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families of rational curves on hypersurfaces.

1. Introduction

In this survey, we will describe some results on families of rational
curves on hypersurfaces in PN . The case of families of rational curves
on PN itself is well understood. If we denote by Re(X), the family of all
smooth rational curves of degree e with respect to a given polarization
on a variety X, then Re(PN) (with the usual polarization) is smooth,
irreducible and of dimension e(N + 1) + N − 3 [for example see [6]].
Though similar results are false for hypersurfaces in general, they are
expected to be true for small degree hypersurfaces. We are far from a
complete solution to this problem.

If X ⊂ PN is a hypersurface of degree d, then R1(X) is empty for
general X with d ≥ 2N − 2 [Corollary 2.5, [6]]. So, the question is
interesting only for small d. On the other hand, if d < N , there is
a line through every point of X [Lemma 2.9, [6]]. In this range, for
a general X, conjecturally Re(X) is expected to be irreducible and of
the expected dimension E(d) = e(N + 1 − d) + N − 4. Recently, this
was settled for d < N+1

2
, by Harris, Roth and Starr [4]. Improving on

their techniques, Roya Beheshti and the author improved this bound
to d < 2N

3
[1]. See the text for more precise statements.

As you would imagine, proving that Re(X) has the expected dimen-
sion for all e can be difficult. But a powerful theorem, which crucially
depends on Mori’s bend-and-break techniques, by Harris et. al. re-
duces the result to proving similar results for small e. For example,
when d < N+1

2
, one only need to prove the result for R1(X), that is,

the family of lines. This is an oversimplification, but see the text again
for more precise statements. Similarly, for handling the case d < 2N

3
,

1
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one is reduced to studying R1(X) and R2(X). So, in some sense, our
results are really about families of conics in X.

One remark to be made is about the need for such results in enumer-
ative geometry. If one wishes to count say, rational curves on X which
intersects a general linear space (or a collection of such) of appropri-
ate codimension, these numbers can be calculated using the theory of
Gromov-Witten invariants. But, these are virtual numbers and acquire
enumerative significance only if Re(X) are known to be of the expected
dimension.

We would have liked this survey to be as self contained as possible.
But, due to various reasons, we have not included details on Kontsevich
moduli stack or Gromov-Witten invariants. These are explained in
detail in [7, 3, 5] if the reader is interested. Another result we have
used but not proved in these notes is the one that we alluded to earlier
by Harris et. al. I refer the reader to their paper [4].

The second author thank the organizers of Seshadrifest, Professors V.
Balaji and Pramath Sastry, for kindly including me among the speakers
and making his stay in CMI, Chennai a memorable experience.

2. Lines on Hypersurfaces

In general, we will always work with hypersurfaces of degree d ≥ 2
in PN with N ≥ 3 and our base field will always be C, the field of
complex numbers. We recall some well known results about lines on
hypersurfaces [for e. g.. see Kollar’s book, [6]] and some of the recent
results of Harris, Roth and Starr [4].

We start with a basic result from deformation theory [10, Section
4.5].

If X ⊂ Y ⊂ PN are closed subschemes, we have canonical maps of
normal sheaves, NX/PN → NY/PN |X and NY/PN → NY/PN |X and then as
usual we denote by,

H0(NX/PN )×H0(N
Y/PN |X) H

0(NY/PN ),

the fiber product, which is the set of all elements (α, β) with α ∈
H0(NX/PN ), β ∈ H0(NY/PN ) where the images of α, β in H0(NY/PN |X)
are equal.

Theorem 2.1 (Flag Hilbert Schemes). Let Hi be certain Hilbert schemes
of closed subschemes in PN for 1 ≤ i ≤ r and let Y ⊂ H1×H2×· · ·×Hr

be the incidence variety, (X1, X2, . . . , Xr) with Xi ∈ Hi and Xi ⊂ Xi+1

for 1 ≤ i < r. For ease of notation, let Ni = NXi/PN be the normal

sheaf of Xi in PN and let Mi = Ni+1|Xi
be the restriction of the normal
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sheaf of Xi+1 to Xi. Then the tangent space T(X1,...,Xr),Y of Y at the
point (X1, . . . , Xr) ∈ Y is

H0(N1)×H0(M1) H
0(N2)× · · · ×H0(Mr−1) H

0(Nr).

Lemma 2.2. Let X ⊂ PN be a smooth subavriety of codimension larger
than dimX. Letting IX be its ideal sheaf, assume that IX(d) is globally
generated for some d > 0. Then there exists a smooth hypersurface of
degree d containing X.

Proof. Let V = H0(IX(d)). Since IX(d) is globally generated, given
any point p 6∈ X, there exists f ∈ V such that f(p) 6= 0. So, by
Bertini, a general f ∈ V has the property that f = 0 is smooth outside
X. We will prove the same for points in X and then we would be done.

The conormal bundle IX/I
2
X is of rank = N − dimX > dimX by

assumption and it is globally generated after twisting by d. So, by
Serre’s theorem [see for e. g. [9, pp. 148]], a general element f ∈ V
is a nowhere vanishing section of the conormal bundle twisted by d.
I claim that f = 0 is smooth at every point of X. Near any p ∈ X,
IX is generated by ui, 1 ≤ i ≤ N − d, which form a system of regular
parameters, since X is smooth. So, locally, IX/I

2
X is generated freely

by the images of the ui’s. One has f =
∑
aiui which does not vanish

at p as a section of IX/I
2
X , and so at least one of the ai 6= 0 at p. Then,

it is clear that f = 0 is smooth at p. �

Corollary 2.3. Let L ⊂ PN be a line with N ≥ 3. For any d ≥ 1,
there exists a smooth hypersurface of degree d containing L.

