TAUT SUBMANIFOLDS ARE ALGEBRAIC

QUO-SHIN CHI

Abstract

We prove that every (compact) taut submanifold in Euclidean space is real algebraic, i.e., is a connected component of a real irreducible algebraic variety in the same ambient space. This answers affirmatively a question of Nicolaas Kuiper raised in the 1980s.

1. Introduction

An embedding f of a compact, connected manifold M into Euclidean space \mathbb{R}^{n} is taut if every nondegenerate (Morse) Euclidean distance function,

$$
L_{p}: M \rightarrow \mathbb{R}, \quad L_{p}(z)=d(f(z), p)^{2}, \quad p \in \mathbb{R}^{n},
$$

has $\beta\left(M, \mathbb{Z}_{2}\right)$ critical points on M, where $\beta\left(M, \mathbb{Z}_{2}\right)$ is the sum of the \mathbb{Z}_{2}-Betti numbers of M. That is, L_{p} is a perfect Morse function on M.

A slight variation of Kuiper's observation in [7] gives that tautness can be rephrased by the property that

$$
\begin{equation*}
H_{j}\left(M \cap B, \mathbb{Z}_{2}\right) \rightarrow H_{j}\left(M, \mathbb{Z}_{2}\right) \tag{1.1}
\end{equation*}
$$

is injective for all closed disks $B \subset \mathbb{R}^{n}$ and all $0 \leq j \leq \operatorname{dim}(M)$. As a result, tautness is a conformal invariant, so that via stereographic projection we can reformulate the notion of tautness in the sphere S^{n} using the spherical distance functions. Another immediate consequence is that if $B_{1} \subset B_{2}$, then

$$
\begin{equation*}
H_{j}\left(M \cap B_{1}\right) \rightarrow H_{j}\left(M \cap B_{2}\right) \tag{1.2}
\end{equation*}
$$

is injective for all j.
Kuiper in [8] raised the question whether all taut submanifolds in \mathbb{R}^{n} are real algebraic. We established in [4] that a taut submanifold in \mathbb{R}^{n} is real algebraic in the sense that, it is a connected component of a real irreducible algebraic variety in the same ambient space, provided the submanifold is of dimension no greater than 4.

[^0]In this paper, we prove that all taut submanifolds in \mathbb{R}^{n} are real algebraic in the above sense, so that each is a connected component of a real irreducible algebraic variety in the same ambient space. In particular, any taut hypersurface in \mathbb{R}^{n} is described as $p(t)=0$ by a single irreducible polynomial $p(t)$ over \mathbb{R}^{n}. Moreover, since a tube with a small radius of a taut submanifold in \mathbb{R}^{n} is a taut hypersurface [12], which recovers the taut submanifold along its normals, understanding a taut submanifold, in principle, comes down to understanding the hypersurface case defined by a single algebraic equation.

It is more convenient to prove that a taut submanifold in the sphere is real algebraic, though occasionally we will switch back to Euclidean space when it is more convenient for the argument. Since a spherical distance function $d_{p}(q)=\cos ^{-1}(p \cdot q)$ has the same critical points as the Euclidean height function $\ell_{p}(q)=p \cdot q$, for $p, q \in S^{n}$, a compact submanifold $M \subset S^{n}$ is taut if and only if it is tight, i.e., every nondegenerate height function ℓ_{p} has the total Betti number $\beta\left(M, \mathbb{Z}_{2}\right)$ of critical points on M. We will use both d_{p} and ℓ_{p} interchangeably, whichever is more convenient for our argument.

Our proof is based on the local finiteness property [4, Definition 7] that played the decisive role for a taut submanifold to be algebraic when its dimension is ≤ 4. This property is parallel in spirit to the Riemann extension theorem in complex variables. Namely, let \mathcal{G} (i.e., the first letter of the word "good") be the subset of a taut hypersurface M where the principal multiplicities are locally constant, and let \mathcal{G}^{c} be its complement in M. Let $S \subset \mathcal{G}^{c}$ be closed in M; S is typically a set difficult to manage. If $M \backslash S$ is well-behaved to have finitely many connected components, and moreover, each $x \in \mathcal{G}^{c} \backslash S$ has a small neighborhood U in M for which $\mathcal{G} \cap U$ is also well-behaved to have finitely many connected components, then M is algebraic.

As is pointed out and manifested in [15], focal sets play an important role in the study of submanifolds. In general, however, they are nonsmooth, where, for instance, the best one can expect of that of a hypersurface in S^{n} is that it is at least of Hausdorff codimension 2 [4]. One thus expects that the (unit) tangent cones of a focal set can be a useful tool for understanding such nonsmooth objects, though in general the tangent cones of a focal set themselves are also rather untamed. In the case of taut submanifolds, nonetheless, we can tame a focal set when we use the mathematical induction on the dimension of the ambient sphere S^{n} for which all taut submanifolds are algebraic. Since a curvature surface Z, which is taut by Ozawa theorem [10], lies in a curvature sphere, the induction hypothesis implies that Z is algebraic, which leads us to the free access of parametrizing the focal set of Z
and its unit tangent cone at a point by semialgebraic sets. (For the reader's convenience, we include a section on semialgebraic sets and some of their important properties.) From this we can show, by conducting certain dimension estimates, facilitated and made precise by the introduction of unit tangent cones, that barring a closed set $S \subset \mathcal{G}^{c}$ of Hausdorff $(\operatorname{dim}(M)-1)$-measure zero that, hence by [14], does not disconnect the taut hyperusrface $M \subset S^{n}$, the set \mathcal{G}^{c} is essentially a manifold of codimension 1 in M, as expected. The local finiteness property then results in the hypersurface case, whence follows the algebraicity of a taut submanifold.

2. PRELIMINARIES

2.1. The Ozawa theorem. A fundamental result on taut submanifolds is due to Ozawa [10] (see also [16] for its generalization to the Riemannian case).

Theorem 1 (Ozawa). Let M be a taut submanifold in S^{n}, and let $\ell_{p}, p \in S^{n}$, be a linear height function on M. Let $x \in M$ be a critical point of ℓ_{p}, and let Z be the connected component of the critical set of ℓ_{p} that contains x. Then Z is
(a) a smooth compact manifold of dimension equal to the nullity of the Hessian of ℓ_{p} at x;
(b) nondegenerate as a critical manifold;
(c) taut in S^{n}.

In particular, ℓ_{p} is perfect Morse-Bott [3]. We call such a connected component of a critical set of ℓ_{p} a critical submanifold of ℓ_{p}.

An important consequence of Ozawa's theorem is the following [5].
Corollary 2. Let M be a taut submanifold in S^{n}. Then given any principal space T of any shape operator S_{ζ} at any point $x \in M$, there exists a submanifold Z (called a curvature surface) through x whose tangent space at x is T. That is, M is Dupin [11], [12].

Let us remark on a few important points in the corollary. It is convenient to work in the ambient Euclidean space \mathbb{R}^{n}. Let μ be the principal value associated with T. Consider the focal point $p=x+\zeta / \mu$. Then the critical submanifold Z of the (Euclidean) distance function L_{p} through x is exactly the desired curvature surface through x. The unit vector field

$$
\begin{equation*}
\zeta(y):=\mu(p-y) \tag{2.1}
\end{equation*}
$$

for $y \in Z$ extends ζ at x and is normal to and parallel along Z. The ($n-1$)-sphere of radius $1 / \mu$ centered at p is called the curvature sphere
of Z. In particular, two different focal points cannot have the same critical submanifold.
2.2. A brief review on semialgebraic sets. A semialgebraic subset of \mathbb{R}^{n} is one which is a finite union of sets of the form

$$
\cap_{j}\left\{x \in \mathbb{R}^{n}: F_{j}(x) * 0\right\}
$$

where $*$ is either $<$ or $=, F_{j} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the polynomial ring in X_{1}, \cdots, X_{n}, and the intersection is finite. An algebraic subset is one when $*$ is $=$ for all j without taking the finite union operation. Clearly, an algebraic set is semialgebraic.

It follows from the definition that any finite union or intersection of semialgebraic sets is semialgebraic, the complement of a semialgebraic set is semialgebraic, and hence a semialgebraic set taking away another semialgebraic set leaves a semialgebraic set. Moreover, the projection $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ sending $x \in \mathbb{R}^{n}$ to its first k coordinates maps a semialgebraic set to a semialgebraic set. In particular, the topological closure and interior of a semialgebraic set are semialgebraic.

Example 3. Let L be a k-by- l matrix each of whose entries is a polynomial over \mathbb{R}^{s}. Then the subset of \mathbb{R}^{s} where L is of rank t is semialgebraic.

Proof. Let the j-by- j minors of L be $F_{j, 1}, \cdots, F_{j, i_{j}}, 1 \leq j \leq \min (k, l)$. The set $R_{j} \subset \mathbb{R}^{s}$ where L is of rank $\leq j-1$ is given by setting $F_{j, 1}=$ $\cdots=F_{j, i_{j}}=0$, which is an algebraic set. The subset of \mathbb{R}^{s} for which L is of rank t is the semialgebraic set $R_{t+1} \backslash R_{t}$.

