A NOTE ON THE PAPER "ISOPARAMETRIC HYPERSURFACES WITH FOUR PRINCIPAL CURVATURES"

QUO-SHIN CHI
In memory of Hongyou Wu

Abstract

In [6], employing commutative algebra, we showed that if the number of principal curvatures is 4 and if the multiplicities m_{1} and m_{2} of the principal curvatures satisfy $m_{2} \geq 2 m_{1}-1$, then the isoparametric hypersurface is of the type constructed by Ozeki-Takeuchi and Ferus-Karcher-Münzner [18], [11]. This leaves only four multiplicity pairs $\left(m_{1}, m_{2}\right)=(3,4),(4,5),(6,9)$ and $(7,8)$ unsettled. The proof eventually comes down to an algebro-geometric estimate [6] on the dimensions of certain singular varieties defined by the second fundamental form of the focal manifold of the smaller codimension, resorting at one point to a nontrivial topological result in [17].

In this note, we present a simple way for the same dimension estimate, which employs essentially no more than the implicit function theorem in calculus.

1. Introduction

An isoparametric hypersurface in a space form is one whose principal curvatures and their multiplicities are fixed constants. The long history of the study of isoparametric hypersurfaces dates back to 1918 when isoparametric surfaces in Euclidean 3-space arose in the study of geometric optics [13], [20], [19]; in contrast, their latest application to integrable systems came in as late as in 1995 [10], to the author's knowledge. The classification of such hypersurfaces started with Segre and Levi-Civita's papers [19], [14] for Euclidean space. Cartan soon afterwards settled the hyperbolic case [2] and found the spherical case deeply intriguing. He classified the spherical cases when g, the number of principal curvatures, is ≤ 3 [3], [4]; in particular, the case $g=3$ furnished a very geometric description of the Cayley projective plane he had classified as a rank-one symmetric space. He then found two

[^0]homogeneous examples of such hypersurfaces with $g=4$ in S^{5} and S^{9} [5]. The interest was rekindled in the 1970's to study isoparametric hypersurfaces in the sphere, with remarkable advancement made [17]. One knows $g=1,2,3,4,6$ and there are at most two different multiplicities $\left(m_{1}, m_{2}\right), m_{1} \leq m_{2}$, where geometrically $m_{1}+1$ and $m_{2}+1$ are the codimensions of the two focal manifolds, M_{+}and M_{-}, respectively, in the ambient sphere that the 1-parameter family of isoparametric hypersurfaces, associated with the given one, degenerates to. It is known that $m_{1}=m_{2}=1$ or 2 when $g=6[1]$. The case $m_{1}=m_{2}=1$ in S^{7} was classified by Dorfmeister and Neher [9] (see also [15]) and the other case in S^{13} has recently been classified by Miyaoka [16]; they turn out to be homogeneous. The case when $g=4$ seems to have gained the most scrutiny, due to the existence of families of inhomogeneous examples constructed by Ozeki-Takeuchi and Ferus-Karcher-Münzner, referred to collectively in this paper as of OT-FKM type [18], [11]. Using homotopy theory, it is shown in [21] that for $g=4$, the multiplicity pairs $\left(m_{1}, m_{2}\right)$ are exactly $(2,2),(4,5)$ or those of OT-FKM type.

In [6], employing commutative algebra, we showed that if $g=4$ and $m_{2} \geq 2 m_{1}-1$, then the isoparametric hypersurface is of OT-FKM type. This leaves only four multiplicity pairs $\left(m_{1}, m_{2}\right)=(3,4),(4,5),(6,9)$ and $(7,8)$ unsettled. The proof eventually comes down to an algebrogeometric estimate [6, pp 68-73] on the dimensions of certain singular varieties defined by the second fundamental form of the focal manifold M_{+}, resorting at one point to a nontrivial topological result in [17] that states that $m_{1}+m_{2}$ is an odd number when $2 \leq m_{1}<m_{2}$.

In this note, we present a simple way for the same dimension estimate, which employs essentially no more than the implicit function theorem in calculus.

