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Isoparametric hypersurfaces with
four principal curvatures

By Thomas E. Cecil, Quo-Shin Chi, and Gary R. Jensen*

Abstract
Let M be an isoparametric hypersurface in the sphere Sn with four distinct

principal curvatures. Münzner showed that the four principal curvatures can
have at most two distinct multiplicities m1, m2, and Stolz showed that the pair
(m1, m2) must either be (2, 2), (4, 5), or be equal to the multiplicities of an
isoparametric hypersurface of FKM-type, constructed by Ferus, Karcher and
Münzner from orthogonal representations of Clifford algebras. In this paper,
we prove that if the multiplicities satisfy m2 ≥ 2m1−1, then the isoparametric
hypersurface M must be of FKM-type. Together with known results of Takagi
for the case m1 = 1, and Ozeki and Takeuchi for m1 = 2, this handles all
possible pairs of multiplicities except for four cases, for which the classification
problem remains open.

1. Introduction

A hypersurface M in a real space-form M̃n(c) of constant sectional cur-
vature c is said to be isoparametric if it has constant principal curvatures. An
isoparametric hypersurface M in Rn can have at most two distinct principal
curvatures, and M must be an open subset of a hyperplane, hypersphere or a
spherical cylinder Sk ×Rn−k−1. This was shown by Levi-Civita [18] for n = 3
and by B. Segre [27] for arbitrary n. Similarly, E. Cartan [3] proved that an
isoparametric hypersurface M in hyperbolic space Hn can have at most two
distinct principal curvatures, and M must be either totally umbilic or else be
an open subset of a standard product Sk ×Hn−k−1 in Hn (see also [8, pp. 237,
238]). However, Cartan [3]–[6] showed in a series of four papers written in the
late 1930’s that the situation is much more interesting for isoparametric hyper-
surfaces in Sn. Cartan proved several general results and found examples with
three and four distinct principal curvatures, as well as those with one or two.
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Despite the beauty of Cartan’s theory, it was relatively unnoticed for thirty
years, until it was revived in the 1970’s by Nomizu [23], [24] and Münzner [22].

Cartan showed that isoparametric hypersurfaces come as a family of par-
allel hypersurfaces, i.e., if x : M → Sn is an isoparametric hypersurface, then
so is any parallel hypersurface xt at oriented distance t from the original hy-
persurface x. However, if λ = cot t is a principal curvature of M , then xt is
not an immersion, since it is constant on the leaves of the principal foliation
Tλ, and xt factors through an immersion of the space of leaves M/Tλ into Sn.
In that case, xt is a focal submanifold of codimension m + 1 in Sn, where m is
the multiplicity of λ.

Münzner [22] showed that a parallel family of isoparametric hypersurfaces
in Sn always consists of the level sets in Sn of a homogeneous polynomial
F defined on Rn+1 satisfying certain differential equations which are listed
at the beginning of Section 2. He showed that the level sets of F on Sn are
connected, and thus any connected isoparametric hypersurface can be extended
to a unique compact, connected isoparametric hypersurface.

Münzner also showed that regardless of the number of distinct principal
curvatures of M , there are only two distinct focal submanifolds in a parallel
family of isoparametric hypersurfaces, and each isoparametric hypersurface
in the family separates the sphere into two ball bundles over the two focal
submanifolds. From this topological information, Münzner was able to prove
his fundamental result that the number g of distinct principal curvatures of an
isoparametric hypersurface in Sn must be 1, 2, 3, 4, or 6. As one would expect,
classification results on isoparametric hypersurfaces have been dependent on
the number of distinct principal curvatures.

Cartan classified isoparametric hypersurfaces with g ≤ 3 principal curva-
tures. If g = 1, then M is umbilic and it must be a great or small sphere. If
g = 2, then M must be a standard product of two spheres

Sk(r) × Sn−k−1(s) ⊂ Sn, r2 + s2 = 1.

In the case g = 3, Cartan [4] showed that all the principal curvatures must
have the same multiplicity m = 1, 2, 4 or 8, and the isoparametric hypersurface
must be a tube of constant radius over a standard Veronese embedding of a
projective plane FP 2 into S3m+1, where F is the division algebra R, C, H
(quaternions), O (Cayley numbers) for m = 1, 2, 4, 8, respectively. Thus, up
to congruence, there is only one such family for each value of m.

