
A NEW LOOK AT CONDITION A

QUO-SHIN CHI

Abstract. Ozeki and Takeuchi [12, I] introduced the notion of
Condition A and Condition B to construct two classes of inhomoge-
neous isoparametric hypersurfaces with four principal curvatures
in spheres, which were later generalized by Ferus, Karcher and
Münzner to many more examples via the Clifford representations;
we will refer to these examples of Ozeki and Takeuchi and of Ferus,
Karcher and Münzner collectively as OT-FKM type throughout
the paper. Dorfmeister and Neher [4] then employed isoparamet-
ric triple systems [3], which are algebraic in nature, to prove that
Condition A alone implies the isoparametric hypersurface is of OT-
FKM type. Their proof for the case of multiplicity pairs {3, 4} and
{7, 8} rests on a fairly involved algebraic classification result [8]
about composition triples.

In light of the classification [2] that leaves only the four excep-
tional multiplicity pairs {4, 5}, {3, 4}, {7, 8} and {6, 9} unsettled,
it appears that Condition A may hold the key to the classification
when the multiplicity pairs are {3, 4} and {7, 8}. Thus Condition
A deserves to be scrutinized and understood more thoroughly from
different angles.

In this paper, we give a fairly short and rather straightforward
proof of the result of Dorfmeister and Neher, with emphasis on
the multiplicity pairs {3, 4} and {7, 8}, based on more geometric
considerations. We make it explicit and apparent that the octonion
algebra governs the underlying isoparametric structure.

1. Introduction

An isoparametric hypersurface M in the sphere Sn is one whose
principal curvatures and their multiplicities are fixed. We shall not
dwell on the history and development of the beautiful isoparamet-
ric story, and shall leave it to, e.g., [2], and the references therein.
Through Münzner’s work [11] one knows that such a hypersurface can
be characterized by a homogeneous polynomial F : Rn+1 → R of degree
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g = 1, 2, 3, 4 or 6, satisfying

|∇F |2(x) = g2|x|2g−2, (∆F )(x) = (m2 −m1)g
2|x|g−2/2

for two natural numbers m1 and m2. The interpretation of m1 and
m2 is that if we arrange the principal curvatures λ1 > · · · > λg with
multiplicities m1, · · · ,mg, respectively, then mi = mi+2 with index
mod (g); therefore, which one is m1 or m2 is only a matter of conven-
tion, by changing F to−F if necessary. F is called the Cartan-Münzner
polynomial, whose restriction f to Sn has values in the interval [−1, 1].
f−1(c),−1 < c < 1, is a one-parameter family of isoparemetric hyper-
surfaces to which M belongs. The family degenerates to two connected
submanifolds M+ := f−1(1) and M− := f−1(−1), called the focal sub-
manifolds of M , of codimension m1 + 1 and m2 + 1, respectively.

In the case when g = 4, Ozeki and Takeuchi [12, I] introduced what
they called Conditions A and B to construct two classes of inhomoge-
neous isoparametric hypersurfaces. Later on, using representations of
the symmetric Clifford algebras C ′m1+1 (following the notation of [7]),
Ferus, Karcher and Münzner [6] generalized their work to construct
many more isoparametric hypersurfaces in S2(m1+m2)+1; we will refer
to these examples of Ozeki and Takeuchi and of Ferus, Karcher and
Münzner collectively as OT-FKM type throughout the paper. The
OT-FKM hypersurfaces are of multiplicities {m1,m2}, where

(1) m2 = kδ(m1)−m1 − 1

for some integer k > 0, and δ(m1) is the dimension of an irreducible
module of the skew-symmetric Clifford algebra Cm1−1 (following the no-
tation of [7]). These multiplicities, with the exception of {m1,m2} =
{2, 2} or {4, 5}, turn out to be exactly the multiplicities of isopara-
metric hypersurfaces in spheres by the work of Stolz [13]. We will
refer to (1) as the multiplicity formula. The author and his collab-
orators recently established in [2] that if m2 ≥ 2m1 − 1, then the
isoparametric hypersurface is of OT-FKM type with m1 and m2 given
in (1). This leaves open only the cases in which the multiplicities
{m1,m2} = {4, 5}, {3, 4}, {7, 8} or {6, 9} by the multiplicity formula;
we refer to them as the exceptional multiplicity pairs.

One peculiar feature of the exceptional multiplicity pairs is that they
are the only pairs for which incongruent examples of OT-FKM type
admit m1 > m2 in (1). A deeper reason for this phenomenon manifests
in [2], where it is shown that the condition m2 ≥ 2m1 − 1 warrants
that an ideal generated by certain (complexified) components of the
2nd fundamental form is reduced, i.e., has no nilpotent elements, at
any point of M+. The reducedness property no longer holds, as seen
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by the examples of OT-FKM type, when it comes to the exceptional
multiplicity pairs.

The aforementioned examples of Ozeki and Takeuchi are of multiplic-
ities (m1,m2) = (3, 4k), (7, 8k) of OT-FKM type. For the construction,
Ozeki and Takeuchi first imposed Condition A on the isoparametric hy-
persurface. That is, they stipulated that at some point x of M+, the
shape operators Sn of M+ in all normal directions n have the same
kernel. Then they imposed Condition B, which says that at the same
point x the components of the (cubic) 3rd fundamental form are lin-
early spanned by the components of the (quadratic) 2nd fundamental
form, with coefficients being linear functions of the coordinates of the
tangent space to M+ at x.

Through the work of Ferus, Karcher and Münzner [6], one knows
that Condition B always holds for the OT-FKM type. Moreover, for
the OT-FKM type, Condition A is true at some points on the focal
submanifold of the smaller codimension in the case of the exceptional
multiplicity pair {3, 4} or {7, 8}.

Dorfmeister and Neher then showed [4] that in fact Condition A
alone implies that the isoparametric hypersurface is of OT-FKM type.
It seems therefore that Condition A holds the key to the unsettled
cases when the multiplicity pairs are {3, 4} and {7, 8}. Condition A
thus deserves to be scrutinized and understood more thoroughly from
different angles.

Dorfmeister and Neher’s approach was via the isoparametric triple
systems [3], which are algebraic in nature. The proof also relies on
the fairly involved algebraic classification result [8] about composition
triples.

In this paper, we give a fairly short and rather straightforward proof
of the result of Dorfmeister and Neher, with emphasis on the multi-
plicity pairs {3, 4} and {7, 8}, based on more geometric considerations.
We make it explicit and apparent that the governing force of isopara-
metricity is the octonion algebra.

In Section 2, we review the octonion algebra whose left and right mul-
tiplications by the standard purely imaginary basis elements e1, · · · , e7,
with e0 understood to be the multiplicative identity, give rise to the two
inequivalent Clifford representations Ja and J ′a, 1 ≤ a ≤ 7, of C7 on R8.
We also review normalized orthogonal multiplications on Rn+1, which
are those bilinear binary operations x ◦ y such that |x ◦ y| = |x||y| and
e0 ◦ y = y for all x, y ∈ Rn+1, where (e0, · · · , en) is the standard basis.
In O we characterize all the normalized orthogonal multiplications as
either x◦ y = (x(yα))α or x◦ y = α((αy)x), where α is a unit vector in
O with the octonion multiplication employed on the right hand side. In
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particular, restricting to H, the associativity of the quaternions implies
x ◦ y = xy, or = yx for all x, y ∈ H. At this point, we introduce the
angle θ by setting α = cos(θ)e0 + sin(θ)e for some purely imaginary
unit e.

In Section 3 we recall the expansion formula and Condition A of
Ozeki and Takeuchi, and show that at a point x ∈ M+ of Condi-
tion A, the 2nd fundamental form components can be assumed to
be pa(U,U) = 2 < eaA,B >, 1 ≤ a ≤ 7, associated with the stan-
dard octonion multiplication, up to an appropriate choice of bases
of the eigenspaces of the shape operator S of M+ at x. Here, U =
A⊕B ⊕C and A,B,C are, respectively, eigenvectors of S with eigen-
values 1,−1, 0.

Section 4 introduces two points, x# ∈ M+ and x∗ ∈ M−, related to
x ∈ M+ of Condition A, referred to as the mirror points of x. Here,
x# is also of Condition A, whose 2nd fundamental form components
are given by p#a (V, V ) = 2 < ea ◦ A,B >, 1 ≤ a ≤ 7, for a tangent
vector V at x# with the same eigenvector components A and B as
above, where ◦ is some normalized orthogonal multiplication on the
octonion algebra. Furthermore, the 2nd fundamental matrices at x∗

are appropriate combination of those at x and x#, so that the 2nd
fundamental form p∗ at x∗ can be succinctly expressed in terms of ◦
and the octonion multiplication to read p∗(W,W ) = −

√
2(XZ + Y ◦

Z), where W = X ⊕ Y ⊕ Z is the eigenvector decomposition of the
shape operator of a tengent vector W at x∗ with eigenvalues 1,−1, 0,
respectively.

In Section 5 we first present the octonion setup of the isoparamet-
ric hypersurfaces constructed by Ferus, Karcher and Münzner. Our
expression is slightly more general than that given in [5] to account
for all possible normalized orthogonal mutiplications ◦ at x# as indi-
cated above. We show that, for the hypersurfaces constructed by Ferus,
Karcher and Münzner, we can in fact perturb the original mirror point
x∗ with arbitrary θ to one at which θ = 0 or π, i.e., at which either
a ◦ b = ab or a ◦ b = ba for all a, b ∈ O, so that up to isometry there are
only two such hypersurfaces. We calculate the 3rd fundamental form at
x∗ to be q∗(W,W,W ) = X(Y ◦Z)−Y ◦(XZ) with W = X⊕Y ⊕Z the
same eigenvector decomposition at x∗ as before. We then introduce the
octonion setup of the isoparametric hypersurface constructed by Ozeki
and Takeuchi. This is a hypersurface of both Conditions A and B at
the point x of Condition A, where the 3rd fundamental form is not
linear in all variables, whereas converting to x∗ the 3rd fundamental
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form q∗ turns out to be q∗(W,W,W ) = (XY − Y X)Z (the orthogo-
nal multiplication ◦ at x# coincides with the octonion multiplication
in this case). The fact that q∗ is linear in the eigenvector components
X, Y, Z in both Ozeki-Takeuchi and Ferus-Karcher-Münzner examples
points to that it will be simpler to look at the 3rd fundamental form
at x∗.