Proof. L is smooth, codimension of L is N − 1 > 1 = dimL and IL(d)
is globally generated for any d ≥ 1. So, the lemma applies. �

Let G be the Grassmannians of lines in PN and Pd be the family of
hypersurfaces of degree d (or sometimes an open subset). Let Yd ⊂
G × Pd be the incidence variety, (L,X), where L is a line and X is a
hypersurface of degree d with L ⊂ X. Let p1 : Yd → G and p2 : Yd →
Pd be the two projections.

Lemma 2.4. With notation as above, for d > 0 and N > 1, p1 makes
Yd into a projective space bundle over G and dimYd = 2N − 3 − d +
dimPd.

Proof. Let L ∈ G, and then we have an exact sequence,

0→ IL(d)→ OPN (d)→ OL(d)→ 0,

which by taking cohomologies, show that

dimH0(IL(d)) = dimH0(OPN (d))− dimH0(OL(d)) 6= 0,
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since the natural map H0(OPN (d)) → H0(OL(d)) is onto. Thus p1 is
surjective and p−1

1 (L) is a projective space of dimension dimH0(IL(d))−
1. Since dimH0(OL(d)) = d + 1 we see that Yd is a projective space
bundle over G and dimYd = dimG+dimPd−d−1 = 2N−3−d+dimPd.

�

Corollary 2.5. A general hypersurface of degree d does not contain a
line if d ≥ 2N − 2.

Proof. If d > 2N − 3, dimYd < dimPd and thus p2 is not surjective,
which proves the corollary.

We give an alternate proof. Let G be as above and let Γ ⊂ G× PN
be the incidence variety (L, x) with x ∈ L and let p1 : Γ → G and
p2 : Γ → PN be the two projections. We have the natural exact
sequence,

0→M → H0(PN ,O(d))⊗OPN → OPN (d)→ 0,

which when pulled back to Γ gives a similar exact sequence. If L ∈ G,
then the fiber in Γ is just the line L and restricting, we get an exact
sequence,

0→M|L → H0(PN ,O(d))⊗OL → OL(d)→ 0,

which one can easily see is surjective on global sections. ThusH1(L,M|L) =
0. Since this is true for any L, we get R1p1∗p

∗
2M = 0. Thus we have

an exact sequence,

0→ p1∗p
∗
2M → H0(PN ,O(d))⊗OG → p1∗p

∗
2OPn(d) = E → 0,

the last zero, since R1p1∗p
∗
2M = 0. Thus E is a globally generated

vector bundle on G. If f ∈ H0(PN ,O(d)), the closed subscheme defined
by the vanishing of f as a section of E is precisely the scheme of lines
contained in f = 0. Also, rank of E = d+ 1 and dimG = 2(N − 1). If
d+ 1 > 2N − 2, by Serre’s theorem [9], we see that a general f has no
zeroes on G and thus there are no lines on f = 0. �

So from now on, we assume that d ≤ 2N − 3.

We fix some more notation. Let S ⊂ Yd be the closed subset con-
sisting of (L,X) such that X is singular at some point of L. Let
Y′d = Yd − S and let R ⊂ Y′d be the closed subset (in Y′d) of (L,X)
where p2 : Y′d → Pd is not smooth.

Lemma 2.6. We assume d ≤ 2N − 3 and notation as above.

(1) codim(S,Yd) ≥ N − 2.
(2) codim(R,Y′d) ≥ 2N − 2− d.
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Proof. Denote by Pd(L), the fiber p−1
1 (L) for a line L ∈ G. It is clear

that we need to prove only,

(1) codim(S ∩ Pd(L),Pd(L)) ≥ N − 2.
(2) codim(R ∩ Pd(L),Y′d ∩ Pd(L)) ≥ 2N − 2− d.

So, we fix a line L ∈ G and choose coordinates so that L is given by
x0 = x1 = · · · = xN−2 = 0. Given fi ∈ H0(OPN (d− 1)), 0 ≤ i ≤ N − 2,
we get a hypersurface given by f =

∑
xifi = 0, which contains L and

conversely, given an f ∈ H0(OPN (d)) such that f = 0 contains L, we
can find fi ∈ H0(OPN (d− 1)) (not unique) such that f =

∑
xifi. Let

T = (f0, f1, . . . , fN−2) be ordered tuples of degree d − 1 homogeneous
polynomials, at least one of them non-zero. Let S ′ ⊂ T be the closed
set (fi) such that

∑
xifi is singular at some point of L and let X ⊂ T

be the complement. Let R′ ⊂ X be the closed subset (of X) of (fi) such
that p2 is not smooth at (L,

∑
xifi = 0). Then, it suffices to prove,

(1) codim(S ′, T ) ≥ N − 2.
(2) codim(R′,X) ≥ 2N − 2− d.

For a point p ∈ L and (fi) ∈ T ,
∑
xifi is singular at p if and only if

fi(p) = 0 for all i. Clearly this set has codimension N − 1 in T . But,
S ′ is the union of these sets as p varies and thus S ′ is of codimension
at least N − 2 in T . This proves the first part.

The hypersurface
∑
xifi = 0 is smooth along L if and only if for any

point p ∈ L, there exists an fi such that fi(p) 6= 0. So, if (fi) ∈ X,
letting X denote

∑
xifi = 0, we have by Theorem [2.1], the tangent

space,
T(L,X),Yd

= H0(NL/PN )×H0(N
X/PN |L) H

0(NX/PN ).

Further, if (fi) ∈ R′, p2 is not smooth at (L,X), and so, the map
T(L,X),Yd

→ TX,Pd
= H0(NX/PN ) is not onto. Since H0(NX/Pn) →

H0(NX/PN |L) is onto, this is equivalent to H0(NL/PN )→ H0(NX/PN |L)
not being onto. This map can be explicitly described as,

H0(OL(1))⊕N−1 (fi)→ H0(OL(d)).

