projective variety. If an irreducible sweeping component R of $R_{e}(X)$ is uniruled, then there exist a smooth rational surface S with a dominant morphism $\pi: S \rightarrow \mathbf{P}^{1}$ and a generically finite morphism $f: S \rightarrow X$ with the following two properties:
(i) If C is a general fiber of π, then $\left.f\right|_{C}$ is a closed immersion onto a smooth curve parametrized by a general point of R.
(ii) If N_{f} denotes the normal sheaf of f, then $\pi_{*} N_{f}$ is globally generated.

Moreover, if the fiber of the MRC fibration of a desingularization of R at a general point is at least m-dimensional, then there are such S and f with the additional property that $\pi_{*} N_{f}$ has an ample subsheaf of rank $=m-1$.
Proof. Let $U \subset R \times X$ be the universal family over R. Since R is uniruled, there exist a quasiprojective variety Z and a dominant morphism $\mu: Z \times \mathbf{P}^{1} \rightarrow R$. Let $V \subset Z \times \mathbf{P}^{1} \times X$ be the pullback of the universal family to $Z \times \mathbf{P}^{1}$, and denote by $q: V \rightarrow Z \times X$ and $p: V \rightarrow Z$ the projection maps.

Consider a desingularization $g: \widetilde{V} \rightarrow V$, and let $\widetilde{q}=q \circ g$ and $\widetilde{p}=p \circ g$. Let $z \in Z$ be a general point, and denote the fibers of p and \widetilde{p} over z by S and \tilde{S} respectively. Let $f: S \rightarrow X$ be the restriction of q to S, and let $\widetilde{f}=f \circ g: \widetilde{S} \rightarrow X$. Since z is general, by generic smoothness, \widetilde{S} is a smooth surface whose general fiber over \mathbf{P}^{1} is a smooth connected rational curve. We claim that \widetilde{S} and \widetilde{f} satisfy the desired properties. The first property is clearly satisfied.

Since every coherent sheaf on \mathbf{P}^{1} splits as a torsion sheaf and a direct sum of line bundles, to show that $\pi_{*} N_{f}$ is globally generated, it suffices to check that the restriction map $\left.H^{0}\left(\mathbf{P}^{1}, \pi^{*} N_{f}\right) \rightarrow N_{f}\right|_{b}$ is surjective for a general point $b \in \mathbf{P}^{1}$, or equivalently, that the restriction map $H^{0}\left(S, N_{f}\right) \rightarrow H^{0}\left(C,\left.N_{f}\right|_{C}\right)$ is surjective for a general fiber C. To show this, we consider the Kodaira-Spencer map associated to \widetilde{V} at a general point $z \in Z$. Denote by $N_{\widetilde{q}}$ the normal sheaf of the map \widetilde{q}. We get a sequence of maps

$$
T_{Z, z} \rightarrow H^{0}\left(\widetilde{S},\left.\widetilde{p}^{*} T_{Z}\right|_{\tilde{S}}\right) \rightarrow H^{0}\left(\widetilde{S},\left.\widetilde{q}^{*} T_{X \times Z}\right|_{\widetilde{S}}\right) \rightarrow H^{0}\left(\widetilde{S},\left.N_{\widetilde{q}}\right|_{\widetilde{S}}\right)
$$

Let b be a general point of \mathbf{P}^{1}. Composing the above map with the projection map $T_{Z \times \mathbf{P}^{1},(z, b)} \rightarrow$ $T_{Z, z}$, we get a map $T_{Z \times \mathbf{P}^{1},(z, b)} \rightarrow H^{0}\left(\widetilde{S},\left.N_{\widetilde{q}}\right|_{\widetilde{S}}\right)$. Note that if $N_{\widetilde{f}}$ denotes the normal sheaf of \widetilde{f}, then $\left.N_{\widetilde{q}}\right|_{\widetilde{S}}$ is naturally isomorphic to $N_{\tilde{f}}$. Also, if C is the fiber of $\pi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ over b, then since b is general, C is smooth, and we have a short exact sequence

$$
\left.0 \rightarrow N_{C / \widetilde{S}} \rightarrow N_{\tilde{f}(C) / X} \rightarrow N_{\widetilde{f}}\right|_{C} \rightarrow 0
$$

So we get a commutative diagram

Since μ is dominant, and since R is sweeping and therefore generically smooth, $d \mu_{(z, b)}$ is surjective. Since the bottom row is also surjective, the map $H^{0}\left(\widetilde{S}, N_{\widetilde{f}}\right) \rightarrow H^{0}\left(C,\left.N_{\widetilde{f}}\right|_{C}\right)$ is surjective as well. Thus $\widetilde{\pi}_{*} N_{\widetilde{f}}$ is globally generated.

Suppose now that R is uniruled and that the general fibers of the MRC fibration of R are at least m-dimensional. Let $\operatorname{dim} R=r$. Then there exists a morphism $\mu_{1}: Z \times \mathbf{P}^{1} \rightarrow R$ such that the image of

$$
\begin{gathered}
\mu_{2}: Z \times \mathbf{P}^{1} \times \mathbf{P}^{1} \rightarrow R \times R \\
\mu_{2}\left(z, b_{1}, b_{2}\right)=\left(\mu_{1}\left(z, b_{1}\right), \mu_{1}\left(z, b_{2}\right)\right)
\end{gathered}
$$

has dimension $\geq r+m$. Constructing \widetilde{S} and \widetilde{f} as before, and if C_{1} and C_{2} denote the fibers of π over general points b_{1} and b_{2} of \mathbf{P}^{1}, then the image of the map

$$
d \mu_{2}: T_{Z \times \mathbf{P}^{1} \times \mathbf{P}^{1},\left(z, b_{1}, b_{2}\right)} \rightarrow T_{R \times R,\left(\left[\widetilde{f}\left(C_{1}\right)\right],\left[\tilde{f}\left(C_{2}\right)\right]\right)}=H^{0}\left(C_{1}, N_{\tilde{f}\left(C_{1}\right) / X}\right) \oplus H^{0}\left(C_{2}, N_{\widetilde{f}\left(C_{2}\right) / X}\right)
$$

is at least $(r+m)$-dimensional. The desired result now follows from the following commutative diagram

and the observation that the kernel of the bottom row is 2-dimensional.
The above proposition will be enough for the proof of Theorem 1.1, but to prove Theorem 1.3 in the even case, we will need a slightly stronger variant. Let $f: Y \rightarrow X$ be a morphism between smooth varieties, and let N_{f} be the normal sheaf of f

$$
0 \rightarrow T_{Y} \rightarrow f^{*} T_{X} \rightarrow N_{f} \rightarrow 0
$$

Suppose there is a dominant map $\pi: Y \rightarrow \mathbf{P}^{1}$, and let M be the image of the map induced by π on the tangent bundles $T_{Y} \rightarrow \pi^{*} T_{\mathbf{P}^{1}}$. Consider the push-out of the above sequence by the map $T_{Y} \rightarrow M$