Section 6 paves the way for the classification of the 3rd fundamental
form at x∗, and hence of the isoparametric hypersurface of Condition
A, by verifying first that at x∗ the 3rd fundamental form q∗(W,W,W ),
for a tangent vector W = X⊕Y ⊕Z with eigenvector decomposition as
before, is indeed only linear in X, Y and Z; therefore, we may denote
q∗ by q∗(X, Y, Z) instead to treat it as a multilinear form. We observe,
by the eighth identity of the ten equations of Ozeki and Takeuchi [12,
I, pp 529-530] defining an isoparametric hypersurface, that at least
|q∗(X, Y, Z)| = |X(Y ◦Z)−Y ◦(XZ)|. We then prove several identities
of q∗(X, Y, Z) about what happens when one interchanges the variables
X, Y, Z, based on the fifth of the ten equations of Ozeki and Takeuchi.
These properties together enable us to classify, up to an ambiguity
of sign, of the important special case q∗(X, Y, e0) that the remaining
classification hinges on.

In Section 7, we prove that, if θ 6= 0 and π, then the aforementioned
ambiguity of sign can be removed and the isoparametric hypersurface
must be of the type constructed by Ferus, Karcher and Münzner, so
that the classification is reduced to the case when θ = 0 or π, where
the ambiguity of sign persists to an advantage. The classification is
first done for the quaternionic case. The octonion case then follows
naturally from that the octonion algebra is two (twisted) copies of the
quaternion algebra. The sign choices then differentiate the example
constructed by Ozeki and Takeuchi from the two by Ferus, Karcher
and Münzner.

Lastly, we remark that in [9], [10], Miyaoka proves exactly that Con-
dition A holds for either focal submanifold, when the number of prin-
cipal curvatures is six, to show that such isoparametric hypersurfaces
are homogeneous.

2. The octonion algebra and Clifford representations

Let H be the quaternion algebra with the standard basis 1, i, j, k.
The octonion algebra O is H⊕H with the multiplication

(a, b)(c, d) = (ac− db, da+ bc),

where overline denotes quaternionic conjugation. For x = (a, b) ∈ O,
the conjugate of x is x := (a,−b), and the real and imaginary parts of
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x are (x± x)/2, respectively. The inner product

(2) < x, y >:= (xy + yx)/2

satisfies

< x, y > =< x, y >,

< xy, z > =< y, xz >=< x, zy >,

x(yz) + y(xz) = (zx)y + (zy)x = 2 < x, y > z.

(3)

In particular, first of all, the above formulae are the rules to follow when
we interchange two objects in the octonion multiplication. Secondly,
when x and y are perpendicular and purely imaginary in O, they satisfy

xy = −yx, x(yz) = −y(xz), (zx)y = −(zy)x(4)

for all z ∈ O. As a consequence of (4), if we let ε := (0, 1) ∈ O, the
standard orthonormal basis

(5) (e0, e1, · · · , e7) := (1, i, j, k, ε, iε, jε, kε)

gives rise to orthogonal matrices J1, · · · , J7 over O, where Ji(z) =
eiz, 1 ≤ i ≤ 7, such that

JiJk + JkJi = −2δikId.

Similarly, the orthogonal matrices J ′1, · · · , J ′7, where J ′i(z) = zei, satis-
fies

J ′iJ
′
k + J ′kJ

′
i = −2δikId.

Recall [7] that the Clifford algebra Cn (respectively, C ′n) is the algebra
over R generated by E1, · · · , En subject to only the conditions that
(Ei)

2 = −1 (respectively, (Ei)
2 = 1) and EiEj = −EjEi for i 6= j.

The structure of Cn (respectively, C ′n, to be displayed later) is well
known [7],

n 1 2 3 4 5 6 7 8
Cn C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

subject to the periodicity condition Cn+8 = Cn ⊗ R(16), of which the
most important ones for our purposes are C2 = H, C3 = H ⊕ H, C6 =
R(8), the matrix ring of size 8-by-8 over R, and C7 = R(8) ⊕ R(8).
The generators E1, · · · , En projected to each irreducible summand of
Cn, n = 2, 3, 6, 7, give rise to n matrices T1, · · · , Tn in R(4) for C2 and
C3, and in R(8) for C6 and C7, satisfying (Ti)

2 = −Id and TiTj = −TjTi
for i 6= j. These Ti make R4 and R8 into irreducible Cn-modules. For
n = 2, 6, there is only one such irreducible module as the number of
irreducible summands of Cn is one, whereas for n = 3, 7, there are
two inequivalent such irreducible modules as the number of irreducible
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summands of Cn is two. T1, · · · , Tn are called representations of Cn on
the appropriate Euclidean spaces.

The upshot is that the octonion (respectively, quaternionic) left and
right multiplications generated above, i.e., J1, · · · , J7 vs. J ′1, · · · , J ′7
(respectively, J1, J2, J3 vs. J ′1, J

′
2, J

′
3) are precisely the inequivalent

representations of C7 on R8 (respectively, C3 on R4). These two rep-
resentations are inequivalent as J1 · · · J7 = −Id whereas J ′1 · · · J ′7 = Id
(respectively, J1J2J3 = −Id whereas J ′1J

′
2J
′
3 = Id).

Now the subalgebra of C7 linearly spanned by the even products of
the Clifford generators is isomorphic to C6 ' R(8) having a single irre-
ducible summand. We see J1J7, J2J7, · · · , J6J7 and J ′1J

′
7, J

′
2J
′
7, · · · , J ′6J ′7

are equivalent representations of C6. That is, there is an orthogonal
matrix U over R8 such that U−1JiJ7U = J ′iJ

′
7 for 1 ≤ i ≤ 6. A similar

discussion also holds true for H by forgetting e4, · · · , e7, since C2 = H.
As an application, we prove the following to be employed later.

Lemma 1. Let m = 3, 7. Let Aa, 1 ≤ a ≤ m, be (m + 1)-by-(m + 1)
matrices satisfying

(6) AaA
tr
b + AbA

tr
a = 2δabId.

Then there are two orthogonal matrices P,Q ∈ O(m + 1) for which
Ea := P−1AaQ satisfy Em = Id, and for 1 ≤ a, b ≤ m− 1,

EaEb + EbEa = −2δabId.

Proof. Clearly we can find two orthogonal matrices P and Q such that
P−1AmQ = Id. (Take, e.g., P = Id and Q = (Am)−1.) Set a = m.
Then (6) reduces to

EbE
tr
b = Id,

Eb + Etr
b = 0,

for 1 ≤ b ≤ m − 1. This says exactly that Eb, 1 ≤ b ≤ m − 1, are
orthogonal matrices satisfying (Eb)

2 = −Id and EbEc = −EcEb for
1 ≤ b 6= c ≤ m− 1. �

Corollary 1. Conditions and notations as in Lemma 1, then we may
pick orthogonal P and Q so that Aa = PJaQ

−1, 1 ≤ a ≤ m.

Proof. As mentioned earlier Cm−1 is generated by J1Jm, · · · , Jm−1Jm.
Since C2 = H and C6 = R(8), we know all the Clifford representations
are equivalent. Thus, there is an O ∈ O(m + 1) such that Ea =
OJaJmO

−1 for 1 ≤ a ≤ m − 1. Changing the P and Q in the above
lemma to PO and QO, we may assume now that Ea = JaJm, 1 ≤ a ≤
m − 1. But then changing the (new) P to PJ−1m , we see that we may
assume Eb = Jb for 1 ≤ b ≤ m. �
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Recall [7] that a binary operation ◦ defined on Rm+1 is called an
orthogonal multiplication if |x ◦ y| = |x||y| for all x, y ∈ Rm+1. Let
e0, e1, · · · , em be the standard basis of Rm+1. We say ◦ is normalized
if e0 ◦ x = x for all x ∈ Rm+1; we call (Rm+1, ◦) a normed algebra.
It is well known that if ◦ is normalized, then the orthogonal maps
Ui(x) = ei ◦ x, 1 ≤ i ≤ m, satisfy UiUj + UjUi = −2δijId for all
1 ≤ i, j ≤ m. In particular, Rm+1 is a Cm-module, which is the case
only when m = 1, 3, 7. Conversely, if we have such Ui, 1 ≤ i ≤ m, we
let U0 = Id, then ei ◦ ej := Ui(ej), 0 ≤ i, j ≤ m, extended by linearity,
gives a normalized orthogonal multiplication with e0 ◦ x = x for all x.
We identify Rm+1 with C,H or O, respectively, for m = 1, 3, 7.

Lemma 2. Notation as above, for all z, then there is an orthogonal
transformation T such that

ea ◦ T (z) = T (eaz) or

= T (zea)
(7)

for 1 ≤ a ≤ m and for all z in the normed algebra; moreover, there is
a unit vector α such that T (z) = zα in the former case, or T (z) = αz
in the latter. It follows that

x ◦ y = (x(yα))α

in the former case, or

x ◦ y = α((αy)x)

in the latter. In particular, (2) and (3) remain true for ◦.

Proof. Let Ua(x) := ea ◦ x. There is an orthogonal matrix T such that
either Ua = TJaT

−1, or Ua = TJ ′aT
−1, 1 ≤ a ≤ m. The first statement

follows.
To prove the second statement, we may assume ea ◦ T (z) = T (eaz)

without loss of generality. Then by the first statement just established,
we obtain

< T (u) ◦ T (v), w >=< T (u), w ◦ T (v) >=< u,wv >=< uv,w >,

so that

T (u) ◦ T (v) = uv.

In particular, setting α := T (e0) we derive

T (u) = u ◦ α.

But then the identity < uv,w >=< u ◦ T (v), T (w) > implies

< uv,w >=< u ◦ (v ◦ α), w ◦ α >,
8



so that when we set v = α we deduce

< u,wα >=< u,w ◦ α >=< u, T (w) >

for all u,w. That is, T (w) = wα.
In particular, in the former case without loss of generality, we obtain

x ◦ y = x ◦ T (T−1(y)) = T (xT−1(y)) = (x(yα))α.