Example 4. Let $A \subset \mathbb{R}^{m}$ be a semialgebraic set. Consider the set

$$
B:=\{(x, y) \in(A \times A): x \neq y\} .
$$

B is semialgebraic since it is the complement of the diagonal of A in $A \times A$. Consider the set

$$
C:=\left\{(x, y, z) \in B \times S^{m-1}:(x, y) \in B, z=(x-y) /|x-y|\right\} .
$$

C is semialgebraic since it is defined by the polynomial equations

$$
\left(z_{i}\right)^{2}|x-y|^{2}=\left(x_{i}-y_{i}\right)^{2}
$$

where x_{i}, y_{i}, z_{i} are the coordinates of x, y, z. Let D be the topological closure of C in $\mathbb{R}^{m} \times \mathbb{R}^{m} \times S^{m-1}$, and let

$$
\text { proj }: \mathbb{R}^{m} \times \mathbb{R}^{m} \times S^{m-1} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m}
$$

be the standard projection. The preimage

$$
E:=\operatorname{proj}^{-1}((p, p)), \quad p \in A
$$

is also semialgebraic.
In fact, E is obtained by taking the limits of converging subsequences of $\left(q_{n}-p\right) /\left|q_{n}-p\right|$ for all converging sequences $\left(q_{n}\right)$ to p.

Definition 5. We call the set E in Example 4 the unit tangent cone of the set A at p, remarking that the process of defining the unit tangent cone can be done for any set. We say a sequence $\left(q_{n}\right)$ in A converges to a unit tangent cone vector e at p if q_{n} converges to p and $\left(q_{n}-p\right) /\left|q_{n}-p\right|$ converges to e.

Definition 6. For e in Definition 5 and any $\delta>0$, we let \mathcal{O}_{e} be the semialgebraic open set

$$
\mathcal{O}_{e}(\delta):=\left\{q \in \mathbb{R}^{m}:|e-(q-p) /|q-p||<\delta .\right.
$$

$\mathcal{O}_{e}(\delta)$ is a generalized cone with vertex p and axis e.
A map $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ over a semialgebraic S is semialgebraic if its graph in $\mathbb{R}^{n} \times \mathbb{R}^{k}$ is a semialgebraic set. It follows that the image of a semialgebraic map $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is semialgebraic, via the composition $\operatorname{graph}(f) \subset \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$, where the last map is the projection onto the second summand.

Example 7. The conclusion in Example 3 continues to hold if the entries of the matrix involved consist of semialgebraic functions.

A Nash function is a C^{∞} semialgebraic map from an open semialgebraic subset of \mathbb{R}^{n} to \mathbb{R}. A real analytic function f defined on an open semialgebraic subset U of \mathbb{R}^{n} is analytic algebraic if it is a solution of a polynomial equation on U of the form,

$$
\begin{equation*}
a_{0}(x) f^{s}(x)+a_{1}(x) f^{s-1}(x)+\cdots+a_{s}(x)=0, \tag{2.2}
\end{equation*}
$$

where $a_{0}(x) \neq 0, a_{1}(x), \cdots, a_{s}(x)$ are polynomials over \mathbb{R}^{n}. These two concepts are in fact equivalent[2, p. 165], that a function is Nash if and only if it is analytic algebraic.

The following example is instructive.
Example 8. For any number ϵ satisfying $0<\epsilon<1$, the open disk

$$
\begin{equation*}
B^{n}(\epsilon)=\left\{s=\left(s^{1}, \ldots, s^{n}\right) \in \mathbb{R}^{n}:|s|<\epsilon\right\} \tag{2.3}
\end{equation*}
$$

is an open semi-algebraic subset of \mathbb{R}^{n}. The function

$$
\begin{equation*}
s^{0}=\sqrt{1-|s|^{2}} \tag{2.4}
\end{equation*}
$$

on $B^{n}(\epsilon)$ is analytic algebraic, since $\left(s^{0}(x)\right)^{2}+a_{0}(x)=0$ on $B^{n}(\epsilon)$, where $a_{0}(x)$ is the polynomial $|s|^{2}-1$ on \mathbb{R}^{n}. Partial derivatives of all orders of s^{0} are analytic algebraic. In fact, an elementary calculation
and induction argument shows that if D_{i} denotes the partial derivative with respect to s^{i}, then

$$
D_{i_{1} \ldots i_{k}} s^{0}=\frac{a_{k}(s)}{\left(s^{0}\right)^{m}}
$$

where $a_{k}(s)$ is a polynomial on \mathbb{R}^{n} and m is a positive integer. Therefore,

$$
\left(s^{0}\right)^{2 m}\left(D_{i_{1} \ldots i_{k}} s^{0}\right)^{2}-a_{k}(s)^{2}=0
$$

is an equation of the form (2.2), since $\left(s^{0}\right)^{2}$ is a polynomial on \mathbb{R}^{n}.
A slight generalization of the single-variable case in [2, p. 54], shows that the partial derivatives of any Nash function are again Nash functions.

Let S be a semialgebraic subset of \mathbb{R}^{n}. The dimension of S, denoted $\operatorname{dim}(S)$, is the dimension of the ring $R=\mathbb{R}\left[x^{1}, \cdots, x^{n}\right] / \mathcal{I}(S)$, where $\mathcal{I}(S)$ the ideal of all polynomials vanishing on S, which is the maximal length of chains of prime ideals of R. As usual, it is proved that if S is a semialgebraic subset of \mathbb{R}^{n} that is a C^{∞} submanifold of \mathbb{R}^{n} of dimension d, then $\operatorname{dim}(S)=d$.

A semialgebraic subset M of \mathbb{R}^{m} is a Nash submanifold of \mathbb{R}^{m} of dimension n if for every point p of M, there exists a Nash diffeomorphism ψ from an open semialgebraic neighborhood U of the origin in \mathbb{R}^{m} into an open semialgebraic neighborhood V of p in \mathbb{R}^{m} such that $\psi(0)=p$ and $\psi\left(\left(\mathbb{R}^{n} \times\{0\}\right) \cap U\right)=M \cap V$. Here, by a Nash diffeomorphism ψ we mean the coordinate functions of ψ and ψ^{-1} are Nash functions.

Let M be a Nash submanifold of \mathbb{R}^{m}. A mapping $f: M \rightarrow \mathbb{R}$ is a Nash mapping if it is semialgebraic, and for every ψ in the preceding definition, $\left.f \circ \psi\right|_{\mathbb{R}^{n} \cap U}$ is a Nash function.

As in the C^{∞} case, the semialgebraic version of the inverse and implicit function theorems also hold [2, p. 56]. Moreover, the semialgebraic version of the (Nash) tubular neighborhood theorem over Nash manifolds is true [2, p. 199].

Of special importance to us is the slicing theorem [2, p. 30], for which we only give the special version we need for the sake of clarity.

Theorem 9. (Slicing Theorem) Let

$$
p_{j}(z, \lambda):=\lambda^{s_{j}}+a_{s_{j}-1}^{j}(z) \lambda^{s_{j}-1}+\cdots+a_{1}^{j}(z) \lambda+a_{0}^{j}(z), \quad 1 \leq j \leq a,
$$

be real polynomials in $m+1$ variables $(z, \lambda) \in \mathbb{R}^{m} \times \mathbb{R}$ with degree s_{j} in λ. Then there is a partition of \mathbb{R}^{m} into a finite number of (disjoint) semialgebraic sets A_{1}, \cdots, A_{l}, and for each $i=1, \cdots, l$, a finite number (possibly zero) of semialgebraic functions

$$
\zeta_{i, 1}<\cdots<\zeta_{i, s_{i}}: A_{i} \rightarrow \mathbb{R}
$$

such that for every $z \in A_{i}, \lambda=\zeta_{i, 1}, \cdots, \zeta_{i, s_{i}}$ are the distinct roots of $p_{j}(z, \lambda)=0,1 \leq j \leq a$.