2. The estimate

We will follow closely the notation in [6]. Recall that we fix a normal basis $n_{0}, \cdots, n_{m_{1}}$ of M_{+}and decompose the normal space of M_{+}as the direct sum of eigenspaces E_{+}, E_{-}and E_{0} of the shape operator $S_{n_{0}}$ with eigenvalues $1,-1$ and 0 , respectively. E_{+}, E_{-}and E_{0}, of dimensions m_{2}, m_{2} and m_{1}, are parametrized by the vectors $x=\left(x_{1}, \cdots, x_{m_{2}}\right), y=$ $\left(y_{1}, \cdots, y_{m_{2}}\right)$ and $z=\left(z_{1}, \cdots, z_{m_{1}}\right)$, respectively.

We are interested in the components of the second fundamental form of M_{+}restricted to $E_{+} \oplus E_{-}$, denoted by $p_{0}, p_{1}, \cdots, p_{m_{1}}$, which are explicitly given in equation (10.2) on p 52 of [6]. The important point is that $p_{1}, \cdots, p_{m_{1}}$ are bihomogeneous polynomials of bidegree $(1,1)$ in x and y, i.e., they are linear in x and y, respectively.

As on p 72 of [6], for $n \leq m_{1}$, consider the map

$$
f_{n}:(x, y) \in \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{2}} \mapsto\left(p_{1}(x, y), \cdots, p_{n}(x, y)\right)
$$

Let Z_{n} be the singular set of f_{n}, where the rank of $d f_{n}$ is $<n$, and set

$$
J_{n}:=Z_{n} \cap f_{n}^{-1}(0) .
$$

The key point is to estimate the dimension of J_{n} to obtain [6, p 73]

$$
\operatorname{dim}\left(J_{n}\right) \leq m_{1}+m_{2}-2
$$

to warrant the primeness of the ideal $\left(p_{1}, \cdots, p_{n}\right)$ for $n \leq m_{1}-1$, and the reducedness of the ideal $\left(p_{1}, \cdots, p_{m_{1}}\right)$ when $m_{2} \geq 2 m_{1}-1$. More precisely, we aim to assert

$$
\begin{equation*}
\operatorname{dim}\left(J_{n}\right) \leq \operatorname{dim}\left(f_{n}^{-1}(0)\right)-2 \tag{1}
\end{equation*}
$$

for $n \leq m_{1}-1$, and

$$
\begin{equation*}
\operatorname{dim}\left(J_{m_{1}}\right) \leq \operatorname{dim}\left(f_{m_{1}}^{-1}(0)\right)-1 . \tag{2}
\end{equation*}
$$

As on p 72 of [6], $\mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{2}}$ is stratified into locally closed sets (i.e., Zariski open sets in their respective closures) $X_{-1}, X_{0}, X_{1}, \cdots, X_{n-1}$ such that $d f_{n}$ has rank

$$
J:=n-j-1
$$

on X_{j}. We have

$$
Z_{n}=\cup_{j \geq 0} X_{j} .
$$

Definition 1. We say a point $(x, y) \in Z_{n}$ is generic in Z_{n} if there is a $p_{\lambda}=c_{1} p_{1}+\cdots+c_{n} p_{n}$, where $\lambda:=\left[c_{1}: \cdots: c_{n}\right] \in \mathbb{C} P^{n-1}$, such that $d p_{\lambda}(x, y)=0$ and the rank of $p_{\lambda}=2\left(m_{2}-r\right)$ for some $r \leq m_{1}$ (respectively, for some $r \leq m_{1}-1$) if $m_{2} \geq 2 m_{1}$ (respectively, if $\left.m_{2}=2 m_{1}-1\right)$. We say (x, y) is nongeneric in Z_{n} otherwise.

Lemma 1. For a generic choice of λ, we always have that p_{λ} is of rank $=2\left(m_{2}-r\right)$ for some $r \leq m_{1}$ (respectively, for some $\left.r \leq m_{1}-1\right)$ if $m_{2} \geq 2 m_{1}$ (respectively, if $m_{2}=2 m_{1}-1$).