The sheaf $N_{f, \pi}$ in the above diagram will be referred to as the normal sheaf of f relative to π.
Property (ii) of Proposition 2.1 says that $H^{0}\left(S, N_{f}\right) \rightarrow H^{0}\left(C,\left.N_{f}\right|_{C}\right)$ is surjective. An argument parallel to the proof of Proposition 2.1 shows the following:

Proposition 2.2. Let X be as in Proposition 2.1. Then property (ii) can be strengthened as follows:
(ii') If N_{f} denotes the normal sheaf of f, and if $N_{f, \pi}$ denotes the normal sheaf of f relative to π, then the composition of the maps

$$
H^{0}\left(S, N_{f, \pi}\right) \rightarrow H^{0}\left(C,\left.N_{f, \pi}\right|_{C}\right) \rightarrow H^{0}\left(C,\left.N_{f}\right|_{C}\right)
$$

is surjective for a general fiber C of π.
Moreover, if the general fibers of the MRC fibration of a desingularization of R are at least m-dimensional, then there are S and f with properties (i) and (ii') such that the image of the map

$$
H^{0}\left(S, N_{f, \pi} \otimes I_{C}\right) \rightarrow H^{0}\left(C,\left.\left(N_{f} \otimes I_{C}\right)\right|_{C}\right)
$$

is at least ($m-1$)-dimensional.

3 The case when $\frac{n+1}{2} \leq d$

Let X be a smooth hypersurface of degree d in \mathbf{P}^{n}. Assume that a sweeping component R of $R_{e}(X)$ is uniruled. The following result, along with Proposition 2.1 will prove Theorem 1.1.

Proposition 3.1. Suppose $d \leq n-3$, and let S and f be as in Proposition 2.1. If C is a general fiber of $\pi: S \rightarrow \mathbf{P}^{1}$ and I_{C} is the ideal sheaf of C in S, then the restriction map

$$
H^{0}\left(S, f^{*} \mathcal{O}_{X}(2 d-n-1) \otimes I_{C}^{\vee}\right) \rightarrow H^{0}\left(C,\left.f^{*} \mathcal{O}_{X}(2 d-n-1) \otimes I_{C}^{\vee}\right|_{C}\right)
$$

is zero.
Proof of Theorem 1.1. Granting Proposition 3.1, since $H^{0}\left(S, f^{*} \mathcal{O}_{X}(2 d-n-1) \otimes I_{C}^{\vee}\right) \rightarrow H^{0}\left(C, f^{*} \mathcal{O}_{X}(2 d-\right.$ $\left.n-1)\left.\otimes I_{C}^{\vee}\right|_{C}\right)$ is the zero map, we have

$$
H^{0}\left(S, f^{*} \mathcal{O}_{X}(2 d-n-1)\right)=H^{0}\left(S, f^{*} \mathcal{O}_{X}(2 d-n-1) \otimes I_{C}^{\vee}\right)
$$

Thus,

$$
\begin{aligned}
H^{0}\left(\mathbf{P}^{1}, \pi_{*} f^{*} \mathcal{O}_{X}(2 d-n-1)\right) & =H^{0}\left(\mathbf{P}^{1}, \pi_{*}\left(f^{*} \mathcal{O}_{X}(2 d-n-1) \otimes I_{C}^{\vee}\right)\right) \\
& =H^{0}\left(\mathbf{P}^{1},\left(\pi_{*} f^{*} \mathcal{O}_{X}(2 d-n-1)\right) \otimes \mathcal{O}_{\mathbf{P}^{1}}(1)\right)
\end{aligned}
$$

which is only possible if $H^{0}\left(\mathbf{P}^{1}, \pi_{*} f^{*} \mathcal{O}_{X}(2 d-n-1)\right)=0$. So $H^{0}\left(S, f^{*} \mathcal{O}_{X}(2 d-n-1)\right)=0$ and $d<(n+1) / 2$.

Proof of Proposition 3.1. Let ω_{S} be the canonical sheaf of S. By Serre duality and the long exact sequence of cohomology, it suffices to show that if S and f satisfy the properties of Proposition 2.1, then the restriction map

$$
H^{1}\left(S, f^{*} \mathcal{O}_{X}(n+1-2 d) \otimes \omega_{S}\right) \rightarrow H^{1}\left(C,\left.f^{*} \mathcal{O}_{X}(n+1-2 d) \otimes \omega_{S}\right|_{C}\right)
$$

is surjective. Let N be the normal sheaf of the map $f: S \rightarrow X$, and let N^{\prime} be the normal sheaf of the map $S \rightarrow \mathbf{P}^{n}$. There is a short exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow N^{\prime} \rightarrow f^{*} \mathcal{O}_{X}(d) \rightarrow 0 \tag{1}
\end{equation*}
$$

Taking the $(n-3)$-rd exterior power of this sequence, we get the following short exact sequence

$$
0 \rightarrow \bigwedge^{n-3} N \otimes f^{*} \mathcal{O}_{X}(-d) \rightarrow \bigwedge^{n-3} N^{\prime} \otimes f^{*} \mathcal{O}_{X}(-d) \rightarrow \bigwedge^{n-4} N \rightarrow 0
$$

For an exact sequence of sheaves of \mathcal{O}_{S}-modules $0 \rightarrow E \rightarrow F \rightarrow M \rightarrow 0$ with E and F locally free of ranks e and f, there is a natural map of sheaves $\bigwedge^{f-e-1} M \otimes \bigwedge^{e} E \otimes\left(\bigwedge^{f} F\right)^{\vee} \rightarrow M^{\vee}$ which is defined locally at a point $s \in S$ as follows: assume $\gamma_{1}, \ldots, \gamma_{f-e-1} \in M_{s}, \alpha_{1}, \ldots, \alpha_{e} \in E_{s}$, and $\phi: \bigwedge^{f} F_{s} \rightarrow O_{S, s}$; then for $\gamma \in M_{s}$, we set $\gamma_{f-e}=\gamma$, and we define the map to be $\gamma \mapsto \phi\left(\tilde{\gamma}_{1} \wedge \tilde{\gamma}_{2} \wedge \cdots \wedge \tilde{\gamma}_{f-e} \wedge \alpha_{1} \wedge \cdots \wedge \alpha_{e}\right)$ where $\tilde{\gamma}_{i}$ is any lifting of γ_{i} in F_{s}. Clearly, this map does not depend on the choice of the liftings, and thus it is defined globally. So from the short exact sequence $0 \rightarrow T_{S} \rightarrow f^{*} T_{X} \rightarrow N \rightarrow 0$, we get a map

$$
\bigwedge^{n-4} N \rightarrow N^{\vee} \otimes f^{*} \mathcal{O}_{X}(n+1-d) \otimes \omega_{S}
$$

and from the short exact sequence $0 \rightarrow T_{S} \rightarrow f^{*} T_{\mathbf{P}^{n}} \rightarrow N^{\prime} \rightarrow 0$, we get a map

$$
\bigwedge^{n-3} N^{\prime} \otimes f^{*} O_{X}(-d) \rightarrow\left(N^{\prime}\right)^{\vee} \otimes f^{*} O_{X}(n+1) \otimes \omega_{S}
$$