The number of these semialgebraic functions may be zero because a real polynomial may have no real roots. More importantly, the slicing theorem encodes the multiplicities of the roots into account. To see this for our later application, we start with a single polynomial

$$
p(z, \lambda):=\lambda^{s}+a_{s-1}(z) \lambda^{s-1}+\cdots+a_{1}(z) \lambda+a_{0}(z) .
$$

The slicing theorem provides us with root functions $\zeta_{i, 1}, \cdots, \zeta_{i, s_{i}}$ over $A_{i}, 1 \leq i \leq l$. The polynomial $p(z, \lambda)$ in the variable λ has repeated roots if and only if $s_{i}<s$, in which case the largest $j+1$ for which

$$
\partial^{j} p / \partial \lambda^{j}=0
$$

evaluated at $\zeta_{i, 1}(z), \cdots, \zeta_{i, s_{i}}(z)$ is the multiplicity of the respective root.
Therefore, to find the root functions of $p(z, \lambda)$ with multiplicities, we solve, for each k,

$$
\partial^{j} p / \partial \lambda^{j}=0, \quad 0 \leq j \leq k,
$$

with the solution sets $A_{k, 1}, \cdots, A_{k, l_{k}}$ and root functions

$$
\xi_{k, i, 1}<\cdots<\xi_{k, i, s_{k, i}}: A_{k, i} \rightarrow \mathbb{R}, \quad 1 \leq i \leq l_{k} .
$$

Employ the two operations of taking the complement and finite intersection of sets to perform on $A_{k, 1}, \cdots, A_{k, l_{k}}$ for $k=0, \cdots, s$, knowing $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}$ and $A \backslash B=A \cap B^{c}$. For instance,

$$
\cup_{i} A_{0, i} \backslash \cup_{i} A_{1, i}
$$

is the semialgebraic subset where $p(z, \lambda)$ has only simple roots with the root functions $\xi_{0, i, j}$ that carry multiplicity 1 . Similarly,

$$
\left(\left(\cup_{i} A_{1, i}\right) \cap\left(\cup_{i} A_{2, i}\right)\right) \backslash \cup_{i} A_{3, i}
$$

is the semialgebraic subset where $p(z, \lambda)$ has only double and triple roots, with the root functions $\xi_{k, i, j}, k=1,2$, that carry multiplicity $k+1$, etc. Eventually, we end up with semialgebraic sets V_{1}, \cdots, V_{τ} that give rise to the root functions, with multiplicities. The set T where the closures of V_{1}, \cdots, V_{τ} intersect, which is also semialgebraic, is where the multiplicities of the roots of $p(z, \lambda)$ are not locally constant. It follows that $\operatorname{dim}(T)<k$, the ambient Euclidean dimension, because of the following dimension property [2, p. 53].

Proposition 10. Let $X \subset \mathbb{R}^{s}$ be a semialgebraic set and let \bar{X} be its topological closure. Then $\operatorname{dim}(\bar{X} \backslash X)<\operatorname{dim}(X)$.

A weaker smooth version [13] than $\operatorname{dim}(T)<k$ above says that the set where the principal multiplicities of the shape operator S_{ξ} is not locally constant, as ξ varies on the unit normal bundle of a smooth submanifold, is nowhere dense.

Lastly, we record the important decomposition property [2, p. 57].
Proposition 11. A semialgebraic set is the disjoint union of a finite number of Nash submanifolds N_{j}, each Nash diffeomorphic to an open cube $(0,1)^{\operatorname{dim}\left(N_{j}\right)}$.

We call these Nash submanifolds in the decomposition open cells henceforth.
2.3. The local finiteness property. Recall the local finiteness property in [4] that holds the key for proving that a taut hypersurface M is real algebraic when its dimension is ≤ 4. We denote by \mathcal{G} the subset of M where the multiplicities of principal curvatures are locally constant, and by \mathcal{G}^{c} the complement of \mathcal{G} in M.

Definition 12. A connected Dupin hypersurface M of S^{n} has the local finiteness property if there is a set $S \subset \mathcal{G}^{c}$, closed in M, such that S disconnects M in finitely many connected components, and for each point $x \in \mathcal{G}^{c} \backslash S$ there is an open neighborhood U of x in M such that $\mathcal{G} \cap U$ contains finitely many connected open sets (whose union is dense in U).

The technical advantage of excising a set S in the definition is that, we can remove certain types of points whose principal multiplicities are not locally constant and hard to handle without affecting establishing the algebraicity of the taut submanifold, as will become evident later.

3. Some local analysis and its implication

We first handle the case when M is a hypersurface. Fix a unit normal field \mathbf{n} over M once and for all. We label the principal curvatures of M by $\lambda_{1} \leq \cdots \leq \lambda_{n-1}$, which are Lipschitz-continuous functions on M because the principal curvature functions on the linear space \mathcal{L} of all symmetric matrices are Lipschitz-continuous by general matrix theory [1, p. 64], and the Hessian of of M is a smooth function from M into \mathcal{L}. Let $\lambda_{j}=\cot \left(t_{j}\right)$ for $0<t_{j}<\pi$. We have the Lipschitzcontinuous focal maps

$$
\begin{equation*}
f_{j}(x)=\cos \left(t_{j}\right) x+\sin \left(t_{j}\right) \mathbf{n} . \tag{3.1}
\end{equation*}
$$

In fact, the l-th focal point $f_{l}(x)$, counting multiplicities, along \mathbf{n} emanating from x is antipodally symmetric to the $(n-l)$-th focal point,
counting multiplicities, along $\mathbf{- n}$ emanating from x. The spherical distance functions $d_{f_{l}(x)}$ tracing backward following $\mathbf{-} \mathbf{n}$ thus assumes the same critical point x as the distance function $d_{-f_{l}(x)}$ tracing backward following \mathbf{n}; thus we may just consider the former case without loss of generality. Accordingly, henceforth we refer to a focal point p as being $f_{j}(x)$ for some x and j with an obvious modification if necessary.
Notation 13. Let p be the focal point of a fixed curvature surface Z and let $q \neq p$ be the focal point of a nearby curvature surface. Set

$$
g:=\ell_{q}-\ell_{p}
$$

considered as the perturbation of the height function ℓ_{p} to the nearby ℓ_{q} by g.

We assume

$$
\ell_{p}(Z)=0
$$

without loss of generality. Let $W \subset M$ be a tubular neighborhood of Z so small that Z is the only critical submanifold of ℓ_{p} in W and let

$$
\begin{equation*}
\pi: W \rightarrow Z \tag{3.2}
\end{equation*}
$$

be the projection.
Definition 14. Notation as above, we will call such a W a neck around Z.

Let us parametrize W by $v_{1}, \cdots, v_{s}, u_{1}, \cdots, u_{n-1-s}$ with $u_{1}=\cdots=$ $u_{n-1-s}=0$ parametrizing Z such that

$$
\begin{equation*}
\pi:\left(v_{1}, \cdots, v_{s}, u_{1}, \cdots, u_{n-1-s}\right) \mapsto\left(v_{1}, \cdots, v_{s}\right) . \tag{3.3}
\end{equation*}
$$

By a linear change of u_{1}, \cdots, u_{n-1-s}, we may assume, around $0 \in Z$,

$$
\begin{align*}
\ell_{p} & =\sum_{j=1}^{n-1-s} \alpha_{j} u_{j}^{2}+O(3), \tag{3.4}\\
g & =h(u)+k(v)+\sum_{j k} \beta_{j k} v_{j} v_{k}+\sum_{j k} \gamma_{j k} u_{j} v_{k}+O(3),
\end{align*}
$$

with

$$
h(u)=\sum_{i} a_{i} u_{i}+\sum_{j, k} b_{j k} u_{j} u_{k}, \quad k(v)=\sum_{l} c_{l} v_{l}
$$

for some small coefficients $a_{i}, \beta_{j k}, \gamma_{j k}, b_{j k}$, and c_{l} all in the magnitude of $|q-p|$ by the linear nature of g, where α_{j} are fixed nonzero constants. We obtain

$$
F_{j}:=\partial\left(\ell_{p}+g\right) / \partial u_{j}=a_{j}+2 \alpha_{j} u_{j}+2 \sum_{l} b_{j l} u_{l}+\sum_{k} \gamma_{j k} v_{k}+O(2)
$$

for $1 \leq j \leq n-1-s$, and

$$
G_{i}:=\partial\left(\ell_{p}+g\right) / \partial v_{i}=c_{i}+2 \sum_{k} \beta_{i k} v_{k}+\sum_{j} \gamma_{j i} u_{j}+O(2)
$$

for $1 \leq i \leq s$. We calculate
$\partial\left(F_{1}, \cdots, F_{n-1-s}, G_{1}, \cdots, G_{s}\right) / \partial\left(u_{1}, \cdots, u_{n-1-s}, v_{1}, \cdots, v_{s}\right)=\left(\begin{array}{cc}\Theta & \gamma \\ \gamma^{t r} & \Gamma\end{array}\right)$,
where

$$
\Theta:=\left(2 \alpha_{j} \delta_{j l}+2 b_{j l}\right), \quad \gamma:=\left(\gamma_{j k}\right), \quad \Gamma:=\left(\beta_{i k}\right),
$$

at $u_{1}=\cdots=u_{n-1-s}=v_{1}=\cdots=v_{s}=0$. Note that Θ is nonsingular when we let $|q-p|$ be much smaller than $\min _{j}\left|\alpha_{j}\right|$.

Due to the compactness of Z, we can cover W by a finite number of coordinate charts as above, so that there is an open disk \mathcal{D} centered at p whose radius is so small that Θ is nonsingular in any of these coordinate charts for all $q \in \mathcal{D}$. In other words, since the left hand side of (3.5) is the Hessian of $\ell_{q}=\ell_{p}+g$, we may assume without loss of generality that the Hessian of ℓ_{q} is of rank $\geq n-1-s$ in W whenever $q \in \mathcal{D}$.