�

Remark 1. It follows by the associativity of H that x◦y = xy or = yx
for all x, y ∈ H.

Now decompose α as

α = cos(θ)e0 + sin(θ)e

for some θ and some purely imaginary unit e.

Lemma 3. We assume x ◦ y = (x(yα))α. When orthonormal a, b ∈
Im(O) are such that (ab)e = ±e0, then a ◦ b = ab. On the other hand,
when a, b and ab are all perpendicular to e, we have

a ◦ b = cos(2θ)ab+ sin(2θ)(ab)e

Proof. Let us first recall equation (4) above to be employed in the
following calculations. We assume ab = e without loss of generality.
Then be = a, so that

a ◦ b = (a(bα))α

= (a(cos(θ)b+ sin(θ)a))α

= (cos(θ)e+ sin(θ)e0)(cos(θ)e0 + sin(θ)e)

= e = ab.

When a, b, and ab are all perpendicular to e, we observe that

a ◦ b = (a(bα))α

= (cos(θ)ab− sin(θ)a(be))α

= (cos(θ)ab− sin(θ)a(be))(cos(θ)e0 + sin(θ)e)

= (cos2(θ)− sin2(θ))ab+ 2 sin(θ) cos(θ)(ab)e,

where we invoke (4) to write a(be) = −(ab)e and (a(be))e = ab. �

In passing, let us briefly remark that the table for C ′n,

n 1 2 3 4 5 6 7 8
C ′n R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
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subject to the periodicity condition C ′n+8 = C ′n⊗R(16), gives that the
dimension of an irreducible module of the Clifford algebra C ′m+1,m ≥ 1,
is 2δ(m), where δ(m) is the dimension of an irreducible module of
Cm−1. We have δ(m + 8) = 16δ(m) and δ(m) = 1, 2, 4, 4, 8, 8, 8, 8 for
m = 1, · · · , 8, respectively.

3. The expansion formula of Ozeki and Takeuchi

Let M be an isoparametric hypersurface with four principal curva-
tures in the sphere. To fix our notation, we let V+, V− and V0 be the
eigenspaces of the shape operator of M+ in the normal direction n0

associated with the eigenvalues 1,−1 and 0, of dimension m2,m2,m1,
respectively. Let us agree that objects of these eigenspaces are indexed
by α, µ and p, respectively, so that, typical vectors (coordinates) of
V+, V− and V0 are denoted by eα, eµ, ep (xα, yµ, zp), respectively, etc.

With this understood, the 2nd fundamental matrices Sa of M+ in
the normal direction na, 0 ≤ a ≤ m1, upon fixing orthonormal bases
eα, eµ, ep, are

(8) S0 =

Id 0 0
0 −Id 0
0 0 0

 , Sa =

 0 Aa Ba

Atra 0 Ca
Btr
a Ctr

a 0

 , 1 ≤ a ≤ m1,

where Aa : V− → V+, Ba : V0 → V+ and Ca : V0 → V−.
Ozeki and Takeuchi [12, I, pp 523-530] obtained the expansion for-

mula for the Cartan-Münzner polynomial F of M as follows.

F (tx+ y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(

m1∑
a=0

pawa)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2

m1∑
a=0

(pa)
2 + 8

m1∑
a=0

qawa

+ 2

m1∑
a,b=0

< ∇pa,∇pb > wawb.

(9)

Here, x is a point on M+, y is tangent to M+ at x, and w is normal to
M+ with coordinates wi with respect to the chosen orthonormal normal
basis n0,n1, · · · ,nm1 at x. Moreover, pa(y) (respectively, qa(y)) is the
ath component of the 2nd (respectively, 3rd) fundamental form of M+

at x. Furthermore, pa and qa are subject to ten equations [12, I, pp 529-
530], of which the first three assert that, since Sn, the 2nd fundamental
matrix of M+ in any unit normal direction n, has eigenvalues 1,−1, 0
with fixed multiplicities, it must be that (Sn)3 = Sn. From this we can
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derive [12, II, p 45]

AaA
tr
b + AbA

tr
a + 2(BaB

tr
b +BbB

tr
a ) = 2δabId,

Atra Ab + Atrb Aa + 2(CaC
tr
b + CbC

tr
a ) = 2δabId,

Btr
a Bb +Btr

b Ba = Ctr
a Cb + Ctr

b Ca,

(10)

for a 6= b.
A point x ∈ M+ is said to be of Condition A [12, I] if the kernel of

Sn is V0 for all n, which amounts to the same as saying the matrices
Ba = Ca = 0 for all 1 ≤ a ≤ m1 in (8), so that (10) now reads

AaA
tr
a = Id, AaA

tr
b + AbA

tr
a = 0, Atra Ab + Atrb Aa = 0,(11)

for 1 ≤ a 6= b ≤ m1. It follows that the symmetric 2nd fundamental
matrices Sa, 0 ≤ a ≤ m1, satisfy

(Sa)
2 = Id, SaSb = −SbSa, ∀a 6= b(12)

when they are restricted to V+ ⊕ V−. In other words, (12) asserts that
V+ ⊕ V− ' R2m2 is a C ′m1+1-module. Hence, by the passing remark
at the end of the preceding section, we see m2 = kδ(m1) for some k;
thus among (m1,m2) = (2, 2), (4, 5), (5, 4), only the first is possible.
(In fact, Ozeki and Takeuchi established, in their outline [12, II, p
54] of the classification of the (2, 2) case that had been indicated by
Cartan without proof [1], that Condition A holds on one of the focal
submanifolds, from which there follows the classification.) But then the
multiplicity formula m1 +m2 +1 = sδ(m1) for some s, with (m1,m2) 6=
(2, 2), (4, 5), (5, 4), implies m1 + 1 = (s− k)δ(m1), so that m1 = 1, 3 or
7. In particular, for m1 = 3 or 7 we always have m2 ≥ 2(m1 + 1) when
m2 6= m1 + 1, whereas clearly m2 ≥ 2m1 − 1 for m1 = 1; therefore, by
the result in [2] M is of the type of multiplicity (m1,m2) constructed
by Ozeki and Takeuchi [12, I] when either m1 = 1 or m2 6= m1 + 1.

Thus from now on, we assumem2 = m1+1 withm1 = 3, 7. Then (11)
and Corollary 1 give the following.

Corollary 2. At a point x ∈ M+ of Condition A we may assume, by
picking appropriate bases for V+ and V−, that Aa = Ja, 1 ≤ a ≤ m1.

Proof. The matrices P and Q are for the basis changes in V+ and
V−. �

4. Mirror points on M+ and M−

Assume Condition A at x ∈M+ when (m1,m2) = (3, 4) or (7, 8). As
above, let n0,n1, · · · ,nm1 be an orthonormal normal basis at x. We de-
compose the tangent space to M+ at x into the eigenspaces V+, V−, V0,
with coordinates xα, yµ, zp as aforementioned, of the shape operator

11



Sn0 . Traversing along the great circle spanned by x and n0 by length
π/2, we end up again on M+ at n0 with x as a normal vector. Accord-

ingly, set x# := n0 ∈ M+ and n#
0 := x normal to M+ at x#. Then

the eigenspaces V #
+ , V

#
− , V

#
0 of Sn#

0
with eigenvalues 1,−1, 0 are [2, p

15], respectively, V+, V−,n
⊥
0 := span(n1, · · · ,nm1). Moreover, Rx⊕ V0

is the normal space to M+ at x#.

Lemma 4. x# ∈M+ is also of condition A.

Proof. Although a straightforward proof can be given by the formulae
on page 15 of [2], we choose to give one based on the expansion for-
mula (9). Since x is of Condition A, we know pa, 0 ≤ a ≤ m1, are
quadratic forms in xα and yµ only. If we denote, at x#, all the involved

quantities in (9) with an additional #, then t# = w0, w
#
0 = t, w#

1 =
z1, · · · , w#

m1
= zm1 . The 3rd term of (9) at x#, which is

8(

m1∑
a=0

p#a w
#
a )t#,

is what determines the 2nd fundamental form at x#.
One obtains p#0 = p0 by the fact that p0w0t = p0w

#
0 t

#, which is part
of the 3rd term of (9) at x, and no other terms contribute w0t of the
1st degree. Furthermore, expanding 8q0w0 in z1, · · · , zm1 , we have

8q0w0 = 8(H1z1 + · · ·+Hm1zm1)w0

= 8(H1w
#
1 + · · ·+Hm1w

#
m1

)t#,
(13)

where H1, · · · , Hm1 are quadratic forms only in xα and yµ, because q0
is homogeneous of degree 1 in all xα, yµ, zp [12, I, Lemma 15(ii), p 537].
No other terms of (9) contribute z1w0, · · · , zm1w0 of the 1st degree. It

follows that p#1 = H1, · · · , p#m1
= Hm1 . Hence, x# is of condition A as

well. �

In (8), we use an additional # to indicate the corresponding quanti-
ties in the 2nd fundamental matrices at x#.

Remark 2. Actually, Lemma 4 proves more. It shows that in fact
q0 determines A#

a , 1 ≤ a ≤ m1, whose entries are the coefficients of
Ha/2, 1 ≤ a ≤ m1.

Next, let

x∗ = (x+ n0)/
√

2, n∗0 = (x− n0)/
√

2.
12



Then x∗ ∈ M−. We decompose the tangent space to M− at x∗ into
the eigenspaces V ∗+, V

∗
−, V

∗
0 , of the shape operator Sn∗

0
with eigenval-

ues 1,−1, 0, respectively. Again, we use an additional * to denote all
involved quantities at x∗.

Lemma 5. We have

(1): At x∗, there holds V ∗+ = n⊥0 , V
∗
− = V0, V ∗0 = V−, and the

normal space to M− at x∗ is Rn∗0 ⊕ V+
(2): The second fundamental matrices at x∗ ∈ M− are given by

the m1 + 1(= m2) matrices

S∗a :=

 0 0 B∗a
0 0 C∗a

(B∗a)
tr (C∗a)tr 0

 ,

where 1 ≤ a ≤ m1 + 1,m1 = 3, 7, and B∗a (respectively, C∗a) is
the m1-by-(m1+1) matrix formed by stacking together, in order,
the ath row of each of the m1 matrices −A1/

√
2, · · · ,−Am1/

√
2

(respectively, −A#
1 /
√

2, · · · ,−A#
m1
/
√

2) at x (respectively, at x#).