With the choices of the maps we have made, the following diagram, whose bottom row is obtained from dualizing sequence (1) and tensoring with $f^{*} \mathcal{O}_{X}(n+1-2 d) \otimes \omega_{S}$, is commutative with exact rows

Since the cokernel of the first vertical map restricted to C is a torsion sheaf, to show the assertion, it suffices to show that the map

$$
H^{1}\left(S, \bigwedge^{n-3} N \otimes f^{*} \mathcal{O}_{X}(-d)\right) \rightarrow H^{1}\left(C,\left.\bigwedge^{n-3} N \otimes f^{*} \mathcal{O}_{X}(-d)\right|_{C}\right)
$$

is surjective. Applying the long exact sequence of cohomology to the top sequence, the surjectivity assertion follows if we show that
(1) $H^{0}\left(S, \bigwedge^{n-4} N\right) \rightarrow H^{0}\left(C,\left.\bigwedge^{n-4} N\right|_{C}\right)$ is surjective,
(2) $H^{1}\left(C,\left.\bigwedge^{n-3} N^{\prime} \otimes f^{*} \mathcal{O}_{X}(-d)\right|_{C}\right)=0$.

To prove (1), we consider the commutative diagram

The top horizontal map is surjective since $H^{0}(S, N) \rightarrow H^{0}\left(C,\left.N\right|_{C}\right)$ is surjective, and the right vertical map is surjective since $\left.N\right|_{C}$ is a globally generated line bundles over \mathbf{P}^{1}. By commutativity of the diagram the bottom horizontal map is surjective.

To prove (2), note that there is a surjective map $f^{*} \mathcal{O}_{\mathbf{P}^{n}}(1)^{\oplus n+1} \rightarrow N^{\prime}$. Taking the ($n-3$)-rd exterior power, and then tensoring with $f^{*} \mathcal{O}_{X}(-d)$, we get a surjective map

$$
f^{*} \mathcal{O}_{\mathbf{P}^{n}}(n-3-d)^{\oplus\binom{n+1}{n-3}} \rightarrow \bigwedge^{n-3} N^{\prime} \otimes f^{*} \mathcal{O}_{X}(-d)
$$

Restricting to C, since $n-3-d \geq 0$, we have $H^{1}\left(C,\left.\bigwedge^{n-3} N^{\prime} \otimes f^{*} \mathcal{O}_{X}(-d)\right|_{C}\right)=0$.
Proof of Theorem 1.2. Suppose that X is a smooth hypersurface of degree $n-2$ in \mathbf{P}^{n}. Let C be a smooth rational curve of degree e in \mathbf{P}^{n} whose normal bundle $N_{C / \mathbf{P}^{n}}$ is globally generated. If we write

$$
N_{C / \mathbf{P}^{n}}=\mathcal{O}_{C}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(a_{n-1}\right)
$$

then $\sum_{1 \leq i \leq n-1} a_{i}=e(n+1)-2$. Assume that $a_{i}+a_{j}<3 e$ for every $1 \leq i<j \leq n-1$. Then $H^{1}\left(C,\left.\bigwedge^{\bar{n}-\overline{3}} N_{C / \mathbf{P}^{n}} \otimes \mathcal{O}_{\mathbf{P}^{n}}(-d)\right|_{C}\right)=0$, and so if N^{\prime} is as in the proof of Theorem 1.1, then

$$
H^{1}\left(C,\left.\bigwedge^{n-3} N^{\prime} \otimes f^{*} \mathcal{O}_{X}(-d)\right|_{C}\right)=0
$$

The assertion now follows from the proof of Theorem 1.1.
We remark that when $d=n-1$ or n, the uniruledness of the sweeping subvarieties of $R_{e}(X)$ has been studied in [1]. It is proved that if $e \leq n$, then a subvariety of $R_{e}(X)$ is non-uniruled if the curves parametrized by its points sweep out X or a divisor in X.

4 Cubic Fourfolds

In this section we prove Theorem 1.3. When $e \geq 5$ is odd, the theorem follows from Theorem 1.2 and [3, Proposition 7.1]. So let $e \geq 6$ be an even integer, and assume to the contrary that the general fibers of the MRC fibration of $R_{e}(X)$ are at least 2-dimensional. Let S and f be as in Proposition 2.2, and let C be a general fiber of π. Set $N=N_{f}$ and $Q=N_{f, \pi}$. Then by Proposition 2.1 the following properties are satisfied:

- Property (i): The composition of the maps

$$
H^{0}(S, Q) \rightarrow H^{0}\left(S,\left.Q\right|_{C}\right) \rightarrow H^{0}\left(C,\left.N\right|_{C}\right)
$$

is surjective.

- Property (ii): The composition of the maps

$$
H^{0}\left(S, Q \otimes I_{C}\right) \rightarrow H^{0}\left(C,\left.Q \otimes I_{C}\right|_{C}\right) \rightarrow H^{0}\left(C,\left.N \otimes I_{C}\right|_{C}\right)
$$

is non-zero.
We show these lead to a contradiction. Note that $\left.I_{C}\right|_{C}$ is isomorphic to the trivial bundle \mathcal{O}_{C}, but we write $\left.I_{C}\right|_{C}$ instead of \mathcal{O}_{C} to keep track of various maps and exact sequences involved in the proof.

Let Q^{\prime} be the normal sheaf of the map $S \rightarrow \mathbf{P}^{5}$ relative to π. We have $\left.Q\right|_{C}=N_{C / X}$ and $\left.Q^{\prime}\right|_{C}=N_{C / \mathbf{P}^{5}}$. Since $N_{X / \mathbf{P}^{5}}=\mathcal{O}_{X}(3)$, there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow Q \rightarrow Q^{\prime} \rightarrow f^{*} \mathcal{O}_{X}(3) \rightarrow 0 \tag{2}
\end{equation*}
$$

Taking exterior powers, we obtain the following short exact sequence

$$
\begin{equation*}
0 \rightarrow \bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3) \rightarrow \bigwedge^{2} Q^{\prime} \otimes f^{*} \mathcal{O}_{X}(-3) \rightarrow Q \rightarrow 0 \tag{3}
\end{equation*}
$$

Since this sequence splits locally, its restriction to C is also a short exact sequence

$$
\begin{equation*}
\left.\left.\left.0 \rightarrow \bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C} \rightarrow \bigwedge^{2} Q^{\prime} \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C} \rightarrow Q\right|_{C} \rightarrow 0 \tag{4}
\end{equation*}
$$