Recall Definition 5. Let us be given a vector e, which will in future applications be a unit tangent cone vector at p of an appropriately chosen set. Assume that Z is not on a level set of ℓ_{e}. Since Z is taut, the height function ℓ_{e} cuts Z in several critical submanifolds Z_{1}, \cdots, Z_{m}. Let us consider Z_{1}, for instance. Assume the codimension of Z_{1} in Z is t.

Let T_{1} be a neck of Z_{1} in Z and let

$$
N_{1}:=\pi^{-1}\left(T_{1}\right) \subset W
$$

with π given in (3.2). Retaining the notation in (3.3), let us parametrize N_{1} by the variables

$$
v_{1}, \cdots, v_{t}, v_{t+1}, \cdots, v_{s}, u_{1}, \cdots, u_{n-1-s}
$$

around 0 , where $v_{t+1} \cdots, v_{s}$ parametrize Z_{1} and v_{1}, \cdots, v_{s} parametrize T_{1} around Z_{1} in Z. It is understood that 0 in the coordinate system corresponds to a point on Z_{1}.

Note that ℓ_{e} now assumes a simpler form

$$
\begin{equation*}
\ell_{e}=h(u)+\sum_{j=1}^{t} \beta_{j} v_{j}^{2}+\sum_{j k} \gamma_{j k} u_{j} v_{k}+O(3) \tag{3.6}
\end{equation*}
$$

where all β_{i} are nonzero since Z_{1} is a critical submanifold of $\left.\ell_{e}\right|_{Z}$ in Z.

By continuity, there is a small open set \mathcal{O}_{e} given in Definition 6 (we ignore the radius δ in the definition) such that whenever $q \in \mathcal{O}_{e}$ the unit vector

$$
e_{q}:=(q-p) /|q-p|
$$

with

$$
\begin{equation*}
\ell_{e_{q}}=h^{q}(u)+k^{q}(v)+\sum_{j k} \beta_{j k}^{e_{q}} v_{j} v_{k}+\sum_{j k} \gamma_{j k}^{e_{q}} u_{j} v_{k}+O(3), \tag{3.7}
\end{equation*}
$$

where $k^{q}(v)$ is linear in v, satisfies that the upper t-by- t block of the matrix $\left(\beta_{j k}^{e_{q}}\right)$ is nonsingular, or equivalently, $\left(\beta_{j k}^{e_{q}}\right)$ is of rank $\geq t$ whenever $q \in \mathcal{O}_{e}$ (by shrinking the coordinates if necessary). It follows that, when we substitute

$$
\begin{equation*}
g_{q}:=|q-p| \ell_{e_{q}}, \quad l=1,2, \cdots, \tag{3.8}
\end{equation*}
$$

into (3.5), with

$$
\begin{equation*}
\ell_{q}=\ell_{p}+g_{q} \tag{3.9}
\end{equation*}
$$

we see the Hessian of ℓ_{q} are all of rank $\geq n-1-s+t$, or all of kernel dimension $\leq \operatorname{dim}\left(Z_{1}\right)$, whenever $q \in \mathcal{O}_{e}$. That is,

$$
\begin{equation*}
\operatorname{dim}\left(C_{q}\right) \leq \operatorname{dim}\left(Z_{1}\right) \tag{3.10}
\end{equation*}
$$

whenever a critical submanifold C_{q} of ℓ_{q} lies in N_{1}. Similarly, the same holds for other N_{j} as well.

On the other hand, at a point $x \in Z$ away from Z_{1}, \cdots, Z_{m}, we can still parametrize W around x by $v_{1}, \cdots, v_{s}, u_{1}, \cdots, u_{n-1-s}$, where v_{1}, \cdots, v_{s} parametrize Z around x identified with 0 . Then slightly differently from the earlier expression we have

$$
\begin{aligned}
\ell_{p} & =\sum_{j=1}^{n-1-s} \alpha_{j} u_{j}^{2}+O(3) \\
\ell_{e} & =h(u)+\sum_{i=1}^{s} \gamma_{i} v_{i}+\sum_{i=1}^{s} \delta_{i} v_{i}^{2}+\sum_{j k} \gamma_{j k} u_{j} v_{k}+O(3),
\end{aligned}
$$

where at least one of γ_{i} is nonzero since x is not a critical point of ℓ_{e} on Z. As a consequence, following the argument below (3.6) we conclude that the gradient of ℓ_{q} is nonzero in a neighborhood of x in W, so that no critical submanifold $C_{e_{q}}$ of ℓ_{q} passes through this neighborhood for $q \in \mathcal{O}_{e}$. In conclusion, we have the following.
Proposition 15. Notations and conditions as above, let Z be a curvature surface with focal point p, and let e be a vector, which will be a unit tangent cone vector at p of an appropriately chosen set later,
such that Z is not on any level set of ℓ_{e}. Let Z_{1}, \cdots, Z_{m} be the critical submanifolds of $\left.\ell_{e}\right|_{Z}$ in Z with small disjoint necks T_{j} of Z_{j} in Z and N_{j} of Z_{j} in $W, j=1, \cdots, m$. Then there is an open set \mathcal{O}_{e} such that for every $q \in \mathcal{O}_{e}$ a focal submanifold C_{q} of ℓ_{q} in W is contained in a unique N_{s} for some $s \leq m$ with

$$
\operatorname{dim}\left(C_{q}\right) \leq \operatorname{dim}\left(Z_{s}\right)
$$

Proof. Since $Z_{1}, \cdots Z_{m}$ are disjoint in Z, as above we cover them by disjoint open necks T_{j} in Z and $N_{j} \supset T_{j}$ in $W, 1 \leq j \leq m$; then cover the complement of $\cup_{j=1}^{m} T_{j}$ in Z by finitely many small open balls B_{j} in Z and open balls $O_{j} \supset B_{j}$ in $W, 1 \leq j \leq a$, such that no critical submanifold passes through $O_{i}, \forall i$. Therefore, $C_{q} \subset N_{s}$ for some unique $s \leq m$.
The second statement is (3.10).
Corollary 16. Suppose all unit tangent cone vectors e at p of focal points q near p satisfy that Z is not on any level set of ℓ_{e}. Assume in any open ball $O_{x}(1 / j)$ of radius $1 / j$ centered at $x \in Z$, there is a point y_{j} at which the principal multiplicities are not locally constant, or equivalently, there is a curvature surface C_{j} through y_{j} whose dimension is not locally constant (so that it is not diffeomorphic to a sphere). Let e be the unit tangent cone vector at p of the focal points q_{j} of C_{j} and let Z_{1}, \cdots, Z_{m} be the focal submanifolds of $\left.\ell_{e}\right|_{Z}$ in Z. Then there is a unique Z_{s} through x that is not diffeomorphic to a sphere, or equivalently, whose dimension in Z is not locally constant.

Proof. Notations are as in Proposition 15. That $x \in Z_{s}$ results when we let j get larger and larger while shrinking the necks N_{1}, \cdots, N_{m} more and more.

We show Z_{s} is not diffeomorphic to a sphere. For a sufficiently large j, since C_{j} lies in the neck N_{s} of Z_{s}, tautness of C_{j} and Z_{s} imply that the topology of C_{j} embeds in the topology of Z_{s} (see the remark below). Therefore, Z_{s} cannot be a sphere. Otherwise C_{j} would be a sphere, which is not the case.

Remark 17. We let

$$
M_{p, \epsilon}:=\ell_{p}^{-1}((-\infty, \epsilon]), \quad M_{p, \epsilon}^{\circ}:=\ell_{p}^{-1}((-\infty, \epsilon)) .
$$

Fix noncritical values a, b of ℓ_{p} with $a<0<b$ and 0 the only critical value between them. Notation as in the preceding corollary. Under the negative gradient flow of $\ell_{p}, W \supset Z$ is homotopic to the disk bundle B with base Z and fiber the unit disk $\mathbb{D}^{\mu} \subset \mathbb{R}^{\mu}$, where μ is the Morse-Bott index of Z. So, N_{s} is homotopic to the disk bundle B restricted to T_{s},
which is homotopic to the disk bundle B restricted to Z_{s}, denoted by B_{s}. The topology of N_{s} attached to $M_{p, a}$ is therefore

$$
H_{k}\left(B_{s}, \partial B_{s}\right)=H_{k-\mu}\left(Z_{s}\right)
$$

by Thom isomorphism. On the other hand, since $\ell_{q_{j}}$ assumes the critical submanifolds C_{j} and possibly other Y_{1}, \cdots, Y_{a} in N_{s} with indexes $\sigma_{j}, \tau_{1}, \cdots, \tau_{a}$ and critical values $\alpha_{j}, \beta_{1}, \cdots, \beta_{a}$, respectively, we see there is an isomorphism

$$
\begin{equation*}
H_{k-\sigma_{j}}\left(C_{j}\right) \oplus_{b=1}^{a} H_{k-\tau_{b}}\left(Y_{b}\right) \simeq H_{k-\mu}\left(Z_{s}\right), \tag{3.11}
\end{equation*}
$$

because we can find noncritical values a^{\prime} and $b^{\prime}, a^{\prime}<\alpha_{j}, \beta_{1}, \cdots, \beta_{a}<b^{\prime}$, of $\ell_{q_{j}}$ such that

$$
M_{p, a} \subset M_{q_{j}, a^{\prime}}^{\circ} \subset M_{q_{j}, \alpha_{j}}, M_{q_{j}, \beta_{1}}, \cdots, M_{q_{j}, \beta_{a}}, M_{p, 0} \subset M_{q_{j}, b^{\prime}}^{\circ} \subset M_{p, b},
$$

so that the topology of N_{s} attached to $M_{q_{j}, a^{\prime}}$, which deformation retracts to $M_{p, a}$, is the left hand side of (3.11). Shifting indexes, $H_{k}\left(C_{j}\right)$ embeds in $H_{k+\sigma_{i}-\mu}(Z)$ for all k.