Proof. We may assume $m_{1} \geq 2$ as it is straightforward to verify that the isoparametric hypersurface is of OT-FKM type when $m_{1}=1[6$, p 61]. Observe that the lemma is immediate in the case $m_{2} \geq 2 m_{1}$, because automatically the rank of $p_{\lambda} \geq 2\left(m_{2}-m_{1}\right)$ for a generic choice of λ since the same is true for all p_{1}, \cdots, p_{n} [6, Lemma 49, p 64].

Hence, we may assume now that $m_{2}=2 m_{1}-1$. Suppose the lemma is not true. Then p_{λ} will have rank $=2\left(m_{2}-m_{1}\right)$ for generic λ; in particular, this is true for p_{1}, \cdots, p_{n}.

Recall [18, p 536, I] the second fundamental matrices $S_{1}, \cdots, S_{m_{1}}$ of M_{+}are related to $A_{1}, \cdots, A_{m_{1}}$ by

$$
S_{a}=\left(\begin{array}{ccc}
0 & A_{a} & B_{a} \tag{3}\\
A_{a}^{t r} & 0 & C_{a} \\
B_{a}^{t r} & C_{a}^{t r} & 0
\end{array}\right)
$$

Observe that Lemma 49 of [6] implies

$$
\begin{equation*}
B_{a}^{t r} B_{a}=I / 2 \tag{4}
\end{equation*}
$$

for all $a=1, \cdots, n$ by the fact that all p_{a} now have the same rank $2\left(m_{2}-m_{1}\right)$, or equivalently, that m_{1} is both the kernel dimension of A_{a} and the rank of B_{a} for each a. This means that the column vectors of $\sqrt{2} B_{a}$ are orthonormal vectors for each a. Since the column space of each B_{a}, being of dimension m_{1}, lives in $\mathbb{R}^{m_{2}}=\mathbb{R}^{2 m_{1}-1}$, the column spaces of B_{a} and B_{c}, for $a \neq c$, must intersect nontrivially for dimension reason. We may thus arrange so that some nonzero v in the intersection is the first column vector of both $\sqrt{2} B_{a}$ and $\sqrt{2} B_{c}$. However, polarizing (4), we obatin

$$
B_{a}^{t r} B_{c}=-B_{c}^{t r} B_{a}
$$

for all $a \neq c$. It follows that

$$
\langle v, v>=-<v, v\rangle
$$

with $<\cdot, \cdot>$ the Euclidean inner product. That is, we have derived $v=0$, which is absurd.

Lemma 2. If $(x, y) \in X_{j}$ with $J \leq n-2$, then (x, y) is generic in Z_{n}.
Proof. Since

$$
d f_{n}: \mathbb{C}^{2 m_{2}} \rightarrow \mathbb{C}^{n}
$$

is of $\operatorname{rank} J$ at (x, y), the kernel \mathcal{K} of

$$
d f_{n}^{t r}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2 m_{2}}
$$

is of dimension $n-J$ at (x, y). This says precisely that, for any $\lambda=$ $\left(c_{1}, \cdots, c_{n}\right)$, the linear combination $p_{\lambda}=c_{1} p_{1}+\cdots+c_{n} p_{n}$ satisfies $d p_{\lambda}=0$ at (x, y) if and only if $\lambda \in \mathcal{K}$. Therefore, if $J \leq n-2$, or $\operatorname{dim}(\mathcal{K})=n-J \geq 2$, then up to scaling there is at least a oneparameter family of $\lambda \in \mathcal{K}$ for which $d p_{\lambda}=0$ at (x, y); the generic choice of such p_{λ} will respect Lemma 1 . This is because by the realness of p_{1}, \cdots, p_{n}, the above condition $d p_{\lambda}=c_{1} d p_{1}+\cdots+c_{n} d p_{n}=0$ for $\lambda \in \mathcal{K}$ splits into

$$
d p_{\lambda}^{r e}=d p_{\lambda}^{i m}=0
$$

at (x, y), where re and im denote the real and imaginary parts of a complex number. Since

$$
d\left(\cos (\theta) p_{\lambda}^{r e}-\sin (\theta) p_{\lambda}^{i m}\right)=0
$$

and

$$
d\left(\sin (\theta) p_{\lambda}^{r e}+\cos (\theta) p_{\lambda}^{i m}\right)=0
$$

for all θ at (x, y) by multiplying p_{λ} by $e^{\sqrt{-1} \theta}$, we see $p_{\lambda}^{r e}$ and $p_{\lambda}^{i m}$ play the role of p_{a} and p_{c} in Lemma 1 for a generic choice of $\lambda \in \mathcal{K}$.

