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Abstract. In [6], employing commutative algebra, we showed
that if the number of principal curvatures is 4 and if the multiplic-
ities m1 and m2 of the principal curvatures satisfy m2 ≥ 2m1 − 1,
then the isoparametric hypersurface is of the type constructed
by Ozeki-Takeuchi and Ferus-Karcher-Münzner [18], [11]. This
leaves only four multiplicity pairs (m1, m2) = (3, 4), (4, 5), (6, 9)
and (7, 8) unsettled. The proof eventually comes down to an
algebro-geometric estimate [6] on the dimensions of certain sin-
gular varieties defined by the second fundamental form of the focal
manifold of the smaller codimension, resorting at one point to a
nontrivial topological result in [17].

In this note, we present a simple way for the same dimension
estimate, which employs essentially no more than the implicit func-
tion theorem in calculus.

1. Introduction

An isoparametric hypersurface in a space form is one whose princi-
pal curvatures and their multiplicities are fixed constants. The long
history of the study of isoparametric hypersurfaces dates back to 1918
when isoparametric surfaces in Euclidean 3-space arose in the study
of geometric optics [13], [20], [19]; in contrast, their latest application
to integrable systems came in as late as in 1995 [10], to the author’s
knowledge. The classification of such hypersurfaces started with Segre
and Levi-Civita’s papers [19], [14] for Euclidean space. Cartan soon
afterwards settled the hyperbolic case [2] and found the spherical case
deeply intriguing. He classified the spherical cases when g, the number
of principal curvatures, is ≤ 3 [3], [4]; in particular, the case g = 3
furnished a very geometric description of the Cayley projective plane
he had classified as a rank-one symmetric space. He then found two
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homogeneous examples of such hypersurfaces with g = 4 in S5 and
S9 [5]. The interest was rekindled in the 1970’s to study isoparametric
hypersurfaces in the sphere, with remarkable advancement made [17].
One knows g = 1, 2, 3, 4, 6 and there are at most two different multi-
plicities (m1, m2), m1 ≤ m2, where geometrically m1 +1 and m2 +1 are
the codimensions of the two focal manifolds, M+ and M−, respectively,
in the ambient sphere that the 1-parameter family of isoparametric hy-
persurfaces, associated with the given one, degenerates to. It is known
that m1 = m2 = 1 or 2 when g = 6 [1]. The case m1 = m2 = 1 in
S7 was classified by Dorfmeister and Neher [9] (see also [15]) and the
other case in S13 has recently been classified by Miyaoka [16]; they turn
out to be homogeneous. The case when g = 4 seems to have gained
the most scrutiny, due to the existence of families of inhomogeneous
examples constructed by Ozeki-Takeuchi and Ferus-Karcher-Münzner,
referred to collectively in this paper as of OT-FKM type [18], [11]. Us-
ing homotopy theory, it is shown in [21] that for g = 4, the multiplicity
pairs (m1, m2) are exactly (2, 2), (4, 5) or those of OT-FKM type.

In [6], employing commutative algebra, we showed that if g = 4 and
m2 ≥ 2m1−1, then the isoparametric hypersurface is of OT-FKM type.
This leaves only four multiplicity pairs (m1, m2) = (3, 4), (4, 5), (6, 9)
and (7, 8) unsettled. The proof eventually comes down to an algebro-
geometric estimate [6, pp 68-73] on the dimensions of certain singular
varieties defined by the second fundamental form of the focal manifold
M+, resorting at one point to a nontrivial topological result in [17] that
states that m1 + m2 is an odd number when 2 ≤ m1 < m2.

In this note, we present a simple way for the same dimension es-
timate, which employs essentially no more than the implicit function
theorem in calculus.

2. The estimate

We will follow closely the notation in [6]. Recall that we fix a normal
basis n0, · · · , nm1

of M+ and decompose the normal space of M+ as the
direct sum of eigenspaces E+, E− and E0 of the shape operator Sn0

with
eigenvalues 1,−1 and 0, respectively. E+, E− and E0, of dimensions
m2, m2 and m1, are parametrized by the vectors x = (x1, · · · , xm2

), y =
(y1, · · · , ym2

) and z = (z1, · · · , zm1
), respectively.

We are interested in the components of the second fundamental form
of M+ restricted to E+ ⊕ E−, denoted by p0, p1, · · · , pm1

, which are
explicitly given in equation (10.2) on p 52 of [6]. The important point
is that p1, · · · , pm1

are bihomogeneous polynomials of bidegree (1, 1) in
x and y, i.e., they are linear in x and y, respectively.
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As on p 72 of [6], for n ≤ m1, consider the map

fn : (x, y) ∈ C
m2 × C

m2 7→ (p1(x, y), · · · , pn(x, y)).