To get a contradiction, we show that the image of the boundary map

$$
\gamma: H^{0}\left(C,\left.Q\right|_{C}\right) \rightarrow H^{1}\left(C,\left.\bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right)
$$

is of codimension at least 2 in $H^{1}\left(C,\left.\bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right)$. This is not possible since by our assumption $N_{C / \mathbf{P}^{5}}=\mathcal{O}_{C}\left(\frac{3 e}{2}\right)^{\oplus 2} \oplus \mathcal{O}_{C}\left(\frac{3 e}{2}-1\right)^{\oplus 2}$, and so

$$
\begin{aligned}
H^{1}\left(C,\left.\bigwedge_{\bigwedge}^{2} Q^{\prime} \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right) & =H^{1}\left(C,\left.\bigwedge^{2} N_{C / \mathbf{P}^{5}} \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right) \\
& =H^{1}\left(C, \mathcal{O}_{C}(-2) \oplus \mathcal{O}_{C}(-1)^{\oplus 4} \oplus \mathcal{O}_{C}\right) \\
& =\mathbf{k}
\end{aligned}
$$

Lemma 4.1. The kernel of the map $f^{*} T_{X} \rightarrow Q$ is a line bundle which contains $\bigwedge^{2} T_{S} \otimes \pi^{*} \omega_{\mathbf{P}^{1}}$ as a subsheaf.

Proof. The kernel of $f^{*} T_{X} \rightarrow Q$ is equal to the kernel of the map induced by π on the tangent bundles $T_{S} \rightarrow \pi^{*} T_{\mathbf{P}^{1}}$ which we denote by F

$$
0 \rightarrow F \rightarrow T_{S} \rightarrow \pi^{*} T_{\mathbf{P}^{1}}
$$

Since F is reflexive, it is locally free on S, and it is clearly of rank 1. Also the composition of the maps

$$
\bigwedge^{2} T_{S} \otimes \pi^{*} \omega_{\mathbf{P}^{1}} \rightarrow \bigwedge^{2} T_{S} \otimes \Omega_{S}=T_{S} \rightarrow \pi^{*} T_{\mathbf{P}^{1}}
$$

is the zero-map. So $\bigwedge^{2} T_{S} \otimes \pi^{*} \omega_{\mathbf{P}^{1}}$ is a subsheaf of F.

Given a section $r \in H^{0}\left(C,\left.Q \otimes I_{C}\right|_{C}\right)$, we can define a map

$$
\beta_{r}: H^{1}\left(C,\left.\bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right) \longrightarrow H^{1}\left(C,\left.\omega_{S}\right|_{C}\right)=\mathbf{k}
$$

as follows. Let F be the line bundle from the proof of Lemma 4.1. It follows from the proof of the lemma that there is an injection $\bigwedge^{2} T_{S} \otimes \pi^{*} \omega_{\mathbf{P}^{1}} \rightarrow F$, and from the short exact sequence

$$
0 \rightarrow F \rightarrow f^{*} T_{X} \rightarrow Q \rightarrow 0
$$

we get a generically injective map of sheaves

$$
\bigwedge^{3} Q \otimes F \rightarrow \bigwedge^{4} f^{*} T_{X}
$$

Combining these, we get a morphism

$$
\bigwedge^{3} Q \otimes\left(\omega_{S} \otimes \pi^{*} T_{\mathbf{P}^{1}}\right)^{\vee} \rightarrow \bigwedge^{4} f^{*} T_{X}
$$

Since $\bigwedge^{4} f^{*} T_{X}=f^{*} \mathcal{O}_{X}(3)$, we get a generically injective map

$$
\Psi: \bigwedge^{3} Q \otimes f^{*} \mathcal{O}_{X}(-3) \otimes I_{C} \rightarrow \omega_{S} \otimes \pi^{*} T_{\mathbf{P}^{1}} \otimes I_{C}
$$

and by restricting to C, we get a map

$$
\left.\Psi\right|_{C}:\left.\left.\left(\bigwedge^{3} Q \otimes f^{*} \mathcal{O}_{X}(-3) \otimes I_{C}\right)\right|_{C} \rightarrow \omega_{S}\right|_{C}
$$

Finally, r gives a map

$$
\Phi_{r}:\left.\left.\bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C} \xrightarrow{\wedge} \bigwedge^{3} Q \otimes f^{*} \mathcal{O}_{X}(-3) \otimes I_{C}\right|_{C}
$$

and we define β_{r} to be the map induced by the composition $\left.\Psi\right|_{C} \circ \Phi_{r}$. Note that β_{r} is non-zero if $r \neq 0$.

Lemma 4.2. For $r, r^{\prime} \in H^{0}\left(C,\left.Q \otimes I_{C}\right|_{C}\right)$, $\operatorname{ker}\left(\beta_{r}\right)=\operatorname{ker}\left(\beta_{r^{\prime}}\right)$ if and only if r and r^{\prime} are scalar multiples of each other.

Proof. By Serre duality, it is enough to show that the images of the maps

$$
H^{0}\left(C,\left.I_{C}^{\vee}\right|_{C}\right)=H^{0}\left(C,\left.\omega_{S}^{\vee}\right|_{C} \otimes \omega_{C}\right) \xrightarrow[\beta_{r^{\prime}}^{\vee}]{\stackrel{\beta_{r}^{\vee}}{\longrightarrow}} H^{0}\left(C,\left.\left(\bigwedge^{2} Q^{\vee} \otimes f^{*} \mathcal{O}_{X}(3)\right)\right|_{C} \otimes \omega_{C}\right)
$$

are the same if and only if r and r^{\prime} are scalar multiples of each other. Since $\left.Q\right|_{C}=N_{C / X}$, we have $\left.\bigwedge^{3} Q\right|_{C}=\bigwedge^{3} N_{C / X}=f^{*} \mathcal{O}_{X}(3) \otimes \omega_{C}$, so

$$
\left.\left(\bigwedge^{2} Q^{\vee} \otimes f^{*} \mathcal{O}_{X}(3)\right)\right|_{C} \otimes \omega_{C}=\left.Q\right|_{C}
$$

and the map

$$
\beta_{r}^{\vee}: H^{0}\left(C,\left.I_{C}^{\vee}\right|_{C}\right) \rightarrow H^{0}\left(C,\left.Q\right|_{C}\right)
$$

is simply given by r. Similarly, $\beta_{r^{\prime}}^{\vee}$ is given by r^{\prime}, and the lemma follows.
Recall that by definition, we have a short exact sequence

$$
\left.\left.\left.0 \rightarrow \pi^{*} T_{\mathbf{P}^{1}}\right|_{C} \rightarrow Q\right|_{C} \rightarrow N\right|_{C} \rightarrow 0
$$

and $\left.\pi^{*} T_{\mathbf{P}^{1}}\right|_{C}=\left.I_{C}^{-1}\right|_{C}$. If we tensor this sequence with $\left.I_{C}\right|_{C}$, we get the following short exact sequence

$$
\left.\left.0 \rightarrow \mathcal{O}_{C} \rightarrow Q \otimes I_{C}\right|_{C} \rightarrow N \otimes I_{C}\right|_{C} \rightarrow 0
$$