Fix $\left(c_{0}, d_{0}\right) \in X_{j} \subset \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{2}}, j \geq 0$, where the rank of $d f_{n}$ is J. For the sake of simplicity in Taylor expansions, we assume $p_{1}=\cdots=p_{n}=$ 0 at $\left(c_{0}, d_{0}\right)$ since we will be most interested in J_{n} later on. Without loss of generality assume x_{1}, \cdots, x_{s} and y_{1}, \cdots, y_{t}, where $s+t=J$, are, respectively, the coordinates of x and y such that

$$
\partial\left(p_{1}, \cdots, p_{J}\right) / \partial\left(x_{1}, \cdots, x_{s}, y_{1}, \cdots, y_{t}\right) \neq 0
$$

at $\left(c_{0}, d_{0}\right)$. The implicit function theorem in calculus says that we can replace these coordinates by p_{1}, \cdots, p_{J} so that in a neighborhood of $\left(c_{0}, d_{0}\right) \in \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{2}}$ the function f_{n} is of the form

$$
\begin{align*}
f_{n} & :\left(p_{1}, \cdots, p_{J}, x_{s+1}, \cdots, x_{m_{2}}, y_{t+1}, \cdots, y_{m_{2}}\right) \\
& \mapsto\left(p_{1}, \cdots, p_{J}, \cdots, p_{n}\right) . \tag{5}
\end{align*}
$$

It follows that the rank of f_{n} is J in the neighborhood precisely when

$$
\begin{align*}
& \partial p_{a}\left(p_{1}, \cdots, p_{J}, x_{s+1}, \cdots, x_{m_{2}}, y_{t+1}, \cdots, y_{m_{2}}\right) / \partial x_{\alpha}=0 \\
& \partial p_{a}\left(p_{1}, \cdots, p_{J}, x_{s+1}, \cdots, x_{m_{2}}, y_{t+1}, \cdots, y_{m_{2}}\right) / \partial y_{\mu}=0 \tag{6}
\end{align*}
$$

where $a>J, \alpha>s$ and $\mu>t$. Note that p_{n} satisfies (6).
We first handle the case when $\left(c_{0}, d_{0}\right)$ is generic in Z_{n}. We may assume $d p_{n}\left(c_{0}, d_{0}\right)=0$ and p_{n} is of rank $2\left(m_{2}-r\right)$ for some $r \leq m_{1}$ (respectively, $r \leq m_{1}-1$) when $m_{2} \geq 2 m_{1}$ (respectively, $m_{2}=2 m_{1}-1$); the rank is exactly that of the Hessian $H\left(p_{n}\right)$ of p_{n} at $\left(c_{0}, d_{0}\right)$, which is in turn independent of the coordinate system chosen (this is the basis of Morse Theory). Thus, we can first calculate the rank of $H\left(p_{n}\right)$ with respect to the original coordinates $x_{1}, \cdots, x_{m_{2}}, y_{1}, \cdots, y_{m_{2}}$, for which p_{n} is bihomogeneous of degree $(1,1)$, to obtain

$$
H\left(p_{n}\right)=\left(\begin{array}{cc}
0 & A_{n} \tag{7}\\
A_{n}^{t r} & 0
\end{array}\right)
$$

where A_{n} is the matrix such that $p_{n}(X, Y)=2 X^{t r} A_{n} Y$ with $X=$ $\left(x_{1}, \cdots, x_{m_{2}}\right)$ and $Y=\left(y_{1}, \cdots, y_{m_{2}}\right)$. In particular, the rank of A_{n} is $m_{2}-r$.