Let V ⊂ H0(OL(d)) be a hyperplane. We will first study the closed sub-
set R′(V ) of R′ consisting of (fi) such that the above image is contained
in this fixed V . These are tuples (fi) such that fiH

0(OL(1)) ⊂ V . So,
if

codim({g ∈ H0(OL(d− 1))|gH0(OL(1)) ⊂ V }, H0(OL(d− 1))) = r,

then codimension of R′(V ) is r(N − 1). Of course, since V varies along
a d-dimensional variety, namely the set of hyperplanes of H0(OL(d)),
we will have codim(R′,X) ≥ r(N − 1) − d. So, to prove the result,
suffices to show that r = 2.
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Fix a basis u, v of H0(OL(1)). Then monomials in u, v form basis for
forms of any degree. So, any element in H0(OL(d)) can be represented

as
∑d

i=0 aiu
ivd−i for ai ∈ C. Let V be defined by

∑d
i=0 ciai = 0 for

some non-zero vector (ci). If g =
∑d−1

i=0 biu
ivd−1−i is a form such that

gu, gv ∈ V , then we get,
∑d−1

i=0 cibi = 0 and
∑d−1

i=0 ci+1bi = 0. If these
equations are linearly independent, we get the required codimension to
be two. Otherwise, we see that sci = tci+1, 0 ≤ i ≤ d − 1 for some
p = (s, t) ∈ P1. Then, (c0, . . . , cd) is proportional to (td, td−1s, . . . , sd).
Then V = H0(OL(d)(−p)). Since (fi) ∈ R′(V ) ⊂ X, there is some i
such that fi(p) 6= 0. Since at least one of u, v does not vanish at p, we
see that at least one of fiu, fiv 6∈ V , which is not the case.

�

Corollary 2.7. If d ≤ 2N − 3, the scheme R1(X) = p−1
2 (X) is smooth

of dimension 2N − 3− d for general X ∈ Pd.
Proof. I claim that it suffices to prove that p2 is surjective. Then, since
dimYd = 2N − d− 3 + dimPd from Lemma 2.4, general fiber of p2 has
the claimed dimension. Since Yd is smooth, generic smoothness also
follows.

From the previous lemma, we know that the set of points (L,X) ∈ Yd

where p2 is smooth is a non-empty dense open set of Yd. Thus p2 is
dominant and hence surjective.

�

Thus we get a result which can be found in [6].

Corollary 2.8. If d ≤ 2N − 4 and N ≥ 4, then all fibers of p2 are
connected.

Proof. For this, suffices to prove that general fibers are connected. So,
let l ⊂ Pd be a general line and let Y = p−1

2 (l). The set of points
where p2 is not smooth as a map from Y to l has codimension at least
min(2N−d−2, N−2) ≥ 2. Let Y → Z → l be the Stein factorization.
If Z → l is ramified at some point, then every point on the fiber of this
point in Y is non-smooth for p2. This set has codimension one, which
is not possible by the above estimate. So, Z → l is etale and thus an
isomorphism. This proves that fibers are connected. �

Next, we study the situation when d < N .

Lemma 2.9. If X ⊂ PN is a smooth hypersurface of degree d < N ,
there is a line through any point of X contained in X.

Proof. Without loss of generality, we may assume p = (0, . . . , 0, 1) ∈ X
is the point of interest. Then the equation of X, f can be written in
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these coordinates as, f = a1x
d−1
N + a2X

d−2
N + · · · + ad, where ai is a

homogeneous polynomial of degree i in the remaining variables. It is
clear that the set of lines through p contained in X is given by the
common zeroes of the ai’s in PN−1, the set of lines in PN through p.
So, if d < N , these have a common zero, which proves the lemma. �

We wish to study the ai’s as above a little more carefully. Before
that, we state an elementary lemma which will be useful.

Lemma 2.10. (1) Let Y ⊂ PN be an irreducible variety of dimen-
sion r. Then for any d ≥ 0, the codimension of H0(IY (d)) in
H0(OPN (d)) is at least

(
r+d
r

)
.

(2) If r ≥ 1 and Y spans a linear space of dimension s, then the
codimension of H0(IY (d)) in H0(OPN (d)) is at least ds + 1, if
d ≥ 2.

Proof. For the first part, suffices to prove that the dimension of the im-
age of H0(OPN (d)) in H0(OY (d)) is at least

(
r+d
r

)
. Let π : Y → Pr be a

generic linear projection. Then the above image contains π∗H0(OPr(d))
and this has the declared dimension.

For the second part, let C ⊂ Y be an irreducible curve whose linear
span has the same dimension s. (In other words, choose a general
curve passing through sufficiently many general points.) Clearly we
may assume that Y = C. Consider an exact sequence,

0→ OY (−1)→ O⊕2
Y = E → OY (1)→ 0,

by choosing two general sections of OY (1) coming from OPN (1). By
taking symmetric powers, we get an exact sequence,

0→ OY (−1)⊗ Sd−2E → Sd−1E → OY (d− 1)→ 0,

which twisted by OY (1) gives,

0→ Sd−2E → Sd−1E ⊗OY (1)→ OY (d)→ 0.

Taking global sections and noting the the image of H0(OPN (1)) in
H0(OY (1)) has dimension at least s+1, we see that the dimension of the
image of H0(OPN (d)) in H0(OY (d)) is at least, (s+1)d−(d−1) = sd+1.
This proves the second part. �

Letting Pk to be the parameter space of all hypersurfaces of degree
k > 0 as before, for any point

α = (α1, . . . , αk) ∈ P1 × · · · × Pk,

denote by Xα ⊂ PN , the subscheme defined as the intersection of
αi, 1 ≤ i ≤ k.
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Lemma 2.11. With notation as above, if k ≤ N , the closed subset
∆k ⊂ P1 × · · · × Pk of points α with codimension of Xα < k has
codimension at least N + 1.