Proof. Again we explore (9) with a slight modification. Namely, since (9)
is with respect to M+ while x∗ ∈M−, we must consider the expansion
of −F at x∗ in order to apply (9). From the definition of x∗ and n∗0,
we see t = (t∗ + w∗0)/

√
2 and w0 = (t∗ − w∗0)/

√
2.

The collection of (t∗)2 terms for −F will reveal the tangent and
normal space at x∗. But these terms come from the first two terms,
8p0w0t, −6|y|2(w0)

2,|w|4 and 2 < ∇p0,∇p0 > w2
0 in the expansion of

F . As a result, the 2nd term in the expansion of −F at x∗ is

(t∗)2(2(
∑
µ

y2µ +
∑
p

z2p +
∑
a≥1

w2
a)− 6((w∗0)

2 +
∑
α

x2α)),

where as before xα, yµ, zp, wa parametrize V+, V−, V0 and the normal
space to M+ at x. On the other hand, the collection of w∗0t

∗, which
comes from the same terms, gives p∗0 so that we end up with

p∗0 =
∑
a≥1

w2
a −

∑
p

z2p .

Hence, the first statement follows.
We denote the Euclidean coordinates of V ∗+, V

∗
−, V

∗
0 and the normal

space Rn∗0 ⊕ V+ at x∗ by x∗α, y
∗
µ, z
∗
p and w∗a, respectively. Then the first

statement says x∗α = wα, y
∗
µ = zµ, 1 ≤ α, µ ≤ m1, and z∗p = yp, w

∗
a =

xa, 1 ≤ a, p ≤ m1 + 1.
The collection of the terms w∗1t

∗ = x1t
∗, · · · , w∗m2

t∗ = xm2t
∗, with

coefficients being quadratic forms in yµ, zp, wa, a ≥ 1, gives rise to
13



the 2nd fundamental form of M− at x∗. But these terms come only
from 8(

∑
a≥1 pawa)t

∗/
√

2 obtained by the third term of (9), and from

8q0t
∗/
√

2 obtained by the eighth term in (9). Combining them yields,
by (13),

8
∑
α

(
∑
a,µ

2Aαµayµwa)xα/
√

2 + 8
∑
α

(
∑
a,µ

2A#
αµayµza)xα/

√
2,

where Aa =
(
Aαµa

)
, A#

a =
(
A#
αµa

)
. This is the 2nd statement, where

the negative sign accounts for considering −F at x∗. �

Recall by Corollary 2 we may assume Aa = Ja, 1 ≤ a ≤ m1, at a point
x of Condition A. We now understand the structure of A#

a , 1 ≤ a ≤ m1.

Lemma 6. Let e0, e1, · · · , em1 be the standard basis of Rm2 ' H or O.
Then < A#

a (e0), e0 >= 0 for all 1 ≤ a ≤ m1. In particular, we may
assume A#

a (e0) = ea for all 1 ≤ a ≤ m1; as a result, (A#
a )tr(e0) = −ea.

It follows that we may further assume that A#
a are skew-symmetric,

i.e., that A#
a , 1 ≤ a ≤ m1, form a Clifford system.

Proof. Since Aa = Ja, 1 ≤ a ≤ m1, the second item in Lemma 5 says
that the ath column of B∗a is zero, 1 ≤ a ≤ m1. Now, the third equation
of (10) applied to the point x∗ ∈M− says

(14) (B∗a)
trB∗b + (B∗b )

trB∗a = (C∗a)trC∗b + (C∗b )trC∗a ,

which implies that the ath column of C∗a is also zero, 1 ≤ a ≤ m1, when
we set a = b in the equation. Equivalently, this means the diagonal of
A#
a , 1 ≤ a ≤ m1, is zero. So,

(15) < A#
a (eb), eb >= 0, 1 ≤ a ≤ m1, 0 ≤ b ≤ m1.

Since va := A#
a (e0), 1 ≤ a ≤ m1, are perpendicular to each other by the

third equation of (11) and Lemma 4, we deduce therefore that va, 1 ≤
a ≤ m1, span e⊥0 . Thus, there is an orthogonal matrix

(
θab
)

of size m1-

by-m1 such that
∑

b θabvb = ea. The matrices
∑

b θabA
#
b , 1 ≤ a ≤ m1,

which are the A-blocks of the 2nd fundamental matrices corresponding
to the new normal basis n′0 := n#

0 ,n
′
a :=

∑
b θabn

#
b , 1 ≤ a ≤ m1, at

x# ∈ M+, will serve as the new A#
a mapping e0 to ea. Thus without

loss of generality we may now assume A#
a (e0) = ea, 1 ≤ a ≤ m1.

In coordinates, (14) assumes the form

(16)

m1∑
a=1

(AαµaAβνa + AβµaAανa) =

m1∑
b=1

(A#
αµbA

#
βνb + A#

αµbA
#
βνb).

Hence, if we pick α = µ = 0 and β = ν = a, 1 ≤ a ≤ m1, we see by the
fact that Aa = Ja, 1 ≤ a ≤ m1, that the product of the (a, 0)-entry and
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the (0, a)-entry of A#
a is −1, so that the latter is −1 since the former

is 1. This forces all other entries of the first row of A#
a to be zero

as A#
a is orthogonal. In conclusion, (A#

a )tr(e0) = −ea. That is, A#
a is

skew-symmetric in the first row and column, 1 ≤ a ≤ m1.
Since A#

a , 1 ≤ a ≤ m1, leave < e0, ea >
⊥ invariant and since the

group of automorphism of H and O, which are SO(3) and G2, respec-
tively, are transitive on the unit sphere of e⊥0 , we see that any purely
imaginary unit vector e can serve as e1. Therefore, < A#

a (e), e >= 0
by (15). It follows that A#

a restricted on < e0, ea >
⊥ is also skew-

symmetric. In particular, (11) says that A#
a , 1 ≤ a ≤ m1, form a

Clifford system. �

Definition 1. For notational ease, we let A#
0 = Id. We define a nor-

malized orthogonal multiplication ◦ on Rm2 by ea ◦ eb = A#
a (eb) for

0 ≤ a, b ≤ m1, and extend it by linearity.

We can now determine the 2nd fundamental form at x∗ ∈M−.

Proposition 1. For (m1,m2) = (7, 8), the 2nd fundamental form p∗

at x∗ ∈M− is given by

(17) p∗(W,W ) = −
√

2(XZ + Y ◦ Z)

for a tangent vector W = X ⊕ Y ⊕ Z at x∗, where X ∈ V ∗+ ' Im(O),
the purely imaginary part of O, Y ∈ V ∗− ' Im(O), Z ∈ V ∗0 ' O, and
p∗ lives in the normal space to M−, which is Rn∗0 ⊕ V+ ' R⊕O.

For (m1,m2) = (3, 4), one has the same formula by forgetting the
orthogonal complement of H in O.

Proof. It is an immediate consequence of the second item in the state-
ment of Lemma 5, which can be rephrased as < B∗a(ep), eα >=<
eαep, ea > and < C∗a(ep), eµ >=< eµ ◦ ep, ea >. �

Henceforth, we will mainly study the structure of isoparametric hy-
persurfaces in the case when (m1,m2) = (7, 8).

5. Octonion realization of the isoparametric
hypersurfaces of OT-FKM type

5.1. Isoparametric hypersurfaces constructed by Ferus Karcher
and Münzner. Let R32 be the direct sum of four copies of O. We iden-
tify (0, 0,−e0, 0) with x ∈M+; {(0, 0, Y, 0) : Y ∈ Im(O)} with V0 = V ∗−;
(0, e0, 0, 0) with n0 ∈M+; and {(0, X, 0, 0) : X ∈ Im(O)} with V ∗+. We
identify V− = V ∗0 with (Z, 0, 0, Z)), Z ∈ O, and identify V+, which is
the normal subspace perpendicular to n∗0 at x∗, with (W, 0, 0,−W ).
The notation here is in accordance with Lemma 5 and Proposition 1.

15



Consider the orthogonal transformations

P−1 : (A,X, Y,B) 7→ (A,−X, Y,−B)

Pa : (A,X, Y,B) 7→ (−Xea,−Aea,−B ◦ ea,−Y ◦ ea)
(18)

for 0 ≤ a ≤ 7. It is immediate that PiPj + PjPi = 2δijId,−1 ≤
i, j ≤ 7. Therefore, the symmetric Clifford system P−1, P0, · · · , P7 over
M− generates an isoparametric hypersurface M constructed by Ferus,
Karcher and Münzner [5], [6].

It is readily checked that

< Pa((Z,X, Y, Z)), (Z,X, Y, Z) >

= 2 < XZ + Y ◦ Z, ea >,
(19)

and < P−1((Z,X, Y, Z)), (Z,X, Y, Z) >= −|X|2 + |Y |2. That is, rescal-
ing Z, −Pi,−1 ≤ i ≤ 7, restricted to the tangent space to M− at x∗

give exactly the 2nd fundamental form by Proposition 1.
Recall M− is said to be of Condition B [12, I] at x∗ if

(20) q∗b =

m1∑
a=−1

rabp
∗
a,

where rab = −rba,−1 ≤ a, b ≤ m1; here, we set q∗−1 = 0 and p∗−1 =
|X|2 − |Y |2. An isoparametric hypersurface of OT-FKM type satisfies
Condition B; it is well known [6] that

(21) rab(v) =< Pa(v), nb >,

where v is tangent to the focal submanifold, which is M− in our case,
defined by the symmetric Clifford matrices Pa as the zero locus of
< Pa(x), x >= 0,−1 ≤ a ≤ 7, and na are the normal basis elements.
With na = (ea, 0, 0,−ea)/

√
2 and v = X + Y +Z, it is straightforward

to find rab =< ea, Xeb − Y ◦ eb > and so

(22) q∗(W,W,W ) = X(Y ◦ Z)− Y ◦ (XZ),

for a tangent vector W = X⊕Y ⊕Z at x∗, in the case of isoparametric
hypersurfaces constructed by Ferus, Karcher and Münzner.