On the other hand, $H\left(p_{n}\right)$, calculated with respect to the coordinates $p_{1}, \cdots, p_{J}, x_{s+1}, \cdots, x_{m_{2}}$ and $y_{t+1}, \cdots, y_{m_{2}}$, is

$$
H\left(p_{n}\right)=\left(\begin{array}{cc}
A & B^{t r} \tag{8}\\
B & C
\end{array}\right)
$$

where A is of size J-by- J, which is the matrix of the second derivatives of p_{n} with respect to p_{1}, \cdots, p_{J}, and C is of size $\left(2 m_{2}-J\right)$-by- $\left(2 m_{2}-J\right)$, which is the matrix of the second derivatives of p_{n} with respect to $x_{s+1}, \cdots, x_{m_{2}}, y_{t+1}, \cdots, y_{m_{2}}$, etc.

Let R be the rank of C at $\left(c_{0}, d_{0}\right), k \leq J$ be the rank of B and $l \leq J$ be the rank of the matrix $\left(\begin{array}{ll}A & B^{t r}\end{array}\right)$. Since the rank of $H\left(p_{n}\right)$ is $2 m_{2}-2 r$, we see

$$
\begin{equation*}
R \geq 2 m_{2}-2 r-k-l . \tag{9}
\end{equation*}
$$

We may assume the upper left R-by- R block of C is nonsingular without loss of generality. The implicit function theorem applied to the $2 m_{2}-$ J equations in (6) for p_{n} enables us to solve the first R variables of $x_{s+1}, \cdots, x_{m_{2}}, y_{t+1}, \cdots, y_{m_{2}}$ in terms of p_{1}, \cdots, p_{J} and the remaining $2 m_{2}-J-R$ variables of $x_{s+1}, \cdots, x_{m_{2}}, y_{t+1}, \cdots, y_{m_{2}}$, to be denoted by $z_{1}, \cdots, z_{2 m_{2}-J-R}$. Therefore, the irreducible component \mathcal{V} of X_{j} containing $\left(c_{0}, d_{0}\right)$, being locally contained in the space parametrized by the variables p_{1}, \cdots, p_{J} and $z_{1}, \cdots, z_{2 m_{2}-J-R}$, satisfies, by (9),

$$
\operatorname{dim}(\mathcal{V}) \leq 2 m_{2}-R \leq 2 r+k+l
$$

Setting $p_{1}=\cdots=p_{J}=0$, we see $\mathcal{V} \cap J_{n}$ satisfies

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{V} \cap J_{n}\right) \leq 2 m_{2}-R-J \leq 2 r+k+l-J \leq 2 r+J \tag{10}
\end{equation*}
$$

Case 1. $m_{2} \geq 2 m_{1}+1$.
With $r \leq m_{1}$ in the generic case and $J \leq m_{1}-1$ in general, we have

$$
2 r+J \leq 3 m_{1}-1 \leq m_{1}+m_{2}-2
$$

which is the desired dimension estimate.
Case 2. $m_{2}=2 m_{1}-1$.
With $r \leq m_{1}-1$ in the generic case and $J \leq m_{1}-1$ in general, we obtain once more

$$
2 r+J \leq 3 m_{1}-3=m_{1}+m_{2}-2 .
$$

Case 3. $m_{2}=2 m_{1}$.
We may assume $n=m_{1}$, because for $n \leq m_{1}-1$ we would have $J \leq n-1 \leq m_{1}-2$, and so with $r \leq m_{1}$ we obtain

$$
\operatorname{dim}\left(\mathcal{V} \cap J_{n}\right) \leq 2 r+J \leq 3 m_{1}-2=m_{1}+m_{2}-2
$$

Now with $n=m_{1}$, we see

$$
\operatorname{dim}\left(\mathcal{V} \cap J_{m_{1}}\right) \leq 2 r+J \leq 3 m_{1}-1 ;
$$

on the other hand, the m_{1} cuts $p_{1}=\cdots=p_{m_{1}}=0$ give the dimension estimate

$$
\operatorname{dim}\left(f_{m_{1}}^{-1}(0)\right) \geq 2 m_{2}-m_{1}=3 m_{1}
$$

In other words,

$$
\operatorname{dim}\left(\mathcal{V} \cap J_{n}\right) \leq \operatorname{dim}\left(f_{n}^{-1}(0)\right)-2
$$

if $n \leq m_{1}-1$, and

$$
\operatorname{dim}\left(\mathcal{V} \cap J_{m_{1}}\right) \leq \operatorname{dim}\left(f_{m_{1}}^{-1}(0)\right)-1
$$

which are (1) and (2) we are after. We are done with the case when $\left(c_{0}, d_{0}\right)$ is generic in Z_{n}.