In conclusion, if Z_{s} is a sphere, then C_{j} must be either a point or a sphere of the same dimension as Z_{s}. In particular, if C_{j} is a curvature surface, then C_{j} must be a sphere of the same dimension as Z_{s}, so that the dimension of Z_{s} is locally constant.

Corollary 18. Let $\left(q_{j}\right)$ be a sequence of focal points converging to the unit tangent cone vector e at p. If Z is not on any level set of $l_{q_{j}}$ for all j, then Z is not on any level set of l_{e}.

Proof. Suppose Z is on a level set of ℓ_{e}. Then Z must be on a regular level set of ℓ_{e}; otherwise, Corollary 2 would imply that $p=e$, which is not the case ($p \perp e$ on S^{n}). Therefore, as in (3.8), $\ell_{q_{j}}=\ell_{p}+g_{j}$ would be regular over Z for $j \geq L$ for some L when $q_{j} \in \mathcal{O}_{e}$ given in Proposition 15. Now locally,

$$
\begin{aligned}
\ell_{p} & =\sum_{j=1}^{n-1-s} \alpha_{j} u_{j}^{2}+O(3), \\
\ell_{e_{j}} & =h(u)+k(v)+\sum_{i=1}^{s} \delta_{i} v_{i}^{2}+\sum_{i k} \gamma_{i k} u_{i} v_{k}+O(3),
\end{aligned}
$$

where either $h(u)$ or $k(v)$ has a nontrivial linear term, since $\ell_{e_{j}}$ is regular on Z. It follows that the gradient of $\ell_{q_{j}}, j \geq L$, is nonzero in a tubular neighborhood of Z, which implies that q_{j} would not converge to p, a contradiction.

4. The proof

We do induction on n, the dimension of the ambient sphere, with the induction statement that all compact taut submanifolds in S^{n} are algebraic. The statement is clearly true for $n=1$. Assume the statement is true for $n-1$. Let us first handle a taut hypersurface M in S^{n} to show that it is algebraic. Since any curvature surface of M is contained in a curvature sphere of dimension $n-1$, we know by the induction hypothesis that all curvature surfaces, being taut by Ozawa theorem, are algebraic. We then proceed to establish that M is algebraic by establishing the local finiteness property on M.

To this end, let x be a point in \mathcal{G}^{c} and let Z through x be a curvature surface with focal point p. We stipulate that all the conditions on the neck

$$
\pi: W \rightarrow Z
$$

we encountered in the preceding section prevail.
Let J be the principal index range of the principal maps (3.1) satisfying

$$
p=f_{a}(x), \quad \forall a \in J
$$

Since the principal multiplicities are not locally constant at x, given any neighborhood V_{p} of p and U_{x} of x, there is a point $y \in\left(\cup_{a \in J} f_{a}^{-1}\left(V_{p}\right)\right) \cap$ U_{x} and a curvature surface C_{y} through y such that $\operatorname{dim}\left(C_{y}\right)<\operatorname{dim}(Z)$. Furthermore, by the continuity of the focal maps there are open neighborhoods N_{p} of p and O_{x} of x so small that $f_{b}\left(O_{x}\right)$ is disjoint from N_{p} for all $b \notin J$. Set

$$
\begin{equation*}
O^{*}:=\left(\cup_{a \in J} f_{a}^{-1}\left(N_{p}\right)\right) \cap O_{x} . \tag{4.1}
\end{equation*}
$$

Then for any focal point $q \in N_{p}$, there is a curvature surface of ℓ_{q} through O^{*}; moreover, each curvature surfaces C_{y} through $y \in O^{*}$ has principal index range contained in J so that in particular $\operatorname{dim}\left(C_{y}\right) \leq$ $\operatorname{dim}(Z)$, and moreover, there exist C_{y} with $\operatorname{dim}\left(C_{y}\right)<\operatorname{dim}(Z)$ in any neighborhood of x in O^{*} because $x \in \mathcal{G}^{c}$.

We further stipulate, by choosing O^{*} so small, that
Z be the only critical submanifold of ℓ_{p} contained in the topological closure of W, and,
any curvature surface passing through O^{*} with principal index range contained in J be entirely contained in W.

Since there are only a finite number of critical submanifolds with the focal point p and Z is the only critical submanifold of ℓ_{p} in W, all focal points q of curvature surfaces $\neq Z$ in W are different from p in any small neighborhood of p.

We have two cases to consider.
Category 1. One of the curvature spheres of a focal point $\ell_{q}, q \neq p$, contains Z.

This means that Z is contained in a level set of such a height function ℓ_{q}. Suppose Z is contained in a critical submanifold of ℓ_{q}. Then by Corollary 2 , the height functions ℓ_{p} and ℓ_{q} share the same center of the curvature sphere through Z, so that it must be that $p=q$, which is not the case. Therefore, all points of Z are regular points of ℓ_{q}.

We can understand all these q explicitly. Let S^{l} be the smallest sphere containing Z. It is more convenient to view what goes on in R^{n} when we place the pole of the stereographic projection on Z. Then we are looking at an \mathbb{R}^{l}, which, by a conformal transformation of the sphere, we may assume is the standard one contained in \mathbb{R}^{n}, in which Z sits. Let $E \simeq \mathbb{R}^{n-l}$ be the orthogonal complement of the \mathbb{R}^{l}. Any \mathbb{R}^{n-l-1} in E gives rise to an \mathbb{R}^{n-1} containing Z, and vice versa. Back on the sphere, this means that we have an $(n-l-1)$-parameter family of S^{n-1} containing Z. The focal points f of these S^{n-1} form an S^{n-l-1} on the equator.

Assume $\operatorname{dim}(Z)<l$ first. Notations as above, let us consider the incidence space

$$
\mathcal{I} \subset S^{n-l-1} \times M
$$

given by
$\mathcal{I}:=\{(t, z): t$ is sufficiently close to p and z belongs to a critical submanifold of ℓ_{t} passing through $\left.O^{*}\right\}$.

Let $\mathcal{I}^{\circ} \subset \mathcal{I}$ be defined by

$$
\begin{aligned}
\mathcal{I}^{\circ}:=\{ & (t, z) \in \mathcal{I}: z \text { belongs to a critical submanifold with } \\
& \text { dimension }<\operatorname{dim}(Z)\} .
\end{aligned}
$$

Let

$$
\Pi_{2}: \mathcal{I} \rightarrow M
$$

be the projection from \mathcal{I} onto its second summand.
We may assume O^{*} is so small that it is contained in the coordinate chart V employed in (3.5); we adopt the notations there. Around each $(t, z) \in \mathcal{I}^{\circ}$, choose a small neighborhood $V_{t, z} \subset \mathcal{D} \times V$ over which a certain $(n-s)$-by- $(n-s)$ minor of the Hessian matrix, given on the left hand side of (3.5), is nonsingular; here, $s=\operatorname{dim}(Z)$. Choose a countable refinement $V_{1}, V_{2} \cdots$ of the open covering $\left\{V_{t, z}\right\}$ of \mathcal{I}°. Fix a V_{j}, over which we may assume without loss of generality that the upper
left $(n-s)$-by- $(n-s)$ minor of the Hessian matrix is nonsingular. Via the map

$$
h:=(q, z) \in V_{j}: \mapsto\left(F_{1}(q, z), \cdots, F_{n-s-1}(q, z), G_{1}(q, z)\right) \in \mathbb{R}^{n-s},
$$

the implicit function theorem ensures that $h^{-1}(0)$ consists of countably many (disjoint) connected manifolds $V_{j k}, k=1,2, \cdots$, of dimension $n+s-1$. Each $V_{j k}$ is parametrized by $\left(q, v_{2}, \cdots, v_{s}\right)$ with the chart map

$$
g_{j k}:\left(q, v_{2}, \cdots, v_{s}\right) \in \mathbb{R}^{n+s-1} \mapsto\left(q, u_{1}, \cdots, u_{n-s-1}, v_{1}, \cdots, v_{s}\right) \in V_{j k}
$$

where $u_{1}, \cdots, u_{n-s-1}, v_{1}$ are functions of q, v_{2}, \cdots, v_{s}. Since v_{2}, \cdots, v_{s} are coordinate functions over $V_{j k}$ with respect to the chart, we can define the map

$$
f_{j k}:(q, z) \in V_{j k} \mapsto\left(v_{2}(q, z), \cdots, v_{s}(q, z)\right) \in \mathbb{R}^{s-1}
$$