5.2. Perturbing the mirror point x∗.

Proposition 2. There is a point x∗ on M− of the isoparametric hy-
persurfaces constructed by Ferus Karcher and Münzner at which either
a◦b = ab or a◦b = ba for all a, b ∈ O, up to an isometry of the ambient
Euclidean space.
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Proof. Similar to Lemma 2 we can apply an orthogonal transformation
U such that

U(z) ◦ ea = U(zea) or U(eaz)

for all a, z. With x# = (0, e0, 0, 0) and n# = (0, 0, n, 0) for n = −U(e0),
the normal space to M− at x∗n := (x# + n#)/

√
2 is spanned by

P−1(x
∗
n) = (0,−e0,−U(e0), 0)/

√
2, and

Pa(x
∗
n) = (−ea, 0, 0, U(ea))/

√
2, 0 ≤ a ≤ 7,

whereas the tangent vectors, being perpendicular to x∗n and the normal
vectors, are thus of the form (Z,X,U(Y ), U(Z)); therefore,

− < Pa((Z,X,U(Y ), U(Z)), (Z,X,U(Y ), U(Z)) >

= −2 < XZ + Y Z, ea > or − 2 < XZ + ZY, ea >,

for 0 ≤ a ≤ 7, give that the 2nd fundamental form at x∗n is −
√

2(XZ+
Y Z, or −

√
2(XZ + ZY ) after rescaling Z. �

5.3. Isoparametric hypersurfaces of the type constructed by
Ozeki and Takeuchi. Let R32 be identified as the direct sum of four
copies of O. Let x = (0, 0, e0, 0) and at x identify V+ as the first copy,
V− as the second copy and the normal space as the fourth copy of O
in R32. Lastly, identify the imaginary part of the third copy of O as V0
at x. Define

P0 : (u, v, z, w) 7→ (u,−v, w, z),

Pa : (u, v, z, w) 7→ (eav,−eau, eaw,−eaz)

for 1 ≤ a ≤ 7. A calculation similar to the above one gives that the
symmetric Clifford system P0, P1, · · · , P7 over M+ defines an isopara-
metric hypersurface M, where x ∈ M+ is of Condition A whose 2nd
fundamental form is

p0 = |u|2 − |v|2, pa = 2 < ea, uv >, 1 ≤ a ≤ 7.

In particular, the orthogonal multiplication ◦ at x# coincides with the
octonian multiplication. By [12], [6], we know x is also of Condition
B. Indeed, with the normal basis nb = (0, 0, 0, eb) and a tangent vector
x = (u, v, z, 0), where u, v ∈ O and z ∈ Im(O), we calculate by (20) to
deduce r0b =< z, eb >, 1 ≤ b ≤ 7 and rab = − < eaz, eb >, 0 ≤ a 6= b ≤
7. From this we obtain by (21)

q0 = 2 < z, uv >,

qa =< z, ea > (|u|2 − |v|2 − 2 < u, v >)− 2 < zea, uv >,

for 1 ≤ a ≤ 7 [12, I, p 556].
17



Since q0 gives A#
a , 1 ≤ a ≤ 7, by Remark 2, we see Aa = A#

a =
Ja, 1 ≤ a ≤ 7. On the other hand, Remark 4, to be given later, gives
that

q∗ =

m1∑
a=0

waq
∗
a =< 2z(uv)− 2 < u, v > z, w >

with w =
∑m1

a=0waea. The identification X = w ∈ V ∗+ ' Im(O), Y =
−z ∈ V ∗− ' Im(O), Z = −v ∈ V ∗0 , and W = u in the normal space
to x∗ ∈ M− derives that, for a tangent vector U = X ⊕ Y ⊕ Z and a
normal vector W at x∗,

< q∗(U,U, U),W >=

< 2Y (WZ)− 2 < W,Z > Y,X >=< −2(Y X)Z − 2 < X, Y > Z,W >

=< 2(XY )Z + 2 < X, Y > Z,W >=< (XY )Z − (Y X)Z,W > .

We thus arrive at

q∗(U,U, U) = (XY − Y X)Z

for a tangent vector U = X ⊕ Y ⊕ Z at x∗. The fact that the 3rd
fundamental form at x of Condition A in the example of Ozeki and
Takeuchi is not linear in all variables whereas the 3rd fundamental
form is linear at x∗, in the cases of both Ozeki-Takeuchi and Ferus-
Karcher-Münzner, in all variables points to that it will be simpler to
look at the mirror point x∗ instead.

6. The 3rd fundamental form at a mirror point on M−

Henceforth, we concentrate on x∗ ∈M−. It is understood (m1,m2) =
(7, 8). In coordinate calculations we use x∗α, y

∗
µ, z
∗
p to denote coordinates

of V ∗+, V
∗
−, V

∗
0 , respectively, so that X =

∑m1

α=1 x
∗
αeα, Y =

∑m1

µ=1 y
∗
µeµ,

and Z =
∑m1

p=0 z
∗
pep.

Lemma 7. At x∗ ∈M−, we have q∗0 = 0.

Proof. This follows from Remark 2. There, we see that q0 at x ∈ M+

determines A#
a , 1 ≤ a ≤ m1, and vice versa. Hence, if Aa = 0, 1 ≤ a ≤

m1, then (16) derives that A#
a = 0, 1 ≤ a ≤ m1, so that q0 = 0. Now

replace F by −F and x# by x∗ and observe that A∗a = 0, 1 ≤ a ≤ m1

by the second item of Lemma 5. �

Now that q∗0 = 0, there will be no confusion for us to change our
notation from now on to rename q∗1, · · · , q∗m2

, where m2 = m1 + 1, at
x∗ to be q∗0, · · · , q∗m1

, so that the 3rd fundamental form can be written
as q∗ =

∑m1

a=0 q
∗
aea in accordance with the standard octonion basis

e0, e1, · · · , em1 .
18



Lemma 8. At x∗ ∈M−, the 3rd fundamental form q∗ satisfies

(23) |q∗(U,U, U)| = |X(Y ◦ Z)− Y ◦ (XZ)|

for a tangent vector U = X ⊕ Y ⊕ Z at x∗.

Proof. Recall the identity for an isoparametric hypersurface [12, I, p
530]

(24) 16|q∗|2 = 16G(|X|2 + |Y |2 + |Z|2)− |∇G|2,

where G =
∑m1

a=−1(p
∗
a)

2, that an isoparametric hypersurface must sat-
isfy. It is understood that p∗−1 = |X|2 − |Y |2.

For the isoparametric hypersurfaces of the type constructed by Ferus
Karcher and Münzner, we know the left hand side of (24) is |X(Y ◦
Z) − Y ◦ (XZ)| by (22) . On the other hand, the right hand side
of (24) depends only on the 2nd fundamental form, which is exactly
−
√

2(XZ + Y ◦ Z) for the type constructed by Ferus, Karcher and
Münzner by (19) and in general by Proposition 1. �

Remark 3. When m1 = 1, the underlying normed algebra is C. There-
fore, Lemma 8 implies q∗ = 0.

When m1 = 2, Ozeki and Takeuchi established [12, II, p 54, Case
(B1)] that one can choose appropriate coordinates so that p∗ is iden-
tical with that of the homogeneous example. The same argument as
in Lemma 8 then implies that q∗ = 0 as it is so for the homogeneous
example [12, II, p41], so that the isoparamentric hypersurface is exactly
the homogeneous one.

Proposition 3. For 0 ≤ a ≤ m1 at x∗, we have q∗a =
∑

αµp q
αµp
a x∗αy

∗
µz
∗
p

for some coefficients qαµpa . That is, q∗ is homogeneous of degree 1 in
X, Y, Z.

Proof. We record the equation from Ozeki and Takeuchi [12, I, p 529],
with respect to −F , that

(25) < ∇p∗i ,∇q∗j > + < ∇p∗j ,∇q∗i >= 0

for all −1 ≤ i 6= j ≤ m1. Picking i = −1 and j = a, we get

(26) < ∇p∗−1,∇q∗a >= 0

since q∗−1 = 0 by Lemma 7. Note that p∗−1 =
∑

α(x∗α)2 −
∑

µ(y∗µ)2.

For the component
∑

µνp q
αβp
a x∗αx

∗
βz
∗
p of q∗a, where α, β are in the same

index range over V ∗+, the left hand side of (26) gives 4
∑

αβp q
αβp
a x∗αx

∗
βz
∗
p

(Euler’s identity for homogeneous polynomials). Similarly for the com-
ponent

∑
αpq q

αpq
a x∗αz

∗
pz
∗
q , where p, q are in the same index range over
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V ∗0 , the left hand side of (26) derives 2
∑

αpq q
αpq
a x∗αz

∗
pz
∗
q , etc. The van-

ishing of the right hand side of (26) therefore shows that all those
components, exactly two of whose coordinates are in the same index
range, are zero. The same reasoning gives zero to the components
whose coordinates are either all in the α-range, or all in the µ-range
(over V ∗−). The only component of repeated ranges not accounted for
by this procedure is thus of the form

∑
pqr q

pqr
a z∗pz

∗
qz
∗
r with p, q, r in the

same index range. However, Lemma 15 (i) of [12, I, p 537] asserts that
such components cannot exist. �

Remark 4. q∗ at x∗ ∈ M− is determined by collecting the part of q
at x ∈ M+ linear in all variables. Explicitly, since q∗ is of degree 1
in X, Y, Z, the term 8

∑m1

a=0 q
∗
aw
∗
a is of the form 8

∑
αµpa q

αµp
a x∗αy

∗
µz
∗
pw
∗
a,

which is also linear in xα, yµ, zp, wa. This is because by our convention,
xα, yµ, zp, wa parametrize, respectively, V+, V−, V0 and the normal space
to x ∈ M+; we know by the first item of Lemma 5 that x∗α = wα, y

∗
µ =

zµ, 1 ≤ α, µ ≤ m1, and z∗p = yp, w
∗
a = xa, 1 ≤ a, p ≤ m2. However, a

glance at (9) shows that the only term of F that contributes to items
linear in xα, yµ, zp, wa comes from 8

∑m1

a=1 qawa.