Let i be a non-zero section in the image of $H^{0}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{0}\left(C,\left.Q \otimes I_{C}\right|_{C}\right)$. Then i induces a map

$$
\beta_{i}: H^{1}\left(C,\left.\bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right) \longrightarrow H^{1}\left(C,\left.\omega_{S}\right|_{C}\right)=\mathbf{k}
$$

as described before. Let

$$
\gamma: H^{0}\left(C,\left.Q\right|_{C}\right) \rightarrow H^{1}\left(C,\left.\bigwedge^{2} Q \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right)
$$

be the connecting map in sequence (4).
Lemma 4.3. We have image $(\gamma) \subset \operatorname{ker} \beta_{i}$.
Proof. Since the short exact sequence $0 \rightarrow N \rightarrow N^{\prime} \rightarrow f^{*} \mathcal{O}_{X}(3) \rightarrow 0$ splits locally, there is an exact sequence

$$
0 \rightarrow \bigwedge^{2} N \otimes f^{*} \mathcal{O}_{X}(-3) \rightarrow \bigwedge^{2} N^{\prime} \otimes f^{*} \mathcal{O}_{X}(-3) \rightarrow N \rightarrow 0
$$

Applying the long exact sequence of cohomology to the restriction of this sequence to C, we get a map

$$
H^{0}\left(C,\left.N\right|_{C}\right) \rightarrow H^{1}\left(C,\left.\bigwedge^{2} N \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right)
$$

Also from the the exact sequence $0 \rightarrow T_{S} \rightarrow f^{*} T_{X} \rightarrow N \rightarrow 0$, we get a map $\bigwedge^{2} T_{S} \otimes \bigwedge^{2} N \rightarrow$ $\bigwedge^{4} f^{*} T_{X}=f^{*} \mathcal{O}_{X}(3)$ and hence a map

$$
\bigwedge^{2} N \otimes f^{*} \mathcal{O}_{X}(-3) \rightarrow \omega_{S}
$$

It follows from the definition of β_{i} that the map $\beta_{i} \circ \gamma$ factors through

$$
H^{0}\left(C,\left.Q\right|_{C}\right) \rightarrow H^{0}\left(C,\left.N\right|_{C}\right) \rightarrow H^{1}\left(C,\left.\bigwedge^{2} N \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right) \rightarrow H^{1}\left(C,\left.\omega_{S}\right|_{C}\right)
$$

so we have a commutative diagram

Thus we can conclude the assertion from the fact that the restriction map $H^{0}(S, N) \rightarrow H^{0}\left(C,\left.N\right|_{C}\right)$ is surjective, and so the image of the composition of the above maps is contained in the image of the restriction map $H^{1}\left(S, \omega_{S}\right) \rightarrow H^{1}\left(C,\left.\omega_{S}\right|_{C}\right)$ which is zero.

In the following lemma we prove a similar result for the sections of $\left.Q \otimes I_{C}\right|_{C}$ which are obtained by restricting the global sections of $Q \otimes I_{C}$ to C.

Lemma 4.4. If $\tilde{r} \in H^{0}\left(S, Q \otimes I_{C}\right)$, and if $r=\left.\tilde{r}\right|_{C}$, then image $(\gamma) \subset \operatorname{ker}\left(\beta_{r}\right)$.
Proof. We have a commutative diagram

and therefore for any $u \in H^{0}\left(C,\left.Q\right|_{C}\right)$ in the image of the restriction map $H^{0}(S, Q) \rightarrow H^{0}\left(C,\left.Q\right|_{C}\right)$, we have $\beta_{r}(\gamma(u))=0$. Consider the exact sequence

$$
\left.\left.\left.0 \rightarrow I_{C}^{-1}\right|_{C} \rightarrow Q\right|_{C} \rightarrow N\right|_{C} \rightarrow 0
$$

From the hypothesis that the composition map $H^{0}(S, Q) \rightarrow H^{0}\left(C,\left.Q\right|_{C}\right) \rightarrow H^{0}\left(C,\left.N\right|_{C}\right)$ is surjective, we see that to prove the statement, it is enough to show that for any non-zero u in the image of $H^{0}\left(C,\left.I_{C}^{-1}\right|_{C}\right) \rightarrow H^{0}\left(C,\left.Q\right|_{C}\right)$, we have $\gamma(u) \in \operatorname{ker} \beta_{r}$.

Consider the diagram

where λ is obtained from applying the long exact sequence of cohomology to the third wedge power of sequence (2), and ψ is induced by the map $\left.\Psi\right|_{C}$. Then we have

$$
\begin{aligned}
\beta_{r} \circ \gamma(u) & =\psi \circ \lambda(u \wedge r) \\
& =\psi \circ \lambda(r \wedge i) \quad \text { (up to a scalar factor) } \\
& =\beta_{i} \circ \gamma(r) \\
& =0
\end{aligned}
$$

where the last equality comes from the fact that $\gamma\left(H^{0}\left(C,\left.Q\right|_{C}\right)\right) \subset \operatorname{ker} \beta_{i}$ by Lemma 4.3.
Let now $\tilde{r}_{0} \in H^{0}\left(S, Q \otimes I_{C}\right)$ be so that its image in $H^{0}\left(C,\left.N \otimes I_{C}\right|_{C}\right)$ is non-zero. Such \tilde{r}_{0} exists by Property (ii). Then $r_{0}:=\left.\tilde{r}_{0}\right|_{C}$ defines a map $\beta_{r_{0}}$. Since the image of r_{0} in $H^{0}\left(C,\left.N \otimes I_{C}\right|_{C}\right)$ is non-zero, r_{0} and i are not scalar multiples, so according to Lemma 4.2, $\operatorname{ker} \beta_{r_{0}} \neq \operatorname{ker} \beta_{i}$. Thus the codimension of $\operatorname{ker} \beta_{i} \cap \operatorname{ker} \beta_{r_{0}}$ is at least 2. On the other hand, by the previous lemmas, image $(\gamma) \subset \operatorname{ker} \beta_{i} \cap \operatorname{ker} \beta_{r_{0}}$. This is a contradiction since $\operatorname{dim} H^{1}\left(C,\left.\bigwedge^{2} Q^{\prime} \otimes f^{*} \mathcal{O}_{X}(-3)\right|_{C}\right)=1$.