Consider the map

$$
F_{j k}:\left.V_{j k}\right|_{\mathcal{I}^{\circ}} \rightarrow \mathbb{R}^{\operatorname{dim}(M)-l} \times \mathbb{R}^{s-1}, \quad F_{j k}=\left(i d, f_{j k}\right):(t, z) \mapsto\left(t, f_{j k}(t, z)\right) .
$$

It is clear that $\mathbb{R}^{\operatorname{dim}(M)-l} \times \mathbb{R}^{s-1}$ is of Hausdorff dimension $=\operatorname{dim}(M)-2$ since $l>s$. Therefore, $\left.V_{j k}\right|_{\mathcal{I}^{\circ}}$ is also of Hausdorff dimension at most $\operatorname{dim}(M)-2$ via the inverse Lipschitz-continuous map $g_{j k}$. It follows that each $\left.V_{j}\right|_{\mathcal{I}^{\circ}}$ and thus \mathcal{I}°, and its topological closure $\overline{\mathcal{I}^{\circ}}$, are of Hausdorff dimension at $\operatorname{most} \operatorname{dim}(M)-2$ as well. As a consequence, $\Pi_{2}\left(\overline{\mathcal{I}^{\circ}}\right)$ is of Hausdorff dimension at most $\operatorname{dim}(M)-2$, which therefore does not disconnect M [14, p. 269].

In other words, the set of points $z \in O^{*}$ belonging to the critical submanifolds of ℓ_{t} passing through O^{*} with dimension $<\operatorname{dim}(Z)$, for t sufficiently close to p, does not disconnect M and so does not contribute to the local finiteness property. Once such points are excised, $\mathcal{I} \backslash \overline{\mathcal{I}^{\circ}}$ is a manifold of dimension $=\operatorname{dim}(M)-l+\operatorname{dim}(Z)$, which can be seen by solving

$$
F_{1}=\cdots=F_{n-1-s}=G_{1}=\cdots=G_{s}=0
$$

by the implicit function theorem for u_{1}, \cdots, u_{n-1-s} in terms of v_{1}, \cdots, v_{s} and t.

Lastly, observe that $\Pi_{2}: \mathcal{I} \backslash \overline{\mathcal{I}^{\circ}} \rightarrow O^{*}$ is a finite map, because there are only at most $\operatorname{dim}(M)$ many curvature surfaces through $z \in O^{*}$. It is also an open map since it is the restriction to \mathcal{I} of the standard projection from $S^{n} \times S^{n}$ to S^{n}. By Federer's version of Sard's theorem [6, p. 316], which states that the critical value set of a smooth map $f: \mathbb{R}^{l} \rightarrow \mathbb{R}^{s}$, at which the rank of the derivative is $\leq \nu$, is of Hausdorff ν-dimensional measure zero. Consequently, the critical value set of $\left.\Pi_{2}\right|_{\mathcal{I} \backslash \overline{\mathcal{I}^{\circ}}}$ is of Hausdorff $(\operatorname{dim}(M)-l+\operatorname{dim}(Z))$-dimensional measure
zero, and so in particular, of Hausdorff $(\operatorname{dim}(M)-1)$-dimensional measure zero since $l>\operatorname{dim}(Z)$. So by [14, p. 269] the critical value set of $\Pi_{2}\left(\mathcal{I} \backslash \overline{\mathcal{I}^{\bullet}}\right)$ does not disconnect M, which can thus be excised as well. What remains is thus the regular set \mathcal{R} of $\mathcal{I} \backslash \overline{\mathcal{I}^{0}}$, over which Π_{2} is a finite covering map onto its image. It follows that $\Pi_{2}(\mathcal{R})$ is an immersed manifold of dimension $=\operatorname{dim}(M)-l+\operatorname{dim}(Z) \leq \operatorname{dim}(M)-1$, which thus disconnect M in only finitely many components.

If $\operatorname{dim}(Z)=l$, then $Z=S^{l}$. Remark 17 implies that all curvature surfaces passing through \mathcal{O}^{*} (by shrinking it if necessary) are S^{l}, so that no principal index change occurs in \mathcal{O}^{*}. This is a contradiction.

In summary, barring a closed set of Hausdorff $(\operatorname{dim}(M)-1)$-dimensional measure zero in O^{*} that does not disconnect M, the union of the curvature surfaces in \mathcal{G}^{c} in Category 1 is an immersed manifold of dimension $=\operatorname{dim}(M)-l+\operatorname{dim}(Z) \leq \operatorname{dim}(M)-1$ and hence disconnects \mathcal{G} in at most finitely many connected components.
Category 2. No curvature spheres of ℓ_{q} of a focal point $q, q \neq p$, contain Z.

Definition 19. Let \mathcal{F}_{Z} be the set of all points q for which no curvature spheres of ℓ_{q} contain Z, and let $\mathcal{U} C_{p}$ be the set of the unit tangent cone vectors of \mathcal{F}_{Z} at p.

By Corollary $2, \mathcal{F}_{Z}$ is the image of the unit normal bundle $U N$ of Z under the normal exponential map

$$
\operatorname{Exp}:((x, n), t) \in U N \times(-\pi, \pi) \mapsto \cos (t) x+\sin (t) n \in \mathcal{F}_{Z}
$$

Hence, \mathcal{F}_{Z} is semialgebraic, and so $\mathcal{U} C_{p}$ is semialgebraic by construction. Note that $\mathcal{U} C_{p} \subset \mathcal{F}_{Z}$ by Corollary 18.

By Corollary 16, for a sequence C_{j} of curvature surfaces through $y_{j} \in C_{j}$ converging to x, where the dimension of each C_{j} is not locally constant, we know a unit tangent cone vector e at p to which a subsequence of the focal points q_{j} of C_{j} converge has the property that, the dimension of the critical submanifold of ℓ_{e} through x in Z is not locally constant. Accordingly, we make the following definition.
Definition 20. We let $\mathcal{U} C_{p}^{\circ} \subset \mathcal{U} C_{p}$ be the set where the dimension of the critical submanifold of $\left.\ell_{e}\right|_{Z}$ through x in Z is not locally constant.

Lemma 21. $\mathcal{U C}_{p}^{\circ}$ is semialgebraic.
Proof. $\mathcal{U} C_{p}^{\circ}$ consists of those $e \in \mathcal{U} C_{p}$ for which the gradient of $\left.\ell_{e}\right|_{Z}=0$ at x and the kernel (or rank) of the Hessian of $\left.\ell_{e}\right|_{Z}$ at x is not locally constant. Therefore, Example 7 and Proposition 10 give the desired conclusion.

The nature of \mathcal{F}_{Z} and $\mathcal{U} C_{p}^{\circ}$ motivates us to look into the following semialgebraic object.

Lemma 22. The set $U N^{o}$ of unit normals ξ of Z at which the shape operator S_{ξ} has multiplicity change is semialgebraic of dimension \leq $\operatorname{dim}(M)-1$.
Proof. Let $\operatorname{dim}(Z)=s$ and let $(y, \zeta) \in Z \times S^{n-s-1}$ parametrize the unit normal bundle $U N$ of Z. The characteristic polynomial of S_{ξ} is of the form

$$
\lambda^{s}+a_{s-1} \lambda^{s-1}+\cdots+a_{1} \lambda+a_{0}
$$

where a_{1}, \cdots, a_{s-1} are polynomials in the zero jet of ζ and the second jets of y; hence they are Nash functions. By the discussion following Theorem 9 (the slicing theorem), $Z \times S^{n-s-1}$ is decomposed into finitely many disjoint semialgebraic sets V_{1}, \cdots, V_{τ}, where each V_{i} is equipped with semialgebraic functions $\eta_{i, 1}<\cdots<\eta_{i, l_{i}}$ that solve the characteristic polynomial, counting multiplicities; moreover, $U N^{o}$, where the principal multiplicities are not locally constant, is semialgebraic of a lower dimension by Proposition 10 and the discussion preceding it. So

$$
\begin{equation*}
\operatorname{dim}\left(U N^{o}\right) \leq n-2=\operatorname{dim}(M)-1 \tag{4.2}
\end{equation*}
$$

Now in view of Corollary 2, for a unit normal ξ to Z, we let $q_{\xi}^{1}, q_{\xi}^{2}, \cdots$, and $q_{\xi}^{\operatorname{dim}(Z)}$ be the focal point of the curvature surface through the base point of ξ corresponding to the principal curvature function $\lambda^{1}(\xi), \cdots$, and $\lambda^{\operatorname{dim}(Z)}(\xi)$ of S_{ξ}, respectively. The remark following Corollary 2 gives the focal maps $g^{1}, \cdots, g^{\operatorname{dim}(Z)}$ that send ξ to the respective focal points; by the algebraic nature of Z, all these maps are semialgebraic.