We denote q∗ by q∗(X, Y, Z), where X ∈ V ∗+, Y ∈ V ∗− and Z ∈
V ∗0 ; thanks to Proposition 3 we see that q∗ is a multilinear form in
X, Y, Z. We extend q∗(X, Y, Z) by requiring that q∗(e0, Y, Z) = 0 and
q∗(X, e0, Z) = 0 for all X, Y ∈ O. This is well-defined as the right hand
side of (23) is 0 if either X = e0 or Y = e0. With this extension (23)
continues to hold.

Lemma 9. For 0 ≤ a, p ≤ m1 and X, Y ∈ O, we have

< q∗(X, Y, ea), ea >= 0,

< q∗(X, Y, e0), X >=< q∗(X, Y, e0), Y >= 0,

< q∗(ea, Y, ep), ea >= − < q∗(eaep, Y, e0), ea >,

< q∗(X, ea, ep), ea >= − < q∗(X, ea ◦ ep, e0), ea > .

< q∗(ea, Y, ea), ep >= − < q∗(epea, Y, e0), ea >,

< q∗(X, ea, ea), ep >= − < q∗(X, ep ◦ ea, e0), ea > .

(27)

Proof. Setting i = a, j = b in (25) and considering the homogeneous
part in Y and Z only, we obtain

m1∑
α=0

< q∗(eα, Y, Z), ea >< eαZ, eb >

+ < q∗(eα, Y, Z), eb >< eαZ, ea >= 0.
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Equivalently, it is

m1∑
α=0

< q∗(eα, Y, ep), ea >< eαeq, eb >

+

m1∑
α=0

< q∗(eα, Y, eq), ea >< eαep, eb >

+

m1∑
α=0

< q∗(eα, Y, ep), eb >< eαeq, ea >

+

m1∑
α=0

< q∗(eα, Y, eq), eb >< eαep, ea >= 0.

(28)

Setting q = a = b in (28), we see the first and the third sums on
the left are 0, since they are simplified to < q∗(e0, Y, ep), ea >. Hence
we obtain < q∗(eα, Y, ea), ea >= 0, where eα is parallel to eaep for
any p. Since eaep runs through e0, · · · , em1 when we vary p, we see
< q∗(eα, Y, ea), ea >= 0 for all α. That is,

(29) < q∗(X, Y, ea), ea >= 0

for all X, Y, ea. In particular, the first identity of (27) is true.
On the other hand, setting a = b and p = q = 0 we deduce the

identity < q∗(ea, Y, e0), ea >= 0 for all a, which implies that

(30) < q∗(X, Y, e0), X >= 0

for all X ∈ Im(O), because any unit imaginary X can serve as ea, for
some a 6= 0, since the group of automorphism of the normed algebra
is transitive on the unit imaginary sphere. It follows from (30), (29)
for a = 0, and q∗(e0, Y, Z) = 0 that < q∗(X, Y, e0), X >= 0 for all
X, Y ∈ O. Hence, the second identity of (27) is true.

The third identity of (27) follows from setting a = b and q = 0.
The fifth identity comes from setting p = b and q = 0 and employ-

ing (29).
The fourth and sixth identities are derived from an equation similar

to (28) when, in (25), we look at the homogeneous part in X and Z
only. �
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Corollary 3. For X, Y ∈ Im(O),

< q∗(X, Y, Z), Z >= 0, Z ∈ Im(O) or Z = e0,

< q∗(X, Y, e0), X >=< q∗(X, Y, e0), Y >= 0,

< q∗(X, Y, Z), X >= − < q∗(XZ, Y, e0), X >, Z ∈ O,
< q∗(X, Y, Z), Y >= − < q∗(X, Y ◦ Z, e0), Y >, Z ∈ O,
< q∗(X, Y,X), Z >=< q∗(ZX, Y, e0), X >, Z ∈ O,
< q∗(X, Y, Y ), Z >=< q∗(X,Z ◦ Y, e0), Y >, Z ∈ O.

Proof. It follows from the identities, in order, of Lemma 9 and the
transitivity of the automorphism group of O on its imaginary unit
sphere. �

In fact, we can strengthen the first identity of Corollary 3 as follows.

Lemma 10.

(31) < q∗(UV , Y, V ),W >= − < q∗(WV , Y, V ), U >,

where U, Y,W ∈ O and V is either e0 or purely imaginary. In par-
ticular, < q∗(X, Y, Z),W > is skew-symmetric for Z and W in O.
Moreover, < q∗(X, Y, e0), Z > is skew-symmetric in all X, Y, Z ∈ O.

Proof. Setting p = q in (28), we obtain

< q∗(ebep, Y, ep), ea >= − < q∗(eaep, Y, ep), eb > .

The first statement follows.
Setting U = e0 and X := WV for a purely imaginary V , we obtain

< q∗(X, Y, V ), e0 >=< q∗(V, Y, V ), XV >

= − < q∗(X, Y, e0), V >,
(32)

where the last equality follows from the fifth identity of Corollary 3.
The second statement is a consequence of (32) and the first identity

of Corollary 3, which says that < q∗(X, Y, Z),W > is skew-symmetric
in Z and W when Z and W are purely imaginary.

The third statement follows from anti-symmetrizing the X and Y
slots of the two equations, respectively, of the second identity of Corol-
lary 3. �

Corollary 4. For W ∈ O, we have

< q∗(X, Y,W ), XW >= 0 and < q∗(X, Y,W ), Y ◦W >= 0,
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so that anti-symmetrizing we get

< q∗(X, Y, U), XV > = − < q∗(X, Y, V ), XU >

< q∗(X, Y, U), Y ◦ V > = − < q∗(X, Y, V ), Y ◦ U >

for U, V ∈ O.

Proof. Setting U = XW for W ∈ Im(O), we derive from (31)

< q∗(X, Y,W ), XW >=< q∗(UW, Y,W ), U >

= − < q∗(UW, Y,W ), U >= 0.

We next calculate < q∗(X, Y, e0), XW > for a purely imaginary W .
By the skew symmetry of < q∗(X, Y, e0), Z > for all X, Y, Z ∈ O,

< q∗(X, Y, e0), XW >=< q∗(XW,Y,X), e0 >

= − < q∗(W X,Y,X), e0 >=< q∗(e0X,Y,X),W >

= − < q∗(X, Y,X),W >=< q∗(X, Y,X),W >,

which cancels < q∗(X, Y,W ), X > for an imaginary W . Putting all
these together, it follows that

(33) < q∗(X, Y,W ), XW >= 0

for all W ∈ O.
Likewise, < q∗(X, Y,W ), Y ◦W >= 0 for all W ∈ O by a similar

argument. �

Remark 5. In fact, the first two identities of Corollary 4 establish that
< p∗,q∗ >= 0 by (17). This is the seventh of the ten equations of Ozeki
and Takeuchi [12, I, p 530] defining an isoparametric hypersurface.

We now come to a crucial observation. Recall the angle θ given
before Lemma 3.

Proposition 4. Assume θ 6= 0 and π. Let R(X, Y ) := q∗(X, Y, e0).
Then

R(X, Y ) = XY − Y ◦X,
if e is perpendicular to X, Y and XY , while

R(X, Y ) = ±(XY − Y ◦X)

if XY is parallel to e.

Proof. By Lemma 8 we see |R(Z,Z)| = |ZZ − Z ◦ Z| = 0, so that
R(Z,W ) is skew-symmetric in Z and W .

We may assume X, Y ∈ Im(O) are orthonormal vectors such that
X, Y and XY are all perpendicular to e, where e is given before
Lemma 3. Then e0, X, Y,XY, e,Xe, Y e, (XY )e form an octonion basis
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of O. It follows that R(X, Y ) is a linear combination of the above basis
elements. We know

< R(X, Y ), e0 >=< R(X, Y ), X >=< R(X, Y ), Y >= 0

by the first two identities of Corollary 3. Therefore, we conclude

(34) R(X, Y ) = a(XY ) + fe+ c(Xe) + d(Y e) + b((XY )e)

for some functions a, b, c, d, f defined in the Stiefel manifold M of or-
thonormal 2-frames over Im(O).

Let X = g−1(X ′), Y = g−1(Y ′) and e = g−1(e′) for any automor-
phism g of O. Then

(g ·R)(X ′, Y ′) := g(R(g−1(X ′), g−1(Y ′))) = g(R(X, Y ))

= a(X ′Y ′) + fe′ + c(X ′e′) + d(Y ′e′) + b((X ′Y ′)e′).

The interpretation is that (g ·R)(X ′, Y ′) is R(X, Y ) relative to the new
octonion basis e0, g

−1(e1), · · · , g−1(e7) with coordinates X ′, Y ′ and e′.
Since any such (X, Y, e) can be (g−1(X ′), g−1(Y ′), g−1(e′)) for a fixed
(X ′, Y ′, e′) (think of it as (e1, e2, e4)) as we vary g, we see that a, b, c, d, f
are all constant. But then homogenizing X and Y in (34) shows that
c = d = 0 for (polynomial) degree reason, and, moreover, that f = 0
since R(X,Y) is skew-symmetric. So now

(35) R(X, Y ) = a(XY ) + b((XY )e).

To determine a and b, we note that by Lemma 10

< R(U, V ),W >=< q∗(U, V, e0),W >

is skew-symmetric in all variables. Hence the 3rd identity of Corollary 3
gives

< R(X, Y ), XY >=< q∗(X, Y,X), Y >,

while the 4th identity of Corollary 3 gives

< R(X, Y ), Y ◦X >= − < q∗(X, Y,X), Y > .

Adding these two equations, incorporating Lemma 3 and bearing in
mind that a =< R(X, Y ), XY > and b =< R(X, Y ), (XY )e >, we
obtain

a(1− cos(2θ))− b sin(2θ) = 0.