Let Zn be the singular set of fn, where the rank of dfn is < n, and set

Jn := Zn ∩ f−1

n (0).

The key point is to estimate the dimension of Jn to obtain [6, p 73]

dim(Jn) ≤ m1 + m2 − 2

to warrant the primeness of the ideal (p1, · · · , pn) for n ≤ m1 − 1, and
the reducedness of the ideal (p1, · · · , pm1

) when m2 ≥ 2m1 − 1. More
precisely, we aim to assert

(1) dim(Jn) ≤ dim(f−1

n (0)) − 2

for n ≤ m1 − 1, and

(2) dim(Jm1
) ≤ dim(f−1

m1
(0)) − 1.

As on p 72 of [6], Cm2 ×Cm2 is stratified into locally closed sets (i.e.,
Zariski open sets in their respective closures) X−1, X0, X1, · · · , Xn−1

such that dfn has rank

J := n − j − 1

on Xj. We have

Zn = ∪j≥0Xj.

Definition 1. We say a point (x, y) ∈ Zn is generic in Zn if there
is a pλ = c1p1 + · · · + cnpn, where λ := [c1 : · · · : cn] ∈ CP n−1,
such that dpλ(x, y) = 0 and the rank of pλ = 2(m2 − r) for some
r ≤ m1 (respectively, for some r ≤ m1 − 1) if m2 ≥ 2m1 (respectively,
if m2 = 2m1 − 1). We say (x, y) is nongeneric in Zn otherwise.

Lemma 1. For a generic choice of λ, we always have that pλ is of rank
= 2(m2 − r) for some r ≤ m1 (respectively, for some r ≤ m1 − 1) if
m2 ≥ 2m1 (respectively, if m2 = 2m1 − 1).

Proof. We may assume m1 ≥ 2 as it is straightforward to verify that
the isoparametric hypersurface is of OT-FKM type when m1 = 1 [6,
p 61]. Observe that the lemma is immediate in the case m2 ≥ 2m1,
because automatically the rank of pλ ≥ 2(m2−m1) for a generic choice
of λ since the same is true for all p1, · · · , pn [6, Lemma 49, p 64].

Hence, we may assume now that m2 = 2m1 − 1. Suppose the lemma
is not true. Then pλ will have rank = 2(m2 − m1) for generic λ; in
particular, this is true for p1, · · · , pn.
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Recall [18, p 536, I] the second fundamental matrices S1, · · · , Sm1
of

M+ are related to A1, · · · , Am1
by

(3) Sa =





0 Aa Ba

Atr
a 0 Ca

Btr
a Ctr

a 0



 .

Observe that Lemma 49 of [6] implies

(4) Btr
a Ba = I/2

for all a = 1, · · · , n by the fact that all pa now have the same rank
2(m2 − m1), or equivalently, that m1 is both the kernel dimension
of Aa and the rank of Ba for each a. This means that the column
vectors of

√
2Ba are orthonormal vectors for each a. Since the column

space of each Ba, being of dimension m1, lives in R
m2 = R

2m1−1, the
column spaces of Ba and Bc, for a 6= c, must intersect nontrivially for
dimension reason. We may thus arrange so that some nonzero v in
the intersection is the first column vector of both

√
2Ba and

√
2Bc.

However, polarizing (4), we obatin

Btr
a Bc = −Btr

c Ba

for all a 6= c. It follows that

< v, v >= − < v, v >

with < ·, · > the Euclidean inner product. That is, we have derived
v = 0, which is absurd. �

Lemma 2. If (x, y) ∈ Xj with J ≤ n− 2, then (x, y) is generic in Zn.

Proof. Since

dfn : C
2m2 → C

n

is of rank J at (x, y), the kernel K of

df tr
n : C

n → C
2m2

is of dimension n − J at (x, y). This says precisely that, for any λ =
(c1, · · · , cn), the linear combination pλ = c1p1 + · · · + cnpn satisfies
dpλ = 0 at (x, y) if and only if λ ∈ K. Therefore, if J ≤ n − 2,
or dim(K) = n − J ≥ 2, then up to scaling there is at least a one-
parameter family of λ ∈ K for which dpλ = 0 at (x, y); the generic
choice of such pλ will respect Lemma 1. This is because by the realness
of p1, · · · , pn, the above condition dpλ = c1dp1 + · · · + cndpn = 0 for
λ ∈ K splits into