Consider the semialgebraic set $\mathcal{X} \subset U N^{o} \times S^{n} \times S^{n}$ defined by $\mathcal{X}:=\left\{(\xi, q, r): q=g^{j}(\xi)\right.$ for some $j ; r$ belongs a critical set of Z of $\left.\ell_{q}\right\}$.
Due to the nature of all these defining functions, \mathcal{X} is semialgebraic. (For instance, critical submanifolds are obtained by setting the first derivative of the height function equal to zero on Z, which is a semialgebraic process.) Let

$$
\begin{equation*}
p r: U N \times S^{n} \times S^{n} \rightarrow S^{n} \times S^{n} \tag{4.3}
\end{equation*}
$$

be the standard projection, which is a Nash submanifold, and let

$$
\mathcal{J}:=\operatorname{pr}(\mathcal{X}) .
$$

The set \mathcal{J} is also semialgebraic.
Lemma 23. $\operatorname{dim}(\mathcal{J}) \leq \operatorname{dim}(M)-1$.

Proof. Consider

$$
\begin{equation*}
\alpha: \mathcal{J} \rightarrow U N^{o}, \quad \alpha:(q, z) \mapsto \xi(q, z), \tag{4.4}
\end{equation*}
$$

where $\xi(q, z)$ is the unit tangent vector, based at z, along the geodesic of S^{n} from q to z. Note that α is the restriction to \mathcal{J} of the Nash map

$$
\beta: S^{n} \times S^{n} \rightarrow S^{n} \times S^{n}, \quad \beta:(u, v) \mapsto \xi(u, v)
$$

Note also that α is a finite map, since in general each $\xi \in\left(U N^{o}\right)_{z}$ gives rise to at most $\operatorname{dim}(Z)$ many curvature surfaces through z. Therefore, by (4.2) and (4.4), we have

$$
\begin{equation*}
\operatorname{dim}(\mathcal{J}) \leq \operatorname{dim}\left(U N^{o}\right) \leq \operatorname{dim}(M)-1 \tag{4.5}
\end{equation*}
$$

Now we let

$$
\begin{equation*}
\Pi^{1}, \Pi^{2}: S^{n} \times S^{n} \rightarrow S^{n} \tag{4.6}
\end{equation*}
$$

be the standard projections onto the first and second summands, respectively. Note that Π^{2} is a finite map because through each point in M there are only at most $\operatorname{dim}(M)$ many critical submanifolds. Moreover,

$$
\mathcal{U} C_{p}^{\circ} \subset \Pi^{1}(\mathcal{J})
$$

by construction.
Corollary 24. The set

$$
\mathcal{I}:=\left(\left.\Pi^{1}\right|_{\mathcal{J}}\right)^{-1}\left(\mathcal{U} C_{p}^{\circ}\right)
$$

is semialgebraic of dimension $\leq \operatorname{dim}(M)-2$.
Proof. The dimension of \mathcal{I} is 1 less than $\operatorname{dim}(\mathcal{J})$ given in Lemma 23 because $\mathcal{U} C_{p}^{\circ}$ consists of unit tangent cone vectors. (This can be seen most clearly in \mathbb{R}^{n} in place of S^{n}.)

Recall the open set \mathcal{O}_{e} defined before (3.7), which is semialgebraic. We now stipulate that $\mathcal{O}_{e} \subset N_{p}$ defined in (4.1) and set

$$
\mathcal{O}:=\cup_{e \in \mathcal{U} C_{p}^{\circ}} \mathcal{O}_{e}
$$

Corollary 25. $\mathcal{O} \cap \mathcal{F}_{Z}$ is σ-semialgebraic in the sense that it is a countable union of increasing compact semialgebraic sets $X_{1} \subset X_{2} \subset$ $X_{3} \subset \cdots$, because there is a compact exhaustion of \mathcal{O}.

In view of Proposition 15, we let

$$
\mathcal{K} \subset\left(\mathcal{O} \cap \mathcal{F}_{Z}\right) \times M \subset S^{n} \times S^{n}
$$

be the incidence space
$\mathcal{K}:=\left\{(q, z):\right.$ for $q \in \mathcal{O}_{e}, z \in$ a critical submanifold of $\ell_{q} \subset$ a neck
$N_{1} \supset$ the critical submanifold Z_{1} of $\left.\ell_{e}\right|_{Z}, x \in Z_{1}$, as given in Proposition 15\}.

Proposition 26. Away from a closed subset \mathcal{N} of Hausdorff $(\operatorname{dim}(M)-$ $1)$-measure zero, $\Pi^{2}(\mathcal{K})$ is a manifold of dimension at most $\operatorname{dim}(M)-1$.

Proof. Let $X_{1} \subset X_{2}, \subset X_{3}, \cdots$ be a countable collection of increasing compact semialgebraic sets whose union is $\mathcal{O} \cap \mathcal{F}_{Z}$. By Proposition 11, fix a semialgebraic open cell decomposition \mathcal{T}_{j} of $X_{j}, j=1,2, \cdots$, in such a way that \mathcal{T}_{j} is a sub-decomposition of \mathcal{T}_{j+1} for all j (by decomposing $\left.X_{j+1} \backslash X_{j}\right)$; let $F_{k}, k=1,2, \cdots, s$, be the open cells in the decomposition.

We now collect the unit tangent cone vectors of F_{k} at p and call the set $U C_{k}$ (it is empty if p is not in the closure of F_{k}), which is semialgebraic with

$$
\begin{equation*}
\operatorname{dim}\left(U C_{k}\right)+1=\operatorname{dim}\left(F_{k}\right) \tag{4.7}
\end{equation*}
$$

(because $U C_{k}$ consists of unit tangent cone vectors) if $U C_{k}$ is not empty.

Sublemma 27.

$$
\mathcal{U} C_{p}^{\circ}=\cup_{k} U C_{k} .
$$

Proof. $\mathcal{U C}_{p}^{\circ}$ is a closed set since those e for which the dimension of the critical submanifold of ℓ_{e} is locally constant constitute an open set. Thus for a sequence q_{j} of F_{k} converging to the unit tangent cone vector e at p, let $q_{j} \in O_{e_{j}}$ for some $e_{j} \in \mathcal{U} C_{p}^{\circ}$. Then a converging subsequence of e_{j} must converge to $e \in \mathcal{U} C_{p}^{\circ}$. So, $\cup_{k} U C_{k} \subset \mathcal{U} C_{p}^{\circ}$.

Conversely, each \mathcal{O}_{e} contains a sequence q_{j} of points in \mathcal{F}_{Z} converging to e at p. Now choose a small compact semialgebraic disk \mathcal{B} around the focal point p of $Z . \mathcal{B}$ intersects only finitely many compact $X_{1} \subset X_{2} \subset$ \cdots, and so finitely many F_{1}, \cdots, F_{b}. Thus, there is a subsequence of q_{j} falling in one of these F_{1}, \cdots, F_{b}, say, F_{1}; it follows that e is a unit tangent cone vector of F_{1} at p. That is, $\cup_{k} U_{k} \supset \mathcal{U} C_{p}^{\circ}$.

Define the semialgebraic set

$$
Q_{k}:=\left(\left.\Pi^{1}\right|_{\mathcal{J}}\right)^{-1}\left(U C_{k}\right) \subset \mathcal{I} ;
$$

clearly, we have

$$
\operatorname{dim}\left(Q_{k}\right) \leq \operatorname{dim}(\mathcal{I}) \leq \operatorname{dim}(M)-2
$$

Lastly, let

$$
P_{k}:=\left(\left.\Pi^{1}\right|_{\mathcal{K}}\right)^{-1}\left(F_{k}\right) .
$$

Sublemma 28. Assume $U C_{k}$ is not empty. P_{k} is then of Hausdorff ($\operatorname{dim}(M)-1)$-measure zero provided $\operatorname{dim}\left(Q_{k}\right) \leq \operatorname{dim}(M)-3$.

Proof. Since each F_{k} is an open cube with p on its boundary, we can set up a Nash diffeomorphism ι_{k} between a cone extended out of $U C_{k}$, denoted by $\mathbb{R}^{+} U C_{k}$, and F_{k},

$$
\iota_{k}: \mathcal{R}^{+} U C_{k} \rightarrow F_{k},
$$

such that $\iota_{k}(t e), e \in U C_{k}, 0<t<\alpha_{e}$ for some α_{e}, all lie in \mathcal{O}_{e}. (Again, this is most clearly seen when viewed in \mathbb{R}^{n} in place of S^{n}, where $\iota_{k}(t e)$ is the axis of the cone \mathcal{O}_{e}.) Note that, in particular, the fiber over $\iota_{k}(t e), 0<t<\alpha_{e}$, is of dimension \leq the dimension of the fiber over e by Proposition 15. Thus, by an analysis analogous to the one in Category 1, we obtain, by (4.7),

$$
\text { Hausdorff } \operatorname{dim}\left(P_{k}\right) \leq \operatorname{dim}\left(Q_{k}\right)+1 \leq \operatorname{dim}(M)-2 .
$$

The countable union of all P_{k}, where $\operatorname{dim}\left(Q_{k}\right) \leq \operatorname{dim}(M)-3$, is thus also of Hausdorff $(\operatorname{dim}(M)-1)$-measure zero.