Proof. Proof is by induction on k. If k = 1, then ∆1 = ∅ and since
dimP1 = N , we are done. Assume result proved for k − 1. Then ∆k−1

has codimension at least N + 1 in P1×· · ·×Pk−1 and ∆k−1×Pk ⊂ ∆k.
So, we only need to prove that ∆k−∆k−1×Pk has codimension at least
N + 1 in X×Pk, where X = P1× · · · ×Pk−1−∆k−1. Thus, in turn, we
only need to prove that the codimension of ∆k−∆k−1∩x×Pk ⊂ x×Pk
for any x ∈ X has codimension at least N + 1.

Since x ∈ X, for the corresponding scheme the dimension of all its
irreducible components is precisely N − k + 1 ≥ 1, by hypothesis. So,
it suffices to prove that the set of hypersurfaces of degree k containing
an irreducible variety Y of dimension N − k + 1 > 0 has codimension
at least N + 1. That is, codimension of H0(IY (k)) ⊂ H0(OPN (k)) is at
least N + 1. But this follows from the above lemma 2.10.

�

For a point p ∈ PN , we denote by Pd(p), the projective space of
hypersurfaces of degree d passing through p. For an X ∈ Pd, we write
Re(X) for the set of smooth rational curves of degree e contained in X
and for a point p ∈ X, we write Re(X, p) for the set of curves in Re(X)
which pass through p.

Consider a hypersurface X of degree d < N , the family of lines
R1(X) on it and let L ⊂ R1(X) × X be the incidence variety, (L, p)
such that p ∈ L. We have seen that R1(X) is a smooth irreducible
variety of dimension 2N −d−3 for general X ∈ Pd (Corollary 2.7) and
thus L is a smooth irreducible variety of dimension 2N − 2 − d. So
R1(X, p), the set of lines in X passing through p ∈ X, has dimension
at least N − d− 1 with equality for a general p.

Corollary 2.12. Let Pd(p) the projective space of hypersurfaces of de-
gree d < N passing through a point p ∈ PN and let Z ⊂ Pd(p) be the
closed subset of hypersurfaces X such that dimR1(X, p) > N − d− 1.
Then codim(Z,Pd(p)) ≥ N .

Proof. We may and shall assume that d ≥ 2.
Let Vi = H0(PN−1,OPN−1(i)). Then, we have seen that Pd(p) is just

P(⊕di=1Vi). Let Z ′ be the points of Pd(p), under this identification,
(v1, . . . , vd) with vi ∈ Vi and at least one vi = 0. Since dimVi ≥ N for
all i > 0 and d ≥ 2, codim(Z ′,Pd(p)) ≥ N . Thus it suffices to prove
that codim(Z − Z ′,Pd(p)− Z ′) ≥ N .
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We have a natural map Pd(p)−Z ′ → P′1×· · ·×P′d = W , where P′k is
just P(Vk), degree k hypersurfaces in PN−1. This is a smooth fibration
with fibers Gd−1

m . Furthermore, there exists a closed subscheme ∆d ⊂
W (as defined in lemma 2.11, except we are now working on PN−1

instead of PN) whose inverse image under this map is just Z − Z ′.
Lemma 2.11 now finishes the proof. �

Theorem 2.13 (H-R-S). For a general X (with degX < N), for any
p ∈ X, all irreducible components of R1(X, p) have dimension N−d−1.

Proof. As usual, we set up our incidence varieties. Let X ⊂ PN×G×Pd
be the incidence variety, (p, L,X) such that p ∈ L ⊂ X. The projection
π : X → PN × Pd is contained in H = {(p,X)|p ∈ X}, the universal
hypersurface of degree d. Since π−1((p,X)) = R1(X, p), we know that
all fibers of π have (all its irreducible components) dimension at least
N − d − 1. So, consider the closed subset Z ⊂ H consisting of (p,X)
such that dimR1(X, p) > N − d − 1. We claim that codim(Z,H) ≥
N . This will finish the proof, since this implies the projection from
Z → Pd is not onto, and thus for a general X and any point p ∈ X,
dimR1(X, p) = N − d− 1.

To check the codimension, suffices to check that codim(Z ∩ p ×
Pd(p),Pd(p)) ≥ N and this was precisely the content of the previous
corollary. �

3. Kontsevich Moduli

While studying higher degree smooth rational curves on hypersur-
faces, we encounter the problem that these spaces are not complete,
unlike the case of lines. One way to overcome this problem would be
to study the appropriate Hilbert schemes. But, for various reasons,
it is better for the issues at hand to study Kontsevich Moduli spaces.
We shall briefly discuss them leaving the details which can be found in
[7, 2, 4, 3, 5].

Let X ⊂ PN be any projective variety. Let e > 0 and k ≥ 0 be
integers. Then, the Kontsevich Moduli stack M0,k(X, e) consists of
the following.

(1) A reduced connected curve C of arithmetic genus zero with k
(ordered) marked points p1, . . . , pk, which are non-singular on
C.

(2) A morphism f : C → X so that f ∗(OX(1)) has total degree e.
(3) If an irreducible component L of C is mapped to a point by f ,

then L has at least three points which are marked or nodes of
C.
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One has a natural morphism M0,k(X, e) → Xk for k > 0, called the
evaluation morphism, given by,

(f : C → X, p1, . . . , pk) 7→ (f(p1), . . . , f(pk)) ∈ Xk.

The stackM is complete andM0,0(X, e) contains Re(X), the space of
non-singular rational curves of degree e in X, as an open subset.

The stack M0,k(PN , e) is irreducible, smooth of dimension e(N +
1) + N − 3 + k and dimRe(PN) = e(N + 1) + N − 3. Let C be the
universal curve over M0,0(PN , e) and let p (resp. q) be the canonical
morphism p : C →M0,0(PN , e) (resp. q : C → Pn). Then p∗q

∗OPN (d) is
a vector bundle of rank ed+ 1 onM0,0(PN , e) and the zeroes of a non-
zero section of OPN (d) gives a hypersurface X of PN while, the zeroes
of the same section considered as a section of the above vector bundle
gives M0,0(X, e). In particular we see that all irreducible components
of M0,0(X, e) are of dimension at least e(N + 1 − d) + N − 4 and if
equal, these are local complete intersections.