5 The case when $d<\frac{n+1}{2}$

Throughout this section, $X \subset \mathbf{P}^{n}$ will be a general hypersurface of degree $d<(n+1) / 2$. By the main theorem of [6], $R_{e}(X)$ is irreducible for every $e \geq 1$. If $d^{2} \leq n$ and $e \geq 2$, then by [4] and [11], the space of rational curves of degree e in X passing through two general points of X is rationally connected. In particular, $R_{e}(X)$ is rationally connected for $e \geq 2$. If $e=1$, then $R_{1}(X)$ is the Fano variety of lines in X which is rationally connected if and only if $d^{2}+d \leq 2 n$ [8, V.4.7]. In this section, we will consider the case when $d^{2}+d>2 n$.

Assume that $R_{e}(X)$ is uniruled. Then there are S and f with the two properties given in Proposition 2.1. We can take the pair (S, f) to be minimal in the sense that a component of a fiber of π which is contracted by f cannot be blown down. Let N be the normal sheaf of f, and let C be a general fiber of π with ideal sheaf I_{C} in S. Denote by H the pullback of a hyperplane in \mathbf{P}^{n} to S, and denote by K a canonical divisor on S. From the exact sequences $0 \rightarrow T_{S} \rightarrow f^{*} T_{X} \rightarrow N \rightarrow 0$ and $0 \rightarrow f^{*} T_{X} \rightarrow f^{*} T_{\mathbf{P}^{n}} \rightarrow f^{*} \mathcal{O}_{\mathbf{P}^{n}}(d) \rightarrow 0$ we get

$$
\begin{aligned}
\chi\left(N \otimes I_{C}\right) & =(n+1) \chi\left(f^{*} \mathcal{O}_{\mathbf{P}^{n}}(1) \otimes I_{C}\right)-\chi\left(f^{*} \mathcal{O}_{\mathbf{P}^{n}}(d) \otimes I_{C}\right)-\chi\left(I_{C}\right)-\chi\left(T_{S} \otimes I_{C}\right) \\
& =(n+1)\left(\frac{(H-C) \cdot(H-C-K)}{2}+1\right)-\frac{(d H-C) \cdot(d H-C-K)}{2}-1 \\
& -\frac{-C \cdot(-C-K)}{2}-1-\left(2 K^{2}-14\right) \\
& =\frac{\left(n+1-d^{2}\right)}{2} H^{2}-\frac{(n+1-d)}{2} H \cdot K-2 K^{2}-(n+1-d) e+14 .
\end{aligned}
$$

We claim that $2 H+2 C+K$ is base-point free and hence has a non-negative self-intersection number. By the main theorem of [10], if $2 H+2 C+K$ is not base point free, then there exists an effective divisor E such that either

$$
(2 H+2 C) \cdot E=1, E^{2}=0 \quad \text { or }(2 H+2 C) \cdot E=0, E^{2}=-1
$$

The first case is clearly not possible. In the second case, $H \cdot E=0$, and $C \cdot E=0$. So E is a component of one of the fibers of π which is contracted by f and which is a (-1)-curve. This contradicts the assumption that (S, f) is minimal. Thus $(2 H+2 C+K)^{2} \geq 0$. Also, since $H^{1}\left(S, f^{*} \mathcal{O}_{X}(-1)\right)=0, H \cdot(H+K)=2 \chi\left(f^{*} \mathcal{O}_{X}(-1)\right)-2 \geq-2$, so we can write

$$
\begin{aligned}
\chi\left(N \otimes I_{C}\right)= & \frac{2 n+2-d^{2}-d}{2} H^{2}-(n-d-15)(e-1)-2 \\
& -2(2 H+2 C+K)^{2}-\frac{n-d-15}{2}(H \cdot(H+K)+2) \\
\leq & \frac{2 n+2-d^{2}-d}{2} H^{2}-(n-d-15)(e-1)-2
\end{aligned}
$$

and therefore $\chi\left(N \otimes I_{C}\right)$ is negative when $d^{2}+d \geq 2 n+2$ and $n \geq 30$.
The Leray spectral sequence gives a short exact sequence

$$
0 \rightarrow H^{1}\left(\mathbf{P}^{1}, \pi_{*}\left(N \otimes I_{C}\right)\right) \rightarrow H^{1}\left(S, N \otimes I_{C}\right) \rightarrow H^{0}\left(\mathbf{P}^{1}, R^{1} \pi_{*}\left(N \otimes I_{C}\right)\right) \rightarrow 0
$$

and by our assumption on S and $f, H^{1}\left(\mathbf{P}^{1}, \pi_{*}\left(N \otimes I_{C}\right)\right)=0$. If we could choose S such that $H^{0}\left(\mathbf{P}^{1}, R^{1} \pi_{*}\left(N \otimes I_{C}\right)\right)=0$, then we could conclude that $\chi\left(N \otimes I_{C}\right) \geq 0$ and hence $R_{e}(X)$ could not be uniruled for $d^{2}+d \geq 2 n+2$ and $n \geq 30$.

We cannot show that for a general X, a minimal pair (S, f) as in Proposition 2.1 can be chosen so that $H^{0}\left(\mathbf{P}^{1}, R^{1} \pi_{*}\left(N \otimes I_{C}\right)\right)=0$. However, we prove that if X is general and (S, f) is minimal, then for every $t \geq 1$,

$$
H^{0}\left(\mathbf{P}^{1}, R^{1} \pi_{*}\left(N \otimes I_{C} \otimes f^{*} \mathcal{O}_{X}(t)\right)\right)=0
$$

We also show that if $t \geq 0$ and $f(C)$ is t-normal, then

$$
H^{1}\left(\mathbf{P}^{1}, \pi_{*}\left(N \otimes I_{C} \otimes f^{*} \mathcal{O}_{X}(t)\right)\right)=0
$$

These imply that $\chi\left(N \otimes I_{C} \otimes f^{*} \mathcal{O}_{X}(t)\right)$ is non-negative when X is general and $f(C)$ is t-normal. To finish the proof of Theorem 1.4, we compute $\chi\left(N \otimes I_{C} \otimes f^{*} \mathcal{O}_{X}(t)\right)$ directly and show that it is negative when the inequality in the statement of the theorem holds.