To handle the case when $\left(c_{0}, d_{0}\right)$ is nongeneric in Z_{n}, note that now $\left(c_{0}, d_{0}\right) \in X_{0}$ by Lemma 2. Let \mathcal{X} be the irreducible component of X_{0} containing $\left(c_{0}, d_{0}\right)$. Since the boundary points p of \mathcal{X} belong to X_{j} for some $j>0$, Lemma 2 implies that p are generic in Z_{n}. Therefore, by (9), the rank R of the matrix C defined in (8) at such a p satisfies, with $r \leq m_{1}$ if $m_{2} \geq 2 m_{1}$ and $r \leq m_{1}-1$ if $m_{2}=2 m_{1}-1$, that

$$
\begin{equation*}
R \geq 2 m_{1}-2 J \tag{11}
\end{equation*}
$$

which continues to hold at all points $q \in \mathcal{X} \subset X_{0}$ close to p. Denote the rank of the matrix C in (8) at q by R_{0}. Since the size of the matrix A in (8) at such a q is $(n-1)$-by- $(n-1)$, we see that R_{0} satisfy, by (11),

$$
\begin{align*}
R_{0} & \geq R-2(n-1-J) \geq 2\left(m_{1}-n+1\right) \\
& \geq 4 \quad \text { if } n \leq m_{1}-1, \tag{12}\\
& \geq 2 \quad \text { if } n=m_{1} .
\end{align*}
$$

Since at each step of the cutting from \mathcal{X} down to $\mathcal{X} \cap J_{n}$, we can introduce a generic p_{λ} to cut, it follows that the resulting variety at each step is of pure dimension, even though some of whose components may not intersect X_{j} for all $j>0$. Hence. for the purpose of dimension estimate, we may look at an irreducible component of $\mathcal{X} \cap J_{n}$ with a boundary point in X_{j} for some $j>0$. Equation (12) implies, by the first inequality in (10), which is generally true, that

$$
\begin{aligned}
\operatorname{dim}\left(\mathcal{X} \cap J_{n}\right) & \leq 2 m_{2}-R_{0}-(n-1) \\
& \leq 2 m_{2}-n-2, \quad \text { if } n \leq m_{1}-1, \\
& \leq 2 m_{2}-n-1, \quad \text { if } n=m_{1} .
\end{aligned}
$$

That is, the dimension estimates (1) and (2) hold in the nongeneric case as well.

Remark 1. In the third line above the last displayed formula on $p 63$ of [6], the symbol p refers to any point of the variety; in particular, it applies to the generically chosen point $z=(h, k)$. Meanwhile, the formulae in the last line on the same page are slightly misleading. They should read, instead, with the Einstein summation convention prevailing,

$$
\bar{F}_{\alpha a}^{\mu} k_{\mu}=f_{a b}(h, k) F_{\alpha b}^{\mu} k_{\mu}, \quad \bar{F}_{\alpha a}^{\mu} h_{\alpha}=f_{a b}(h, k) F_{\alpha b}^{\mu} h_{\alpha},
$$

where $f_{a b}(z):=r_{a b}(z) / q_{a}(z)$. In other words, the equations say $\bar{p}_{a}(\cdot, k)=$ $f_{a b}(h, k) p_{b}(\cdot, k)$ and $\bar{p}_{a}(h, \cdot)=f_{a b}(h, k) p_{b}(h, \cdot)$.