We call this number E(d) = e(N + 1 − d) + N − 4, the expected
dimension.

One has dimM0,1(X, e) = dimM0,0(X, e) + 1 and so, if one is inter-
ested in proving that M0,0(X, e) has the expected dimension E(d), it
suffices to prove that dimM0,1(X, e) = E(d) + 1. This comes with the
natural evaluation map M0,1(X, e)→ X and if this map is onto, then
it suffices to prove that the fiber, which we denote by Γe(X, p) over a
point p ∈ X, has dimension E(d) + 1−N + 1 = e(N + 1− d)− 2. The
main point of all this is the following powerful result of Harris, Roth
and Starr [4].

Denote by T (d), called the threshold degree,

T (d) =

⌊
N + 1

N + 1− d

⌋
.

Theorem 3.1 (H-R-S). Let d < N and assume that for general hyper-
surfaces of degree d, the map M0,1(X, e) → X is flat and of relative
dimension e(N + 1 − d) − 2 for e ≤ T (d). Then, the same is true for
all e.

If d < N+1
2

, then we have T (d) ≤ 1 and thus by the above result, we
need to prove the required statement for e = 1. But, this was precisely
the content of Theorem 2.13. So, they deduce the following corollary.

Corollary 3.2 (H-R-S). Assume d < N+1
2

. Then for a general hyper-

surface X of degree d in PN , the natural evaluation map M0,1(X, e)→
X is flat of relative dimension e(N + 1−d)− 2 for all e. In particular,
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M0,0(X, e) is a local complete intersection of the expected dimension
E(d) = e(N + 1− d) +N − 4.

4. Conics in Hypersurfaces

We prove similar results for conics, thereby improving the above
bound from N+1

2
to 2N+2

3
at least for sufficiently large N .

As before, our aim is to study the evaluation mapM0,1(X, 2)→ X,
where X is a hypersurface of degree d in PN .

For this, as usual, we consider Γ ⊂ M0,1(PN , 2) × Pd, consisting of
((f : C → Pn, p), X) such that f(C) ⊂ X. Since d < N , through
any point of X there is a line and thus through every point there is
a (reducible) conic. So, the projection Γ → PN × Pd which clearly
factors through the universal hypersurface H ⊂ PN × Pd is onto H.
The required relative dimension for e = 2 is 2N − 2d and thus we
consider Z ⊂ H of points whose inverse image has dimension greater
than 2N − 2d. We will also replace Pd by the open set of smooth
hypersurfaces and continue to call this space Pd. If we show that the
map from Z to Pd is not dominant, then it will follow that for a general
hypersurface of X degree d, for any point p ∈ X, (p,X) 6∈ Z and thus
by definition of Z, for such an X, every fiber of the evaluation map
M0,1(X, 2) → X has dimension at most 2N − 2d. We will show from
this that the evaluation map is flat of relative dimension 2N − 2d and
we will be able to appeal to Theorem 3.1 to deduce that for a general
hypersurface of degree d, all the necessary dimension results.

So, let us assume that Z → Pd is dominant.
We have dimM0,1(PN , 2) = 3N and this is a smooth stack. So,

fibers of M0,1(PN , 2)→ PN are all of dimension 2N and smooth. The
space of reduced conics through a point in PN is of dimension 2N − 1
and so, this forms a Cartier divisor. So, for a point z ∈ Z, if we

denote by Γ(z) its inverse image under Γ → H, and Γ̃(z) any one of
the irreducible components of Γ(z) of dimension greater than 2N − 2d
(which is non-empty by assumption), the ones with reducible domains

which we denote by Γ′(z) ⊂ Γ̃(z) is a divisor intersected with Γ̃(z). So,
it has three possibilities.

(1) Γ′(z) = ∅.
(2) Γ′(z) is a divisor.

(3) Γ′(z) = Γ̃(z).

If z ∈ Z is general, then by dominance of Z → Pd, its image is a general
hypersurface X. But, we have seen that for a general hypersurface
and any point on it, the lines through it has dimension N − d− 1, by
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Theorem 2.13. So, the reduced conics through any point has dimension

2N − 2d− 1. In case two above, this implies that dim Γ̃(z) = 2N − 2d
and in case three, it is 2N − 2d − 1. But, our assumption was that
its dimension is greater than 2N − 2d for z ∈ Z. Thus only case one
can occur. So, we may assume that for any point z ∈ Z, all irreducible
components Γ(z) with dimension greater than 2N−2d consists entirely
of maps from P1 to X.

If d < N+1
2

, the required results follow from the Corollary 3.2 of

Harris et. al. above. So, we may further assume that d ≥ N+1
2

. Now,

let us look at (f : P1 → X, p) in Γ̃(z) for a general z where the map
is not an embedding. Then it must be a double cover of a line in X
passing through p. But, X is general by dominance of Z → Pd and
so the lines through p has dimension N − d − 1 as before. So, the

double covers have dimension N −d+1. Since Γ̃(z) is assumed to have
dimension greater than 2N − 2d, it has a closed subset R of dimension
at least N − d− 1 consisting of f : P1 → X, which are embeddings as
smooth conics.

So, starting with our hypothesis that Z → Pd is dominant, we have
arrived at the following situation. For a general hypersurface X of de-
gree d ≥ N+1

2
, there exists a point p ∈ X, and an irreducible component

of R2(X, p) with dimension greater than 2N − 2d, and this component
contains a complete family T of smooth conics contained in X, passing
through p containing a general point of an irreducible component of
R2(X, p) of dimension greater than 2N − 2d and of dimension at least
N − d− 1.