Proof of Theorem 1.4. Let X be a general hypersurface of degree d in \mathbf{P}^{n}. If $R_{e}(X)$ is uniruled, then there are S and f as in Proposition 2.1. Assume the pair (S, f) is minimal. Let N be the normal sheaf of f, and let C be a general fiber of π. Then $H^{0}(S, N) \rightarrow H^{0}\left(C,\left.N\right|_{C}\right)$ is surjective. The restriction map $H^{0}\left(S, f^{*} \mathcal{O}_{X}(m)\right) \rightarrow H^{0}\left(C,\left.f^{*} \mathcal{O}_{X}(m)\right|_{C}\right)$ is also surjective since $f(C)$ is mnormal, so the restriction map $H^{0}\left(S, N \otimes f^{*} \mathcal{O}_{X}(m)\right) \rightarrow H^{0}\left(C,\left.N \otimes f^{*} \mathcal{O}_{X}(m)\right|_{C}\right)$ is surjective as well. Therefore,

$$
H^{1}\left(\mathbf{P}^{1}, \pi_{*}\left(N \otimes f^{*} \mathcal{O}_{X}(m) \otimes I_{C}\right)\right)=0
$$

Now let C be an arbitrary fiber of π, and let C^{0} be an irreducible component of C. Then by Proposition 5.2, $\left.f^{*}\left(T_{X}(t)\right)\right|_{C^{0}}$ is globally generated for every $t \geq 1$, and hence $\left.N \otimes f^{*} \mathcal{O}_{X}(t)\right|_{C^{0}}$ is globally generated too. So Lemma 5.1 shows that for every $t \geq 1$

$$
H^{0}\left(\mathbf{P}^{1}, R^{1} \pi_{*}\left(N \otimes f^{*} \mathcal{O}_{X}(t) \otimes I_{C}\right)\right)=0
$$

By the Leray spectral sequence,

$$
\begin{aligned}
H^{1}\left(S, N \otimes f^{*} \mathcal{O}_{X}(m) \otimes I_{C}\right)= & H^{1}\left(\mathbf{P}^{1}, \pi_{*}\left(N \otimes f^{*} \mathcal{O}_{X}(m) \otimes I_{C}\right)\right) \\
& \oplus H^{0}\left(\mathbf{P}^{1}, R^{1} \pi_{*}\left(N \otimes f^{*} \mathcal{O}_{X}(m) \otimes I_{C}\right)\right) \\
& =0,
\end{aligned}
$$

and therefore, $\chi\left(N \otimes f^{*} \mathcal{O}_{X}(m) \otimes I_{C}\right) \geq 0$. We next compute $\chi\left(N \otimes f^{*} \mathcal{O}_{X}(m) \otimes I_{C}\right)$. For an integer $t \geq 0$, set

$$
a_{t}=\chi\left(N \otimes I_{C} \otimes f^{*} \mathcal{O}_{X}(t)\right)
$$

We have

$$
a_{t}=\chi\left(N \otimes I_{C}\right)+\frac{2 t(n+1-d)+t^{2}(n-3)}{2} H^{2}-\frac{t(n-5)}{2} H \cdot K-t(n-3) e
$$

So

$$
a_{t}=\frac{b_{t}}{2} H^{2}+\frac{c_{t}}{2} H \cdot K-2 K^{2}+d_{t}
$$

where

$$
\begin{gathered}
b_{t}=\left(n+1-d^{2}\right)+2 t(n+1-d)+t^{2}(n-3) \\
c_{t}=-(n+1-d)-t(n-5)
\end{gathered}
$$

and

$$
d_{t}=-t(n-3) e-(n+1-d) e+14
$$

A computation similar to the computation in the beginning of this section shows that

$$
\begin{aligned}
a_{t} & =\frac{b_{t}-c_{t}}{2} H^{2}-2(2 H+2 C+K)^{2}+\frac{c_{t}+16}{2}(H \cdot(H+K)+2)+\left(d_{t}-c_{t}-32+16 e\right) \\
& \leq \frac{b_{t}-c_{t}}{2} H^{2}+\left(d_{t}-c_{t}-32+16 e\right)
\end{aligned}
$$

Since

$$
d_{t}-c_{t}-32+16 e=-(e-1)(n-15-d+t(n-3))-2 t-2
$$

and since $n-15-d+t(n-3) \geq 2 n-d-18 \geq 0$ for $t \geq 1$ and $n \geq 12$, we get

$$
a_{t}<\frac{b_{t}-c_{t}}{2} H^{2}
$$

When $d^{2}+(2 t+1) d \geq(t+1)(t+2) n+2, b_{t}<c_{t}$, and so $a_{t}<0$. If we let $t=m$, we get the desired result.

Lemma 5.1. If E is a locally free sheaf on S such that for every irreducible component C^{0} of a fiber of $\pi,\left.E\right|_{C^{0}}$ is globally generated, then $R^{1} \pi_{*} E=0$.

Proof. By cohomology and base change [7, Theorem III.12.11], it suffices to prove that for every fiber C of $\pi, H^{1}\left(C,\left.E\right|_{C}\right)=0$. We first show that if l is the number of irreducible components of C counted with multiplicity, then we can write $C=C_{1}+\cdots+C_{l}$ such that each C_{i} is an irreducible component of C and for every $1 \leq i \leq l-1,\left(C_{1}+\cdots+C_{i}\right) \cdot C_{i+1} \leq 1$. This is proven by induction on l. If $l=1$, there is nothing to prove. Otherwise, there is at least one component C^{0} of C which can be contracted. Let r be the multiplicity of C^{0} in C. Blowing down C^{0}, we get a rational surface S^{\prime} over \mathbf{P}^{1}. Denote by C^{\prime} the blow-down of C. Then by the induction hypothesis, we can write

$$
C^{\prime}=C_{1}^{\prime}+\cdots+C_{l-r}^{\prime}
$$

such that $\left(C_{1}^{\prime}+\cdots+C_{i}^{\prime}\right) \cdot C_{i+1}^{\prime} \leq 1$ for every $1 \leq i \leq l-r-1$. Let C_{i} be the proper transform of C_{i}^{\prime}. Then if in the above sum we replace C_{i}^{\prime} by C_{i} when C_{i} does not intersect C^{0} and by $C_{i}+C^{0}$ when C_{i} intersects C^{0}, we get the desired result for C.

Since $\left.E\right|_{C_{i+1}}$ is globally generated, it follows that

$$
H^{1}\left(C_{i+1},\left.E\left(-C_{1}-\cdots-C_{i}\right)\right|_{C_{i+1}}\right)=0 \text { for every } 0 \leq i \leq l-1
$$

On the other hand, for every $0 \leq i \leq l-2$, we have a short exact sequence of \mathcal{O}_{S}-modules
$\left.\left.\left.0 \rightarrow E\left(-C_{1}-\cdots-C_{i+1}\right)\right|_{C_{i+2}+\cdots+C_{l}} \rightarrow E\left(-C_{1}-\cdots-C_{i}\right)\right|_{C_{i+1}+\cdots+C_{l}} \rightarrow E\left(-C_{1}-\cdots-C_{i}\right)\right|_{C_{i+1}} \rightarrow 0$.
So a decreasing induction on i shows that for every $0 \leq i \leq l-2, H^{1}\left(S, E\left(-C_{1}-\cdots-\right.\right.$ $\left.\left.C_{i}\right)\left.\right|_{C_{i+1}+\cdots+C_{l}}\right)=0$. Letting $i=0$, the statement follows.