We let

$$
\mathcal{N}_{1}:=\cup_{k} \Pi^{2}\left(P_{k}\right), \quad \operatorname{dim}\left(Q_{k}\right) \leq \operatorname{dim}(M)-3 .
$$

\mathcal{N}_{1} is of Hausdorff $(\operatorname{dim}(M)-1)$-measure zero so that \mathcal{N}_{1} does not disconnect M [14, p. 269], and so does not contribute to the local finiteness property.

Thus what is left now are P_{k} with

$$
\operatorname{dim}\left(Q_{k}\right)=\operatorname{dim}(M)-2
$$

(assuming $U C_{k}$ is not empty). Note that in the fibration of P_{k} over F_{k} we may ignore the fibers over those $\iota_{k}(t e)$ of fiber dimension less than the fiber dimension d_{e} over e in the fibration of Q_{k} over $U C_{k}$. In fact, let C be the fiber over $\iota_{k}(t e)$ of dimension $d<d_{e}$. Then the Hessian matrix on the left hand side of (3.5) is of kernel dimension d on C, so that around $\iota_{k}(t e)$ in F_{k} there is a neighborhood N over which the Hessian matrix is of kernel dimension $\leq d$ around C, such that the neighboring critical submanifolds around C in the fibration of P_{k} are contained in a smooth family P_{k}^{*} parametrized by $q \in N$, each of whose fibers is of dimension $=d<d_{e}$. Therefore, P_{k}^{*} is a manifold of dimension $\leq \operatorname{dim}(M)-2$ and so P_{k}^{*} and its topological closure $\overline{P_{k}^{*}}$ are of Hausdorff $(\operatorname{dim}(M)-1)$-measure zero. We let

$$
\mathcal{N}_{2}:=\text { the union of such } \Pi^{2}\left(\overline{P_{k}^{*}}\right) .
$$

We denote by P_{k}° the remaining part of P_{k} away from the preceding two classes of sets we excised. P_{k}° is then a smooth manifold of dimension $\operatorname{dim}(M)-1$. By Federer's version of Sard's theorem [6, p. 316], the critical value set $\mathcal{C}_{k} \subset M$ of

$$
\Pi^{2}: P_{k}^{\circ} \rightarrow M
$$

is of $\operatorname{rank} \leq \operatorname{dim}(M)-1$ and so is of Hausdorff $(\operatorname{dim}(M)-1)$-measure zero. This implies that C_{k} and hence the union of all C_{k} do not disconnect M. We let

$$
\mathcal{N}_{3}=\cup_{k} \mathcal{C}_{k} .
$$

Now let \mathcal{N} be the topological closure of the union of $\mathcal{N}_{1}, \mathcal{N}_{2}, \mathcal{N}_{3} ; \mathcal{N}$ is of Hausdorff $(\operatorname{dim}(M)-1)$-measure zero. In particular, \mathcal{N} is closed and does not disconnect M and so is nowhere dense in M. Hence,

$$
\begin{equation*}
\Pi^{2}: P_{k} \backslash\left(\Pi^{2}\right)^{-1}(\mathcal{N}) \rightarrow S^{n} \backslash \mathcal{N} \tag{4.8}
\end{equation*}
$$

is a locally diffeomorphic finite map from a manifold of dimension $\operatorname{dim}(M)-1$ into M, whose image thus consists of at most $\beta(M)$ immersed manifolds of dimension $\operatorname{dim}(M)-1$ in M.

Lastly, we need to take care of those F_{k} for which $U C_{k}$ are empty, i.e., whose closures do not contain p. Choose a small compact semialgebraic disk \mathcal{B} around the focal point p. \mathcal{B} intersects only finitely many $X_{1} \subset$ $X_{2} \subset \cdots$, and hence finitely many F_{1}, \cdots, F_{b}, from which we remove those whose closures do not contain p and call the remaining ones $F_{i_{1}}, \cdots, F_{i_{a}}$. We then go through the same arguments as above for each of $F_{i_{1}}, \cdots, F_{i_{a}}$ to conclude that $\Pi^{2}\left(P_{i_{1}}\right), \cdots, \Pi^{2}\left(P_{i_{a}}\right)$ are immersed submanifolds of codimension 1 in the neighborhood \mathcal{B} around p, away from a closed set that does not disconnect M.

In summary, barring a closed set of Hausdorff $(\operatorname{dim}(M)-1)$-dimensional measure zero in W that does not disconnect M, the union of the curvature surfaces in \mathcal{G}^{c} in Category 2 is locally an immersed manifold of dimension $\leq \operatorname{dim}(M)-1$, and hence locally disconnects \mathcal{G} in at most finitely many connected components.

We have established the local finiteness property in the hypersurface case.

We now handle the case when M is a taut submanifold. It is more convenient to work in \mathbb{R}^{n}. Let M_{ϵ} be a tube over M of sufficiently small radius that M_{ϵ} is an embedded hypersurface in \mathbb{R}^{n}. Then M_{ϵ} is a taut hypersurface [12], so that by the above M_{ϵ} is algebraic. Consider the focal map $F_{\epsilon}: M_{\epsilon} \rightarrow M \subset \mathbb{R}^{n}$ given by

$$
\begin{equation*}
F_{\epsilon}(x)=x-\epsilon \xi, \tag{4.9}
\end{equation*}
$$

where ξ is the outward field of unit normals to the tube M_{ϵ}. Any point of M_{ϵ} has an open neighborhood U parametrized by an analytic algebraic map. The first derivatives of this parametrization are also analytic algebraic [2, p. 54], and thus the Gram-Schmidt process, applied to these first derivatives and some constant non-tangential vector, produces the vector field ξ and shows that ξ is analytic algebraic on U. Hence F_{ϵ} is analytic algebraic on U and so the image $F_{\epsilon}(U) \subset M$ is a semialgebraic subset of \mathbb{R}^{n}. Covering M_{ϵ} by finitely many sets of the kind of U, we see that M, being the union of their images under F_{ϵ}, is a semialgebraic subset of \mathbb{R}^{n}. Then the Zariski closure $\bar{M}^{\text {zar }}$ of M is an irreducible algebraic variety of the same dimension as M and contains M (see [4] for more details).

The induction is thus completed.

References

[1] B. Bhata, Matrix Analysis, Graduate Texts in Mathematics, Vol. 196, Springer, New York, 1996.
[2] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, vol. 36, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1998.
[3] R. Bott, Nondegenerate critical manifolds, Ann. Math. 60(1954), 248-261.
[4] T. Cecil, Q.-S. Chi and G. Jensen, On Kuiper's question whether taut submanifolds are algebraic, Pacific J. Math. 234(2008), 229-247.
[5] T. Cecil, Taut and Dupin submanifolds, pp. 135-180, in Tight and Taut Submanifolds, edited by T. Cecil and S.-S. Chern, Mathematical Sciences Research Institute Publications, vol. 32, 1997.
[6] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wisenschaften 153, Springer, New York, 1969.
[7] N. H. Kuiper, Tight embeddings and maps. Submanifolds of geometrical class three in E^{n}, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), 97-145, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[8] N. H. Kuiper, Geometry in total absolute curvature theory, pp. 377-392, in Perspectives in Mathematics (Oberwolfach 1984).
[9] R. Bott, Nondegenerate critical manifolds, Ann. Math. 60(1954), 248-261.
[10] T. Ozawa, On critical sets of distance functions to a taut submanifold, Math. Ann. 276(1986), 91-96.
[11] R. Miyaoka, Taut embeddings and Dupin hypersurfaces, Differential Geometry in Submanifolds, Lect. Notes in Math. 1090 (1984) 15-23.
[12] U. Pinkall, Curvature properties of taut submanifolds, Geom. Dedicata 20(1986), 79-83.
[13] H. Reckziegel, On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature, Math. Ann. 243(1979), 71-82.
[14] R. Schoen and S.T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994.
[15] C.-L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differ. Geom. 42(1995), 665-718.
[16] C.-L. Terng and G. Thorbergsson, Taut immersions into complete Riemannian manifolds, Tight and Taut Immersions, MSRI Publications 32(1997), 181-228.

Department of Mathematics, Campus Box 1146, Washington University, St. Louis, Missouri 63130
E-mail address: chi@math.wustl.edu

[^0]: 2000 Mathematics Subject Classification. Primary 53C40.
 Key words and phrases. Dupin hypersurface, taut submanifold, semialgebraic set.

 The author was partially supported by NSF Grant No. DMS-0103838.