dpre
λ = dpim

λ = 0
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at (x, y), where re and im denote the real and imaginary parts of a
complex number. Since

d(cos(θ)pre
λ − sin(θ)pim

λ ) = 0,

and

d(sin(θ)pre
λ + cos(θ)pim

λ ) = 0,

for all θ at (x, y) by multiplying pλ by e
√
−1θ, we see pre

λ and pim
λ play

the role of pa and pc in Lemma 1 for a generic choice of λ ∈ K. �

Fix (c0, d0) ∈ Xj ⊂ Cm2 ×Cm2 , j ≥ 0, where the rank of dfn is J . For
the sake of simplicity in Taylor expansions, we assume p1 = · · · = pn =
0 at (c0, d0) since we will be most interested in Jn later on. Without
loss of generality assume x1, · · · , xs and y1, · · · , yt, where s + t = J ,
are, respectively, the coordinates of x and y such that

∂(p1, · · · , pJ)/∂(x1, · · · , xs, y1, · · · , yt) 6= 0

at (c0, d0). The implicit function theorem in calculus says that we can
replace these coordinates by p1, · · · , pJ so that in a neighborhood of
(c0, d0) ∈ Cm2 × Cm2 the function fn is of the form

fn : (p1, · · · , pJ , xs+1, · · · , xm2
, yt+1, · · · , ym2

)

7→ (p1, · · · , pJ , · · · , pn).
(5)

It follows that the rank of fn is J in the neighborhood precisely when

∂pa(p1, · · · , pJ , xs+1, · · · , xm2
, yt+1, · · · , ym2

)/∂xα = 0,

∂pa(p1, · · · , pJ , xs+1, · · · , xm2
, yt+1, · · · , ym2

)/∂yµ = 0,
(6)

where a > J, α > s and µ > t. Note that pn satisfies (6).
We first handle the case when (c0, d0) is generic in Zn. We may

assume dpn(c0, d0) = 0 and pn is of rank 2(m2 − r) for some r ≤ m1

(respectively, r ≤ m1−1) when m2 ≥ 2m1 (respectively, m2 = 2m1−1);
the rank is exactly that of the Hessian H(pn) of pn at (c0, d0), which is
in turn independent of the coordinate system chosen (this is the basis
of Morse Theory). Thus, we can first calculate the rank of H(pn) with
respect to the original coordinates x1, · · · , xm2

, y1, · · · , ym2
, for which

pn is bihomogeneous of degree (1, 1), to obtain

(7) H(pn) =

(

0 An

Atr
n 0

)

,

where An is the matrix such that pn(X, Y ) = 2X trAnY with X =
(x1, · · · , xm2

) and Y = (y1, · · · , ym2
). In particular, the rank of An is

m2 − r.
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On the other hand, H(pn), calculated with respect to the coordinates
p1, · · · , pJ , xs+1, · · · , xm2

and yt+1, · · · , ym2
, is

(8) H(pn) =

(

A Btr

B C

)

,

where A is of size J-by-J , which is the matrix of the second derivatives
of pn with respect to p1, · · · , pJ , and C is of size (2m2−J)-by-(2m2−J),
which is the matrix of the second derivatives of pn with respect to
xs+1, · · · , xm2

, yt+1, · · · , ym2
, etc.

Let R be the rank of C at (c0, d0), k ≤ J be the rank of B and
l ≤ J be the rank of the matrix

(

A Btr
)

. Since the rank of H(pn) is
2m2 − 2r, we see

(9) R ≥ 2m2 − 2r − k − l.

We may assume the upper left R-by-R block of C is nonsingular without
loss of generality. The implicit function theorem applied to the 2m2 −
J equations in (6) for pn enables us to solve the first R variables of
xs+1, · · · , xm2

, yt+1, · · · , ym2
in terms of p1, · · · , pJ and the remaining

2m2 − J − R variables of xs+1, · · · , xm2
, yt+1, · · · , ym2

, to be denoted
by z1, · · · , z2m2−J−R. Therefore, the irreducible component V of Xj

containing (c0, d0), being locally contained in the space parametrized
by the variables p1, · · · , pJ and z1, · · · , z2m2−J−R, satisfies, by (9),

dim(V) ≤ 2m2 − R ≤ 2r + k + l.

Setting p1 = · · · = pJ = 0, we see V ∩ Jn satisfies

(10) dim(V ∩ Jn) ≤ 2m2 − R − J ≤ 2r + k + l − J ≤ 2r + J.