Proposition 5.2. Let $X \subset \mathbf{P}^{n}$ be a general hypersurface of degree d.
(i) For any morphism $h: \mathbf{P}^{1} \rightarrow X, h^{*}\left(T_{X}(1)\right)$ is globally generated.
(ii) If C is a smooth, rational, d-normal curve on X, then $H^{1}\left(C,\left.T_{X}\right|_{C}\right)=0$.

Proof. (i) This follows from [13, Proposition 1.1]. We give a proof here for the sake of completeness. Consider the short exact sequence

$$
0 \rightarrow h^{*} T_{X} \rightarrow h^{*} T_{\mathbf{P}^{n}} \rightarrow h^{*} \mathcal{O}_{X}(d) \rightarrow 0
$$

Since X is general, the image of the pull-back map $H^{0}\left(X, \mathcal{O}_{X}(d)\right) \rightarrow H^{0}\left(\mathbf{P}^{1}, h^{*} \mathcal{O}_{X}(d)\right)$ is contained in the image of the map $H^{0}\left(\mathbf{P}^{1}, h^{*} T_{\mathbf{P}^{n}}\right) \rightarrow H^{0}\left(\mathbf{P}^{1}, h^{*} \mathcal{O}_{X}(d)\right)$. Choose a homogeneous coordinate system for \mathbf{P}^{n}. Let p be a point in \mathbf{P}^{1}, and without loss of generality assume that $h(p)=(1: 0: \cdots: 0)$. We show that for any $\left.r \in h^{*}\left(T_{X}(1)\right)\right|_{p}$, there is $\tilde{r} \in H^{0}\left(\mathbf{P}^{1}, h^{*}\left(T_{X}(1)\right)\right)$ such that $\left.\tilde{r}\right|_{p}=r$.

Consider the exact sequence

$$
0 \longrightarrow H^{0}\left(\mathbf{P}^{1}, h^{*} T_{X}(1)\right) \longrightarrow H^{0}\left(\mathbf{P}^{1}, h^{*} T_{\mathbf{P}^{n}}(1)\right) \xrightarrow{\phi} H^{0}\left(\mathbf{P}^{1}, h^{*} \mathcal{O}_{X}(d+1)\right) .
$$

Denote by s the image of r in $\left.h^{*}\left(T_{\mathbf{P}^{n}}(1)\right)\right|_{p}$. There exists $S \in H^{0}\left(\mathbf{P}^{n}, T_{\mathbf{P}^{n}}(1)\right)$ such that the $\underset{\sim}{\text { restriction }} \tilde{s}:=h^{*}(S)$ to p is s. Denote by T the image of S in $H^{0}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(d+1)\right)$, and let $\tilde{t}=h^{*}(T)$. Then T is a form of degree $d+1$ on \mathbf{P}^{n}, and since $\left.\tilde{t}\right|_{p}=0$, we can write

$$
T=x_{1} G_{1}+\cdots+x_{n} G_{n}
$$

where the G_{i} are forms of degree d. Our assumption implies that for every $1 \leq i \leq n$, there is $\tilde{s}_{i} \in H^{0}\left(\mathbf{P}^{1}, h^{*} T_{\mathbf{P}^{n}}\right)$ such that $\phi\left(\tilde{s}_{i}\right)=h^{*} G_{i}$. Then

$$
\phi\left(\tilde{s}-h^{*}\left(x_{1}\right) \tilde{s}_{1}-\cdots-h^{*}\left(x_{n}\right) \tilde{s}_{n}\right)=\tilde{t}-h^{*}\left(x_{1} G_{1}\right)-\cdots-h^{*}\left(x_{n} G_{n}\right)=0
$$

and therefore, $\tilde{s}-h^{*}\left(x_{1}\right) \tilde{s}_{1}-\cdots-h^{*}\left(x_{n}\right) \tilde{s}_{n}$ is the image of some $\tilde{r} \in H^{0}\left(\mathbf{P}^{1}, h^{*}\left(T_{X}(1)\right)\right)$. Since $\left.\left(\tilde{s}-h^{*}\left(x_{1}\right) \tilde{s}_{1}-\cdots-h^{*}\left(x_{n}\right) \tilde{s}_{n}\right)\right|_{p}=\left.\tilde{s}\right|_{p}=s$, we have $\left.\tilde{r}\right|_{p}=r$.
(ii) There is a short exact sequence

$$
\left.\left.0 \rightarrow T_{X}\right|_{C} \rightarrow T_{\mathbf{P}^{n}}\right|_{C} \rightarrow \mathcal{O}_{C}(d) \rightarrow 0
$$

The fact that X is general implies that any section of $\left.\mathcal{O}_{C}(d)\right)$ which is the restriction of a section of $\mathcal{O}_{\mathbf{P}^{n}}(d)$ can be lifted to a section of $\left.T_{\mathbf{P}^{n}}\right|_{C}$. Since the first cohomology group of $\left.T_{\mathbf{P}^{n}}\right|_{C}$ vanishes, the result follows.

Although for every e and n with $e \geq n+1 \geq 4$, there are smooth non-degenerate rational curves of degree e in \mathbf{P}^{n} which are not $(e-n)$-normal [5, Theorem 3.1], a general smooth rational curve of degree e in a general hypersurface of degree d has possibly a much smaller normality: if a maximal-rank type conjecture holds for rational curves contained in general hypersurfaces (at least when $d<\frac{n+1}{2}$), then it follows that if c is the smallest positive number such that $\binom{n+c}{n}-\binom{n+c-d}{n} \geq c e+1$, a general smooth rational curve of degree e in a general hypersurface of degree d in \mathbf{P}^{n} is c-normal.

References

[1] R. Beheshti and J. Starr, Rational surfaces in index-one Fano hypersurfaces, Journal of Algebraic Geom., 17 (2008), no. 2, 225-274.
[2] I. Coskun and J. Starr, Rational curves on smooth cubic hypersurfaces, Int. Math. Res. Not. 24 (2009) 4626-4641.
[3] A. J. de Jong and J. Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math., 48 (2004), 415-450
[4] A. J. de Jong and J. Starr, Low degree complete intersections are rationally simply connected, Preprint, 2006.
[5] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983) 491-506.
[6] J. Harris, M. Roth and J. Starr, Rational curves on hypersurfaces of low degree I, J. Reine Angew. Math. 571 (2004), 73-106.
[7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[8] J. Kollar, Rational Curves on Algebraic Varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Springer-Verlag, 1996.
[9] J. Kollar, Y. Miyaoka and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom. 36 (1992), 765-779.
[10] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309-316.
[11] J. Starr, Hypersurfaces of low degree are rationally 1-connected, Preprint, 2004.
[12] J. Starr, The kodaira dimension of spaces of rational curves on low degree hypersurfaces, arXiv:math/0305432.
[13] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geometry 44 (1996) 200-14.

Department of Mathematics, Washington University, St. Louis, MO 63130
beheshti@math.wustl.edu