But then

a2 + b2 = |R(X, Y )|2 = |XY − Y ◦X|2 = 2 + 2 cos(2θ)

results in

a = ±(1 + cos(2θ)), b = ± sin(2θ).
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(The signs for a and b agree.) By changing e to −e, we may assume
the sign is positive. It follows that

R(X, Y ) = (1 + cos(2θ))XY + sin(2θ)(XY )e = XY − Y ◦X.
In the case when the orthonormal imaginary X and Y are such that

XY = e, we form an octonian basis e0, X, Y, e,W,WX,WY,We. We
have, since X ◦ Y = XY = e by Lemma 3 and since R(X, Y ) is skew-
symmetric, that

< R(X, Y ),W >=< R(W,X), Y >=< WX −X ◦W,Y >= 0

by the previous case. In other words, R(X, Y ) is in the span of e0 and
e since < R(X, Y ), X >=< R(X, Y ), Y >= 0. Write

R(X, Y ) = ae+ be0.

Now, b =< R(X, Y ), e0 >= 0 by skew symmetry. Moreover, since
|R(X, Y )| = |XY − Y ◦X| = 2, we see a = ±2 and

R(X, Y ) = ±2e = ±2XY = ±(XY − Y ◦X).

�

Corollary 5. R(X, Y ) = XY − Y X if θ = 0 and R(X, Y ) = 0 if
θ = π.

Proof. e is arbitrary in (35) when θ = 0 or π. Hence the real number
b = 0, so that R(X, Y ) = aXY . In the case when θ = π we have
a ◦ b = ba for all a, b and |R(X, Y )| = |XY − Y ◦ X| = 0. So a = 0.
For θ = 0, i.e., when a ◦ b = ab for all a, b, |R(X, Y )| = 2|X||Y |.
So, a = ±2. Since changing X, Y, Z to −X,−Y,−Z leaves the 2nd
fundamental form fixed and changes the 3rd fundamental form by a
sign, we may choose the positive sign. �

7. Classification of q∗

We have seen in Lemma 8 that the 3rd fundamental form q∗ satisfies

(36) |q∗(X, Y, Z)| = |X(Y ◦ Z)− Y ◦ (XZ)|.
We now prove that there are only three possibilities for q∗.

Theorem 1. Up to isometry, the possible q∗ are either

q∗(X, Y, Z) = (XY − Y X)Z

constructed by Ozeki and Takeuchi, where ◦ coincides with the octonion
multiplication, or

q∗(X, Y, Z) = X(Y ◦ Z)− Y ◦ (XZ)
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constructed by Ferus, Karcher and Münzner, where either a◦ b = ab or
a ◦ b = ba for all a, b ∈ O.

The proof of Theorem 1 consists of a series of lemmas and corollaries
in the following subsections.

7.1. The case when θ 6= 0 and π.

Lemma 11. Suppose θ 6= 0 and π. Let X and Y be purely imagi-
nary and perpendicular vectors in O and let W be in the orthogonal
complement of the quaternion algebra A generated by X and Y . Then

q∗(X, Y,W ) = X(Y ◦W )− Y ◦ (XW )

if e is perpendicular to A, while

q∗(X, Y,W ) = ±(X(Y ◦W )− Y ◦ (XW ))

if XY is parallel to e; here, the sign agrees with that of R(X, Y ).

Proof. We may assume X, Y are unit vectors. Suppose X, Y and
XY are all perpendicular to e. Complete it to an octonion basis
e0, X, Y,XY, e,Xe, Y e, (XY )e of O. The third identity in Corollary 3
and Proposition 4 imply that

< q∗(X, Y, e), X > =< R(X, Y ), Xe >=< XY − Y ◦X,Xe >
= 2 sin(2θ) < (XY )e,Xe >= 0.

Likewise, the fourth identity in Corollary 3 and Proposition 4 imply

< q∗(X, Y, e), Y >=< R(X, Y ), Y ◦ e >=< XY − Y ◦X, Y ◦ e >= 0.

Meanwhile,

< q∗(X, Y, e), e0 >= − < q∗(X, Y, e0), e >= − < XY −Y ◦X, e >= 0.

On the other hand,

< q∗(X, Y, e), Xe >=< q∗(X, Y, e), Y e >= 0

by the first two identities of Corollary 4. Lastly, < q∗(X, Y, e), e >= 0
by the first identity of Corollary 3. In conclusion,

(37) q∗(X, Y, e) = a(XY ) + b((XY )e).

To determine a and b, setting U = e and V = Y in the 3rd equation
in Corollary 4, we deduce

< q∗(X, Y, e), XY > = − < q∗(X, Y, Y ), Xe >

=< q∗(X, Y, e0), (Xe) ◦ Y >

=< XY − Y ◦X, (Xe) ◦ Y >= sin(2θ).

(38)
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In the same vein,

< q∗(X, Y, e), Y ◦X >= − < q∗(X, Y,X), Y ◦ e >
=< q∗(X, Y, e0), (Y ◦ e)X >=< XY − Y ◦X, (Y ◦ e)X >

=< XY − Y ◦X, (Y e)X >= sin(2θ),

while its left hand side simplifies to

< q∗(X, Y, e), Y ◦X >=< q∗(X, Y, e), cos(2θ)Y X + sin(2θ)(Y X)e >

= − cos(2θ) sin(2θ)− sin(2θ) < q∗(X, Y, e), (XY )e >

by (38). So, when θ 6= π/2, we end up with

< q∗(X, Y, e), (XY )e >= −(1 + cos(2θ)),

which is exactly

q∗(X, Y, e) = X(Y ◦ e)− Y ◦ (Xe).

We then use the third identity of Corollary 4 to see that

q∗(X, Y,W ) = X(Y ◦W )− Y ◦ (XW ).

for W = Xe, Y e, (XY )e, and hence for all W perpendicular to A.
When θ = π/2, a straightforward calculation gives

(39) |q∗(X, Y, e)| = |X(Y ◦ e)− Y ◦ (Xe)| = 1 + cos(2θ) = 0,

so that once more

q∗(X, Y, e) = X(Y ◦ e)− Y ◦ (Xe) (= 0).

In the case when XY = e, we know R(X, Y ) = ±(XY −Y X) = ±2e.
We form an octonian basis e0, X, Y, e,W,WX,WY,We. Then

< q∗(X, Y,W ), e0 > = − < R(X, Y ),W >=< ±2e,W >= 0,

< q∗(X, Y,W ), X > =< R(X, Y ),WX >= 0,

< q∗(X, Y,W ), Y > =< R(X, Y ),W ◦ Y >= 0,

< q∗(X, Y,W ),W > = 0,

< q∗(X, Y,W ), XW > =< q∗(X, Y,W ), Y W >= 0,

where the last identity follows from Corollary 4. It follows that

q∗(X, Y,W ) = a(XY ) + b(W (XY ))

for some a, b ∈ R. But then for (polynomial) degree reason a = 0.
Since

X(Y ◦W )− Y ◦ (XW ) = 2 cos(2θ)W (XY ),

we see by (23) that

q∗(X, Y,W ) = ±(X(Y ◦W )− Y ◦ (XW )).

�
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Corollary 6. Suppose θ 6= 0 and π. Let X and Y be purely imaginary
and perpendicular vectors in O and let W be in the quaternion algebra
A generated by X and Y . Then

(40) q∗(X, Y,W ) = X(Y ◦W )− Y ◦ (XW )

if e is perpendicular to A, while

(41) q∗(X, Y,W ) = ±(X(Y ◦W )− Y ◦ (XW ))

if XY is parallel to e; here, the sign agrees with that of R(X, Y ).

Proof. The proof follows the same line of thoughts as in the preceding
lemma. Thus we shall only indicate the essential point.

We first assume that e is perpendicular to A so that by the preceding
lemma

(42) q∗(X, Y, Z) = X(Y ◦ Z)− Y ◦ (XZ)

for Z perpendicular to A. Then as before we construct an octonion
basis e0, X, Y,XY, e,Xe, Y e, (XY )e. We know < q∗(X, Y,X), e0 >=
− < R(X, Y ), X >= 0 and < q∗(X, Y,X), X >= 0. By the 5th
identity of Corollary 3,

< q∗(X, Y,X), Y > =< R(X, Y ), XY >

=< XY − Y ◦X,XY >= 1 + cos(2θ).

For Z perpendicular to A, we use (42) to see

< q∗(X, Y,X), Z >= − < q∗(X, Y, Z), X >=< (Ze)(XY ), X >,

so that we derive
(43)
< q∗(X, Y,X), e >=< q∗(X, Y,X), Xe >=< q∗(X, Y,X), (XY )e >= 0,

while

(44) < q∗(X, Y,X), Y e >= − sin(2θ).

Therefore, we conclude

(45) q∗(X, Y,X) = (1+cos(2θ))Y−sin(2θ)Y e = X(Y ◦X)−Y ◦(XX).

(Note that q∗ = 0 if θ = π/2.) When XY = e, we from the octonion
basis e0, X, Y, e,W,XW, YW, (XY )W and we have R(X, Y ) = ±2XY
and q∗(X, Y, Z) = ±(X(Y ◦Z)− Y ◦ (XZ)) for Z perpendicular to A.
We see < q∗(X, Y,X), Y >= ±2 and < q∗(X, Y,X), Z >= 0 for all Z
perpendicular to A. Hence

q∗(X, Y,X) = ±2Y = ±(X(Y ◦X)− Y ◦ (XX)).

�
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Theorem 2. Suppose θ 6= 0 and π. For all X, Y ∈ O and all Z ∈ O
we have

(46) q∗(X, Y, Z) = X(Y ◦ Z)− Y ◦ (XZ).

Thus the hypersurfaces are of the type constructed by Ferus, Karcher
and Münzner.

Proof. Lemma 11 and Corollary 6 only deal with the case when the
imaginary X and Y are perpendicular in q∗(X, Y, Z), which leaves an
undetermined sign. We now remove the sign by considering the case
when X = Y .

Let X, Y ∈ Im(O) be orthonormal such that e is perpendicular to
X, Y and XY . Then the circles X(t) := cos(t)X+sin(t)Y and Y (t) :=
− sin(t)X+cos(t)Y satisfy that X(t), Y (t), X(t)Y (t) are perpendicular
to e. Differentiating (40) at t = 0, we obtain

q∗(Y, Y,W )− q∗(X,X,W )

= −(X(X ◦W )−X ◦ (XW )) + (Y (Y ◦W )− Y ◦ (YW )).