Case 1. m2 ≥ 2m1 + 1.
With r ≤ m1 in the generic case and J ≤ m1 − 1 in general, we have

2r + J ≤ 3m1 − 1 ≤ m1 + m2 − 2,

which is the desired dimension estimate.
Case 2. m2 = 2m1 − 1.

With r ≤ m1 − 1 in the generic case and J ≤ m1 − 1 in general, we
obtain once more

2r + J ≤ 3m1 − 3 = m1 + m2 − 2.

Case 3. m2 = 2m1.
We may assume n = m1, because for n ≤ m1 − 1 we would have

J ≤ n − 1 ≤ m1 − 2, and so with r ≤ m1 we obtain

dim(V ∩ Jn) ≤ 2r + J ≤ 3m1 − 2 = m1 + m2 − 2.
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Now with n = m1, we see

dim(V ∩ Jm1
) ≤ 2r + J ≤ 3m1 − 1;

on the other hand, the m1 cuts p1 = · · · = pm1
= 0 give the dimension

estimate
dim(f−1

m1
(0)) ≥ 2m2 − m1 = 3m1.

In other words,

dim(V ∩ Jn) ≤ dim(f−1

n (0)) − 2

if n ≤ m1 − 1, and

dim(V ∩ Jm1
) ≤ dim(f−1

m1
(0)) − 1,

which are (1) and (2) we are after. We are done with the case when
(c0, d0) is generic in Zn.

To handle the case when (c0, d0) is nongeneric in Zn, note that now
(c0, d0) ∈ X0 by Lemma 2. Let X be the irreducible component of X0

containing (c0, d0). Since the boundary points p of X belong to Xj

for some j > 0, Lemma 2 implies that p are generic in Zn. Therefore,
by (9), the rank R of the matrix C defined in (8) at such a p satisfies,
with r ≤ m1 if m2 ≥ 2m1 and r ≤ m1 − 1 if m2 = 2m1 − 1, that

(11) R ≥ 2m1 − 2J,

which continues to hold at all points q ∈ X ⊂ X0 close to p. Denote
the rank of the matrix C in (8) at q by R0. Since the size of the matrix
A in (8) at such a q is (n−1)-by-(n−1), we see that R0 satisfy, by (11),

R0 ≥ R − 2(n − 1 − J) ≥ 2(m1 − n + 1)

≥ 4 if n ≤ m1 − 1,

≥ 2 if n = m1.

(12)

Since at each step of the cutting from X down to X ∩ Jn, we can
introduce a generic pλ to cut, it follows that the resulting variety at
each step is of pure dimension, even though some of whose components
may not intersect Xj for all j > 0. Hence. for the purpose of dimension
estimate, we may look at an irreducible component of X ∩ Jn with a
boundary point in Xj for some j > 0. Equation (12) implies, by the
first inequality in (10), which is generally true, that

dim(X ∩ Jn) ≤ 2m2 − R0 − (n − 1)

≤ 2m2 − n − 2, if n ≤ m1 − 1,

≤ 2m2 − n − 1, if n = m1.

That is, the dimension estimates (1) and (2) hold in the nongeneric
case as well.
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Remark 1. In the third line above the last displayed formula on p 63
of [6], the symbol p refers to any point of the variety; in particular, it
applies to the generically chosen point z = (h, k). Meanwhile, the for-
mulae in the last line on the same page are slightly misleading. They
should read, instead, with the Einstein summation convention prevail-
ing,

F
µ

αakµ = fab(h, k)F µ
αbkµ, F

µ

αahα = fab(h, k)F µ
αbhα,

where fab(z) := rab(z)/qa(z). In other words, the equations say pa(·, k) =
fab(h, k)pb(·, k) and pa(h, ·) = fab(h, k)pb(h, ·).

Since the image of the projection W → Rm2 sending z to h is dense
as z varies generically in W , we see that

(13) pa(h, ·) = fab(h)pb(h, ·)
holds in a neighborhood around a generic point h0 with fab(h) the col-
lection of the terms in h of the analytic fab(h, k). Since pa and pb are
linear in h, taking a second order partial derivative of (13) against h
at h0, which we denote by f ′′

ab(h0) , gives

f ′′
ab(h0)pb(h0, k) = 0.

This implies f ′′
ab(h0) = 0 for all a, b since the map

k :7→ (p1(h0, k), · · · , pm1
(h0, k))

is surjective (see pp 60-62 of [6] for the n-spanning property) for a
generic h0. Similarly, all partial derivatives of fab of order ≥ 2 are
zero at h0. We conclude that fab(h) are linear functions in h. As a
consequence, pa = cabpb for some constants cab.
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