At this point, our procedure is as follows. From now on, we will write
Ip for the ideal sheaf of a point in the appropriates sheaf of rings. We
will show under the above hypothesis and for a general point C ∈ T ,
the natural map

H0(C,NC/PN ⊗ Ip)→ H0(C,NX/PN |C ⊗ Ip)

is onto. Since NC/PN
∼= OP1(4) ⊕ OP1(2)⊕N−2, h0(NC/PN ⊗ Ip) = 2N .

Similarly, NX/PN |C ∼= OP1(2d) and thus h0(NX/PN |C ⊗ Ip) = 2d. So
from the exact sequence,

0→ NC/X → NC/PN → NX/PN |C → 0,

we see that h0(NC/X⊗Ip) = 2N−2d. We know that the tangent space
T(p,C,X),R2(X,p) = H0(NC/X ⊗ Ip) and since C is general, it will follow
that dimR2(X, p) = 2N − 2d, which is a contradiction.

So, for clarity, let me restart our incidence variety set-up. We have
in PN × R2(Pn) × Pd, the incidence variety Γ consisting of (p, C,X)
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with p ∈ C ⊂ X. The projection Γ→ PN × Pd clearly factors through
H = {(p,X)|p ∈ X}. As before letting Z ⊂ H to be the closed subset
consisting of points (p,X) such that the fiber over this point in Γ has
dimension greater than 2N − 2d, we have shown that Z dominates Pd
under our hypothesis. Replacing Z by an irreducible component of Z
which dominates Pd, we further assume that Z is irreducible. Let E
be the inverse image of Z in Γ. Again we may replace E by a suitable
irreducible component of E which dominates Z and general relative
dimension of the map E → Z is greater than 2N−2d. If (p, C,X) ∈ E
is general, we have surjective maps,

T(p,C,X),E → T(p,X),Z → TX,Pd
.

We also have the natural commutative diagram,

T(p,C,X),E ↪→ T(p,C,X),Γ

↓ ↓
T(p,X),Z ↪→ T(p,X),H

↓ ↓
TX,Pd

= TX,Pd

Since dimT(p,X),H = dimTX,Pd
+N − 1, we see that the codimension

of T(p,X),Z in T(p,X),H is at most N − 1.
By Theorem 2.1, we have,

T(p,C,X),Γ = H0(Np/PN )×H0(N
C/PN |p) H

0(NC/PN )×H0(N
X/PN |C) H

0(NX/PN )

T(p,X),H = H0(Np/PN )×H0(N
X/PN |p) H

0(NX/PN )

T(p,X),H contains the subspace W ′ = {0}×H0(NX/PN ⊗ Ip) (which can
be thought of as just H0(NX/PN ⊗ Ip)) in the above identification and
thus W = T(p,X),Z ∩W ′ has codimension at most N − 1 in W ′. The in-
verse image of W ′ in T(p.C,X),Γ is just {0}×H0(NC/PN⊗Ip)×H0(N

X/PN |C)

H0(NX/PN ⊗ Ip). The surjectivity of T(p,C,X),E → T(p,X),Z implies that
given any α ∈ W , there exists an element (β, α) ∈ H0(NC/PN ⊗
Ip)×H0(N

X/PN |C) H
0(NX/PN ⊗ Ip). That is to say, the image of α can be

lifted under the natural map,

H0(NC/PN ⊗ Ip)→ H0(NX/PN ⊗ Ip|C).

This is true for any α ∈ W and true for any general C with (p, C,X) ∈
E. The point to note is that once we fix a general X, then there is a
point p ∈ X and a fixed subspace W ⊂ H0(NX/PN ⊗Ip) of codimension
at most N − 1 so that for a general curve C with (p, C,X) ∈ E, the
image of W in H0(NX/PN ⊗ Ip|C) can be lifted to H0(NC/PN ⊗ Ip).
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With the above analysis, we are ready to state our technical result,
which as observed earlier, will finish what we started off to prove.

Theorem 4.1. Let T be a complete family of smooth conics in PN
passing through a point p and contained in a smooth hypersurface of
degree d ≥ N+1

2
with dimT ≥ N − d − 1. Assume that there exists a

subspace W ⊂ H0(NX/PN ⊗ Ip) of codimension at most N −1 such that
for a general C ∈ T the image of W in H0(NX/PN ⊗ Ip|C) can be lifted
to H0(NCPN ⊗ Ip) under the natural map

H0(NC/PN ⊗ Ip)
φC→ H0(NX/PN ⊗ Ip|C).

Further assume that
(
N−d

2

)
> N − 1. Then for a general C ∈ T , φC

is surjective.

We will prove this result in the next section.

5. Proof of Theorem 4.1

Under the hypothesis of the theorem, we will show that for any k, 1 ≤
k ≤ 2d, and for general C ∈ T , there exists a section of H0(NX/PN ⊗
Ip|C) = H0(OC(d)⊗ Ip) which vanishes at p precisely k times and can
be lifted via φC . This will finish the proof. This is achieved in several
steps. Let F = 0 define the hypersurface X.

We start with an elementary lemma.

Lemma 5.1. Let B be a complete family of smooth conics in PN pass-
ing through two distinct points p 6= q. Then dimB = 0.

Proof. If the lemma is false we can find a smooth complete curve
parametrizing smooth conics passing through two distinct points p 6= q.
Let Λ ⊂ B × PN be the incidence variety with α, β the projections to
B,PN respectively. Then α : Λ→ B is a P1-bundle and B×{p}, B×{q}
are two disjoint sections which are blown down by β to distinct points.
This is impossible. �

k = 1:
In this case we have for any C ∈ T , the natural commutative dia-

gram,

OC(1)N+1
( ∂F
∂xi

)

−→ OC(d)
↓ ↑ φC

TPN |C −→ NC/PN

Since F is smooth, for some i, ∂F
∂xi

(p) 6= 0. We choose a linear equation
l such that l = 0 meets C transversally at p. Then the image of the
section of OC(1)N+1 ⊗ Ip which has zeroes at all coordinates except
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for the ith coordinate and l in that place goes to the section ∂F
∂xi
l ∈

H0(OC(d)⊗ Ip), which clearly vanishes exactly once at p. Tracing this
section using the commutative diagram, we get this is in the image of
φC .