Note that

(47) |q∗(X,X,Z)| = | sin(2θ)(X((XZ)e)− (X(XZ))e)| 6= 0

unless θ = π/2. Homogenizing and comparing polynomial types, we
get

q∗(X,X,W ) = X(X ◦W )−X ◦ (XW )

when θ 6= π/2. On the other hand, when θ 6= π/2, we fix the same X
and choose a Y such that XY = e, differentiating (41) gives

q∗(X,X,W ) = ±((X(X ◦W )−X ◦ (XW )).

Therefore, the sign must be positive when θ 6= π/2.
When θ = π/2, the formula (47) implies q∗(X,X,Z) = 0 for all

X,Z ∈ O, and so q∗ is skew-symmetric in X and Y . So, a priori
the sign is undetermined. However, by (39) and (45) we have seen
q∗(X, Y, Z) = 0 for all Z when e is perpendicular to X, Y and XY .
The sign is ambiguous only in the case when XY = e. Now, set e = e4.
Then since any two different imaginary basis elements ea, eb 6= e4 satisfy
either eaeb = e4, or ea, eb and eaeb are all perpendicular to e4, the
analysis in Lemma 11 and Corollary 6 provides a recipe for writing
down q∗(X, Y, Z) explicitly as follows.

q∗(X, Y, Z) = ±
∑

(xiyjei(◦(ejZ))− yjxiej ◦ (eiZ)),

where i, j ≥ 1 run over the indexes where eieje4 = ±e0.
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Since changing X, Y, Z to −X,−Y,−Z retains the 2nd fundamental
form and changes the 3rd fundamental form by a sign, we might as well
choose the positive sign.

Therefore, in any event, the 3rd fundamental form is the desired form
given by (46). �

Proposition 2 implies that we can always perturb to find a mirror
point x∗ ∈M− at which θ = 0 or π, even when initailly the choice of x∗

produces an angle θ different from 0 and π. Therefore, the classification
is reduced to the case when θ = 0 or π.

7.2. The case when θ = 0 or π. By Corollary 5, we know R(X, Y ) =
XY − Y X for θ = 0 and R(X, Y ) ≡ 0 for θ = π.

Corollary 7. Suppose a ◦ b = ab,∀a, b. For X, Y ∈ Im(O), we have

< q∗(X, Y, Z), Z >= 0,

< q∗(X, Y, e0), X >=< q∗(X, Y, e0), Y >= 0,

< q∗(X, Y, Z), X >= 2 < X, Y >< X,Z > −2|X|2 < Y,Z >,

< q∗(X, Y, Z), Y >= −2 < X, Y >< Y,Z > +2|Y |2 < X,Z > .

Proof. This follows from R(X, Y ) = XY − Y X and Corollary 3. �

Corollary 8. If the normed algebra is H, then Theorem 1 is true.

Proof. By Remark 1, either a ◦ b = ab or = ba for all a, b ∈ H.
Case 1. a ◦ b = ba, ∀a, b.

Then by (36), |q∗(X, Y, Z)| = |X(ZY ) − (XZ)Y | = 0 by the asso-
ciativity of H. So,

q∗ = 0 = X(Y ◦ Z)− Y ◦ (XZ).

The hypersurface is of the type constructed by Ferus, Karcher and
Münzner by Section 5.1.
Case 2. a ◦ b = ab, ∀a, b.

Let X, Y be mutually orthogonal and purely imaginary. We set
Z = XY . Then the first, third and fourth identities of Corollary 7
imply q∗(X, Y, Z) is perpendicular to X, Y, Z; therefore, q∗(X, Y, Z) is
parallel to e0. Let q∗(X, Y, Z) = −2c|X|2|Y |2e0 for some constant c.
By identity (36) we obtain the identity |q∗(X, Y, Z)| = 2|X|2|Y |2; we
see therefore c = ±1. Thus,

q∗(X, Y, Z) = −2c|X|2|Y |2e0 = 2cZZ = c(XY − Y X)Z.

Meanwhile,

q∗(X, Y, e0) = R(X, Y ) = (XY − Y X)e0.
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Corollary 7 also yields

q∗(X, Y,X) = 2|X|2 = (XY − Y X)X,

q∗(X, Y, Y ) = −2|Y |2X = (XY − Y X)Y.

Putting all these together, we arrive at

q∗(X, Y,W ) =(XY − Y X)W, or

q∗(X, Y,W ) =(XY − Y X)W− < W,XY − Y X > e0,
(48)

where c = 1 for the first equation and c = −1 for the second. Although
we have derived the formulae assuming that X and Y are perpendic-
ular, the same formulae remain true for any two imaginary X and Y
since q∗(U, V,W ) is skew-symmetric in U, V .

If c = 1, then

q∗(X, Y,W ) = X(Y ◦W )− Y ◦ (XW ).

So the hypersurface is of the type constructed by Ferus, Karcher and
Münzner by Section 5.1. It satisfies (33)

(49) < X(Y ◦W )− Y ◦ (XW ), XW >= 0

We show c = −1 is impossible. Assume otherwise. Then since such an
isoparametric hypersurface must also satisfy (33), we would conclude

0 =< q∗(X, Y,W ), XW >

=< X(Y ◦W )− Y ◦ (XW ), XW > − < W,XY − Y X > e0, XW >

=< W,XY − Y X >< W,X >6= 0

by (49). This is a contradiction. �

To finish Theorem 1 in the octonion case, we break it into two cases.
Case 1. a ◦ b = ab,∀a, b.

Identity (36) shows that |q∗(X,X,Z)| = 0,∀X,Z ∈ O, so that
q∗(X, Y, Z) is skew-symmetric in X, Y, ∀X, Y ∈ O.

Let X, Y 6= 0 be perpendicular and purely imaginary and W be in
the orthogonal complement of A, the quaternion algebra generated by
X and Y . We know by (37) and (38) that q∗(X, Y,W ) = ±2((XY )W ),
if X, Y and XY are all perpendicular to e, and the same formula holds
if XY = e, where the signs might not be related a priori in the two
cases. We assume first that the signs are identical. Namely,

q∗(X, Y,W ) = 2c((XY )W ),

where c = 1 or c = −1 for all W perpendicular to A. If c = 1, then

q∗(X, Y,W ) = (XY − Y X)W,
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which remains true for any two purely imaginary X and Y not neces-
sarily perpendicular to each other, as q∗ is skew-symmetric in X, Y . It
follows that

q∗(X, Y, Z) = (XY − Y X)Z

for any Z ∈ O, as it is also true for Z ∈ A by Corollary 8, where we
use (43) and (44) to see that q∗(X, Y, Z) ∈ A for Z ∈ A. This is the
isoparametric hypersurface constructed by Ozeki and Takeuchi.

If c = −1, then

q∗(X, Y,W ) = −2(XY )W = X(YW )− Y (XW ),

so that there holds

q∗(X, Y, Z) = X(Y Z)− Y (XZ) = X(Y ◦ Z)− Y ◦ (XZ)

for any X, Y, Z ∈ O, as it is true for Z ∈ A by Corollary 8. These
are the isoparametric hypersurfaces constructed by Ferus, Karcher and
Münzner.

We need to remove the case when q∗(X, Y,W ) = 2((XY )W ) if X, Y,
andXY are all perpendicular to e, whereas q∗(X, Y,W ) = −2((XY )W )
when XY = e. Assuming this is the case. Then Corollary 8 implies

q∗(X, Y,W ) = (XY − Y X)W + h(X, Y,W ),

where h(X, Y,W ) = −4eW⊥ if XY = e. As seen in Corollary 8, the
existence of an isoparametric hypersurface with such a q∗ would imply

< h(X, Y,W ), XW >=< q∗(X, Y,W )− (XY − Y X)W,XW >= 0.

But then if we set e = e4 and W = e2, we get

< h(X, Y,W ), XW > 6= 0.

This is a contradiction.
Case 2. a ◦ b = ba,∀a, b.

Note that again |q∗(U,U, Z)| = |U(ZU) − (UZ)U | = 0, ∀U,Z ∈ O,
so that q∗ is skew-symmetric in the first two slots.

If c = 1, then

q∗(X, Y,W ) = 2(XY )W = X(WY )− (XW )Y,

so that

q∗(X, Y, Z) = X(ZY )− (XZ)Y = X(Y ◦ Z)− Y ◦ (XZ)

for any X, Y, Z ∈ O, as q∗ = 0 on A.
If c = −1, then q∗ only differs from the previous case by a negative

sign. Changing X, Y, Z to −X,−Y,−Z converts it to the previous case.
This completes the classification of Theorem 1.
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Remark 6. In the octonion case, the two isoparametric hypersurfaces
with q∗ = X(Y ◦ Z) − Y ◦ (XZ) constructed by Ferus, Karcher and
Münzner are of Condition B at x∗ ∈M−. In contrast, the hypersurface
with q∗ = (XY − Y X)Z is not of Condition B at x∗; however, it is of
both Condition A and B at x ∈M+ constructed by Ozeki and Takeuchi.

In the quaternionic case, however, (XY−Y X)Z = X(Y Z)−Y (XZ),
so that we have only two different such isoparametric hypersurfaces,
where the example of Ozeki and Takeuchi of multiplicities (3, 4) of Con-
ditions A and B at x ∈ M+ is also of Condition B at x∗ ∈ M−. The
other isoparametric hypersurface is of Condition B at x∗ ∈ M− with
q∗ = X(ZY ) − (XZ)Y = 0; it is the homogeneous example of multi-
plicities (4, 3).
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dans les espaces sphëriques, Math. Zeit.45(1939), 335-367.

[2] T. Cecil, Q.-S. Chi and G. Jensen, Isoparametric hypersurfaces with four
principal curvatures, Ann. Math.166(2007), 1-76.

[3] J.Dorfmeister and E. Neher, An algebraic approach to isoparametric hyper-
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Ann.251(1980), 57-71 and 256(1981), 215-232.
[12] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces I
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