Since the image of the projection $W \rightarrow \mathbb{R}^{m_{2}}$ sending z to h is dense as z varies generically in W, we see that

$$
\begin{equation*}
\bar{p}_{a}(h, \cdot)=f_{a b}(h) p_{b}(h, \cdot) \tag{13}
\end{equation*}
$$

holds in a neighborhood around a generic point h_{0} with $f_{a b}(h)$ the collection of the terms in h of the analytic $f_{a b}(h, k)$. Since \bar{p}_{a} and p_{b} are linear in h, taking a second order partial derivative of (13) against h at h_{0}, which we denote by $f_{a b}^{\prime \prime}\left(h_{0}\right)$, gives

$$
f_{a b}^{\prime \prime}\left(h_{0}\right) p_{b}\left(h_{0}, k\right)=0 .
$$

This implies $f_{a b}^{\prime \prime}\left(h_{0}\right)=0$ for all a, b since the map

$$
k: \mapsto\left(p_{1}\left(h_{0}, k\right), \cdots, p_{m_{1}}\left(h_{0}, k\right)\right)
$$

is surjective (see pp 60-62 of [6] for the n-spanning property) for a generic h_{0}. Similarly, all partial derivatives of $f_{a b}$ of order ≥ 2 are zero at h_{0}. We conclude that $f_{a b}(h)$ are linear functions in h. As a consequence, $\bar{p}_{a}=c_{a b} p_{b}$ for some constants $c_{a b}$.

References

[1] U. Abresch, Isoparametric hypersurfaces with four or six distinct principal curvatures, Math. Ann. 264 (1983), 283-302.
[2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Annali di Mat. 17 (1938), 177-191.
[3] _, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335-367.
[4] , Sur quelque familles remarquables d'hypersurfaces, C. R. Congrès Math. Liège, 1939, 30-41.
[5] _ Sur des familles d'hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Revista Univ. Tucuman, Serie A, 1 (1940), 5-22.
[6] T. E. Cecil, Q.-S. Chi and G. R. Jensen, Isoparametric hypersurfaces with four principal curvatures, Ann. Math. 166(2007), 1-76.
[7] Q.-S. Chi, Isoparametric hypersurfaces with four principal curvatures revisited, Nagoya Math. J. 193(2009), 129-154.
[8] \qquad , A new look at Condition A, preprint.
[9] J. Dorfmeister and E. Neher, Isoparametric hypersurfaces, case $g=6, m=1$, Communications in Algebra 13 (1985), 2299-2368.
[10] E. V. Ferapontov, Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type, and N-wave systems, Differ. Geom. Appls 35(1995), 335-369.
[11] D. Ferus, H. Karcher and, H.-F. Münzner, Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479-502.
[12] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1978.
[13] E. Laura, Sopra la propagazione di onde in un mezzo indefinito, Scritti matematici offerti ad Enrico D'Ovidio (1918), 253-278
[14] T. Levi-Civita, Famiglie di superficie isoparametrische nell'ordinario spacio euclideo, Atti. Accad. naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur 26 (1937), 355-362.
[15] R. Miyaoka, The Dorfmeister-Neher theorem on isoparametric hypersurfaces, Osaka J. Math. 46 (2009), 695-715.
[16] _, Isoparametric hypersurfaces with $(g, m)=(6,2)$, preprint.
[17] H.-F. Münzner, Isoparametrische Hyperflächen in Sphären, I and II, Math. Ann. 251 (1980), 57-71 and 256 (1981), 215-232.
[18] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres I and II, Tôhoku Math. J. 27 (1975), 515-559 and 28 (1976), 7-55.
[19] B. Segre, Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di demesioni, Atti. Accad. naz Lincie Rend. Cl. Sci. Fis. Mat. Natur 27 (1938), 203-207.
[20] C. Somigliana, Sulle relazione fra il principio di Huygens e l'ottica geometrica, Atti. Acc. Sc. Torino LIV (1918-1919), 974-979.
[21] S. Stolz, Multiplicities of Dupin hypersurfaces, Inven. Math. 138(1999),253279.

Washington University in St. Louis, MO
E-mail address: chi@math.wustl.edu

[^0]: 1991 Mathematics Subject Classification. Primary 53C40.
 Key words and phrases. isoparametric hypersurfaces.
 The author was partially supported by NSF Grant No. DMS-0103838.