1 < k ≤ d:

From now on, we choose coordinates so that p = (1, 0, . . . , 0) and
A the hyperplane defined by x0 = 0. For any point C ∈ T denote by
qC , the point of intersection of the line tangent to C at p with A and
lC ⊂ A the line obtained as the image of C under projection from p.

Lemma 5.2. The morphism T → A given by C 7→ qC is finite to the
image.

Proof. If the map is not finite, we can find a smooth complete curve
B parametrizing smooth conics through p all having the same tangent
line l at p. Let Λ ⊂ B × Pn be the incidence variety with α : Λ →
B, β : λ → PN , the two projections. α makes Λ a P1-bundle over B
and it has a section E which blows down to p under β. If q 6= p in
l, then Λ ∩ B × {q} = ∅. Thus projection from q defines a morphism
g : Λ → B × PN−1 over B. For any point b ∈ B, this is just the
map from a conic to a line, projection from a point not on the conic.
So, g is a finite map of degree two to its image. Let R ⊂ Λ be the
ramification locus. Then the map R → B is a double cover. But, the
section B × {p} ⊂ R and thus the residual part is a section Eq of α.
If q1 6= q2 different from p, Eq1 ∩Eq2 = ∅ and this implies Λ ∼= B × P1.
But, E is a section which can be blown down to a point and then by
rigidity, the map β must take Λ to a single conic. This is contrary to
our hypothesis. �

Let Y denote the image of T → A. By the above lemma, dimY =
dimT ≥ N − d − 1. Since X will only play a peripheral role from
now on, we will take the inverse image of W under the natural map
H0(OPN (d))→ H0(OX(d)) = H0(NX/PN ) and thus W ⊂ H0(OPN (d)⊗
Ip) is of codimension at most N−1. On the other hand, we can identify,
H0(OPN (d)⊗Ip) with ⊕di=1H

0(OA(i))xd−i0 . Thus, for every i, 1 ≤ i ≤ d,
we get subspaces Wi = W ∩ H0(OA(i))xd−i0 of codimension at most
N − 1. We will abuse notation and sometimes alternately think of
Wi ⊂ H0(OA(i)).

Lemma 5.3. If f ∈ H0(A,OA(i)) is such that f |lC 6= 0 and has a zero
of order j at qC, then the restriction of xd−i0 f , considered as a section
of H0(PN ,OPN (d)), to C has a zero of order i+ j at p.
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Proof. Let P be the 2-plane spanned by C. Then the divisor of x0 in
this plane is just lC . The divisor of f |lC is jqC + E where E is an
effective divisor of degree i − j whose support does not contain qC .
Then the divisor in P of xd−i0 f is (d− i)lC + jM + E ′ where M is the
tangent line of C at p, E ′ is a union of (i− j) lines passing through p,
none of them equal to M . Thus, the order of its restriction to C at p
is just 2j + (i− j) = i+ j.

�

If
(
N−d+1

2

)
> N − 1, from Lemma 2.10, we see that the image of

Wk → H0(OY (k)) is non-zero for 2 ≤ k ≤ d. Thus, for general points of
Y , there exists fk ∈ Wk not vanishing there. So, the element fkx

d−k
0 ∈

W , which can be lifted via φC for general C, has the property from
the previous lemma that this vanishes to precisely order k at p. Our
hypothesis on N, d ensures that the above inequality is satisfied.

d < k ≤ 2d− 2:

Lemma 5.4. For a general hyperplane B ⊂ A and for a general point
qC ∈ B, lC is not contained in B.

Proof. Let G be the dual of A, the set of hyperplanes in A. Consider
the incidence variety, Λ ⊂ T × G consisting of pairs (C,B) such that
lC ⊂ B and let π1, π2 be the two projections from Λ to T,G respectively.
Then the inverse image of any point C by π1 is the set of hyperplanes
containing lC ⊂ A and thus of codimension 2 in G. So, dim Λ =
dimT + dimG− 2. Thus for a general B ∈ G, the inverse image under
π2 has dimension dimT − 2. Since dimB ∩ Y = dimT − 1, easy to see
that the lemma follows. �

Now consider the case of d < k ≤ 2d−2 and let m = k−d. Let B be
a general hyperplane in A and let Y ′ = Y ∩B. Also choose co-ordinates
so that B : x1 = 0.

We can write H0(OA(d)) = ⊕dm=0H
0(OB(d −m))xm1 and let Lm =

Wd ∩ H0(OB(d − m))xm1 , as usual identified without x1. Then codi-
mension of Lm in H0(OB(d −m)) is at most N − 1. By Lemma 5.3,
suffices to show that for a general C with qC ∈ Y ′ there exists gm ∈ Wd

such that gm|lC vanishes to order m at qC . So, suffices to show that
there exists an fm ∈ Lm such that fm(qC) 6= 0, since then we can take
gm = fmx

m
1 and gm 6= 0 on lC by the previous lemma.

By Lemma 2.10, the codimension ofH0(IY ′(d−m)) inH0(OB(d−m))
is at least

(
N−d

2

)
, since d−m ≥ 2. So, if N − 1 <

(
N−d

2

)
, since Lm has

codimension at most N − 1, we would be done. This is assured by our
hypothesis.
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k = 2d− 1,2d:

Lemma 5.5. Let s = bdimT+1
2
c. If C1, . . . , Cs are general points of

T , then lC1 , . . . , lCs are linearly independent, i. e. they span a linear
subspace of dimension 2s− 1.

