Definition 1. A set \(R \) with two binary operations \(+ \) and \(\cdot \) is called a ring if

(1) \(+ \) is commutative and associative.

(2) \(R \) has an additive identity, denoted as usual by 0. That is, \(a + 0 = a \) for all \(a \in R \).

(3) Each \(a \in R \) has an additive inverse. That is, for any \(a \in R \), there is an element \(b \in R \) such that \(a + b = 0 \). As usual, we denote \(b \) by \(-a \).

(4) \(\cdot \) is associative.

(5) The distributive law is true. That is, for all \(a, b, c \in R \), \(a \cdot (b + c) = a \cdot b + a \cdot c \), and \((a + b) \cdot c = a \cdot c + b \cdot c \).

Note that in the definition, \(\cdot \) need not be commutative. Moreover, \(R \) need not have a multiplicative identity.

Definition 2. If in the ring \(R \), the binary operation \(\cdot \) is commutative, then \(R \) is called a commutative ring. On the other hand, if \(R \) has a multiplicative identity, denoted as usual by 1, that is \(a \cdot 1 = 1 \cdot a = a \) for all \(a \in R \), then \(R \) is called a ring with identity.

For example, \(\mathbb{Z} \) and \(\mathbb{Z}_m \) for \(m \in \mathbb{N} \) are commutative rings with identity. \(2\mathbb{Z} \), the set of even integers, is a commutative ring without identity. The set \(M_n \) of \(n \times n \) matrices whose entries are integers is a non-commutative ring with identity, whereas the set of \(n \times n \) matrices whose entries are even integers is a non-commutative ring without identity. As a last example, the set of all real polynomials in one variable \(x \) is a commutative ring with identity.

Definition 3. \(F \) is a field if

(i) \((F, +, \cdot) \) is a commutative ring with identity.

(ii) Each nonzero element has a multiplicative inverse. That is, for any \(a \neq 0 \), there is an element \(b \in F \) such that \(a \cdot b = 1 \). As usual, \(b \) is denoted by \(a^{-1} \).

For example, \(\mathbb{Q} \), \(\mathbb{R} \) and \(\mathbb{Z}_p \), where \(p \) is a prime, are all fields. \(\mathbb{Z} \) and \(\mathbb{Z}_m \), where \(m \) is not a prime, are not fields. As a last example, the set of all real rational functions in one variable \(x \), of the form \(p(x)/q(x) \), where \(p(x) \) and \(q(x) \neq 0 \) are real polynomials in \(x \), is a field.

Proposition 4. Let \(R \) be a ring. Then

(I) \(-(-a) = a \).

(II) \(a \cdot (-b) = (-a) \cdot b = -(a \cdot b) \).

(III) \((-a) \cdot (-b) = a \cdot b \).
Proof. (I) follows because \((-a)\) is the additive inverse to \(-a\), which is just \(a\).

(II) follows because \(a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0\), so that \(a \cdot (-b)\) is the additive inverse to \(a \cdot b\). Hence, \(a \cdot (-b) = -(a \cdot b)\). The same reasoning yields \((-a) \cdot b = -(a \cdot b)\).

Note that we have used the fact that \(a \cdot 0 = 0\) for all \(a \in R\). This is true because \(0 + 0 = 0\) by (2) above, so that
\[
a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0.
\]
Let \(b\) be the additive inverse to \(a \cdot 0\). Adding \(b\) to the above equation, we obtain
\[
0 = b + a \cdot 0 = (b + a \cdot 0) + a \cdot 0 = 0 + a \cdot 0 = a \cdot 0.
\]

For (III), we use (II) repeatedly as follows.
\[
(-a) \cdot (-b) = - (a \cdot (-b)) = -(a \cdot (-b)) = a \cdot b,
\]
where the last equality is gotten by (I). \(\square\)