Proof. Assume that t ≤ s be the largest number such that for general
C1, . . . , Ct, the corresponding lines lCi

are linearly independent and let
Λ be their linear span. Then, for any C ∈ T , lC intersects Λ. Then
dim Λ = 2t− 1.

If q ∈ Λ, let the conics C ∈ T with lC passing through q be denoted
by Sq ⊂ T . This is a closed subset. I claim that dimSq ≤ 1.

As usual, let Y ⊂ Sq ×PN be the incidence variety. Let l be the line
joining p, q and let Y ′ = Y ∩ Sq × l. Then the projection Y ′ → Sq is
a degree two finite map and it has a component Sq × {p}. Let M be
the other component. Note that M is isomorphic to Sq and thus in
particular has the same dimension as Sq. The projection M → l has
three possibilities.

(1) Image of M is p.
(2) Image of M is a 6= p.
(3) Image of M is l.

In the first case, l is the tangent to C for all C ∈ Sq and thus by Lemma
5.2, dimSq ≤ 0. In the second case, all conics in Sq pass through two
distinct points and again by Lemma 5.1, dimSq ≤ 0. In the third case,
for any point a ∈ l, the fiber of M → l has dimension at most zero by
the two quoted lemmas and thus dimSq ≤ 1.

Since T is assumed to be the union of Sq as q varies in Λ, we see that
dimT ≤ dim Λ + 1. Clearly this implies t = s.

�

Let s be as above. Consider the space G of all linear subspaces of
A of codimension s. Since s < dimT , by Bertini’s theorem, we see
that for a general H ∈ G, the inverse image T ′ of H under T → A is
irreducible. For general points Ci ∈ T, 1 ≤ i ≤ s, the points qCi

∈ A
span a dimension s − 1 linear subspace of A by the previous lemma
and since dimH = N − s − 1 ≥ s − 1, we may further assume that
H contains the image of s general points. Further, since Ci can be
assumed general, we may assume by the previous lemma that lCi

are
linearly independent.

Fix points bCi
∈ lCi

with bCi
6= qCi

. Let H ′ be the linear span of
the the bCi

. So, dimH ′ = s − 1 and H ∩ H ′ = ∅. Thus for a general
C ∈ T ′, lC is not contained in H and so the linear span of H, lC is of
codimension s − 1 and it intersects H ′ in exactly one point, say bC .
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By this correspondence, the set of such bC for general C ∈ T ′ gives an
irreducible quasi-projective variety Z ′ ⊂ H ′. Since bCi

∈ Z ′ which span
H ′, we see that Z ′ is non-degenerate in H ′ and has dimension at least
one. Let Z be the closure of Z ′.

We identify H0(OH′(d)) as a subspace of H0(OA(d)), so that all
f ∈ H0(OH′(d)) vanish to order at least d times along H. By Lemma
2.10, the codimension of H0(IZ(d)) in H0(OH′(d)) is at least d(s−1)+
1 > N − 1. Thus, there exists an f ∈ Wd ∩H0(OH′(d)) which does not
vanish on Z. So, for general point C ∈ T ′, f(bC) 6= 0. Since f vanishes
along H, clearly f does not vanish identically on lC . But f vanishes to
order d at qC ∈ H, so by lemma 5.3, we are done in the case of 2d.

Repeating the same argument with d replaced by d−1 and choosing
a form h of degree one on A which does not vanish at such a point qC ,
if (d − 1)(s − 1) + 1 > N − 1 with a g ∈ Wd−1 ∩ H0(OH′(d − 1)) not
vanishing at qC , we take f = gh to achieve the result for 2d− 1.

Thus we have proved the following theorem.

Theorem 5.6. Let d be an integer such that either d < N+1
2

or
(
N−d

2

)
>

N − 1. Then, for a general hypersurface X of degree d in PN , the
fibers of the evaluation map M0,1(X, 2)→ X have constant dimension
2N − 2d.

This implies that the evaluation map is flat of relative dimension
2N − 2d.

Corollary 5.7. Let d be as in the above theorem. Then for a gen-
eral hypersurface X as above of degree d, the evaluation map evX :
M0,1(X, 2)→ X is flat.

Proof. If d < N+1
2

, this follows from the result of Harris et. al. (Corol-

lary 3.2). So, we may assume that d ≥ N+1
2

and
(
N−d

2

)
> N − 1.

Then by the previous theorem, we know that the evaluation map has
constant fiber dimension 2N − 2d.

Recall thatM0,1(PN , 2) is a smooth stack of dimension 3(N+1)−3 =
3N and that M0,1(X, 2) is the zero locus of a section of a locally free
sheaf of rank 2d + 1 over M0,1(PN , 2). Since the fibers of ev are of
expected dimension 2(N − d), M0,1(X, 2) has dimension

2(N − d) +N − 1 = 3N − (2d+ 1),

so it is a local complete intersection and in particular a Cohen-Macaulay
substack ofM0,1(PN , 2). Since a map from a Cohen-Macaulay scheme
to a smooth scheme is flat if and only if it has constant fiber dimension
([8, Theorem 23.1]), we have proved the corollary.

�
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If d < 2N+2
3

, then the threshold degree,

T (d) =

⌊
N + 1

N + 1− d

⌋
< 3.

Thus coupled with the result of Harris et. al. (Theorem 3.1), we get,

Corollary 5.8. If X ⊂ PN is a general hypersurface of degree d with
d < 2N+2

3
and either d < N+1

2
or
(
N−d

2

)
> N − 1, then the evaluation

mapM0,1(X, e)→ X is flat of relative dimension e(N + 1−d)−2 and
M0,0(X, e) is an integral local complete intersection stack of expected
dimension e(N + 1− d) +N − 4 for all e ≥ 1.

We have proved all statements except the integrality of M0,0(X, e).
I refer the reader to [1] for a proof of integrality.
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