The classification of isoparametric hypersurfaces with four or six principal
curvatures has stood as one of the outstanding problems in submanifold geom-
etry for some time, and it was listed as Problem 34 on Yau’s list of important
open problems in geometry in 1992 (see [36] or [15]). In this paper, we will
provide a partial solution to this classification problem in the case g = 4, but
first we will describe the known results in the two cases.
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In the case g = 6, there exists one homogeneous family with six principal
curvatures of multiplicity one in S7, and one homogeneous family with six prin-
cipal curvatures of multiplicity two in S13 (see Miyaoka [20] for a description).
These are the only known examples. Münzner showed that for g = 6, all of the
principal curvatures must have the same multiplicity m, and then Abresch [1]
showed that m must be 1 or 2. In the case m = 1, Dorfmeister and Neher [10]
showed in 1985 that an isoparametric hypersurface must be homogeneous, but
it remains an open question whether this is true in the case m = 2.

For g = 4, there is a much larger and more diverse collection of known
examples. Cartan produced examples of isoparametric hypersurfaces with four
principal curvatures in S5 and S9. These examples are homogeneous, and have
the property that all of the principal curvatures have the same multiplicity.
Cartan asked if all isoparametric hypersurfaces must be homogeneous, and if
there exists an isoparametric hypersurface whose principal curvatures do not
all have the same multiplicity.

Nomizu [23] generalized Cartan’s example in S5 to produce a collection
of isoparametric hypersurfaces whose principal curvatures have two distinct
multiplicities (1, k), for any positive integer k, thereby answering Cartan’s sec-
ond question in the affirmative. At approximately the same time as Nomizu’s
work, Takagi and Takahashi [31] used the work of Hsiang and Lawson [17]
on submanifolds of cohomogeneity two to determine all homogeneous isopara-
metric hypersurfaces of the sphere. Takagi and Takahashi showed that every
homogeneous isoparametric hypersurface is a principal orbit of the isotropy
representation of a rank two symmetric space, and they presented a complete
list of examples. This list included some examples with 6 principal curvatures,
as well as those with 1, 2, 3 or 4 distinct principal curvatures.

In a separate paper, Takagi [30] proved that in the case g = 4, if one of the
principal curvatures of M has multiplicity one, then M must be homogeneous.

In a two-part paper, Ozeki and Takeuchi [25] produced two infinite series
of inhomogeneous isoparametric hypersurfaces with multiplicities (3, 4k) and
(7, 8k), for any positive integer k. They also classified isoparametric hyper-
surfaces for which one principal curvature has multiplicity two, proving that
they must be homogeneous. In the process, Ozeki and Takeuchi developed
a formulation of the Cartan-Münzner polynomial F in terms of the second
fundamental forms of the focal submanifolds that is very useful in our work.

Next, Ferus, Karcher and Münzner [13] used representations of Clifford al-
gebras to construct for any positive integer m1 an infinite series of isoparamet-
ric hypersurfaces with four principal curvatures having multiplicities (m1, m2),
where m2 is nondecreasing and unbounded in each series. In fact, m2 =
kδ(m1) − m1 − 1, where δ(m1) is the positive integer such that the Clifford
algebra Cm1−1 has an irreducible representation on Rδ(m1) (see [2]), and k is
any positive integer for which m2 is positive. Isoparametric hypersurfaces ob-
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tained by this construction of Ferus, Karcher and Münzner are said to be of
FKM-type. The FKM-series with multiplicities (3, 4k) and (7, 8k) are precisely
those constructed by Ozeki and Takeuchi. For isoparametric hypersurfaces of
FKM-type, one of the focal submanifolds is always a Clifford-Stiefel manifold
(see Pinkall-Thorbergsson [26]).

The set of FKM-type isoparametric hypersurfaces contains all known ex-
amples with g = 4 with the exception of two homogeneous examples, with
multiplicities (m1, m2) equal to (2, 2) and (4, 5) (see [25, part II, p.27] for more
detail on these two exceptions). Over the years, many restrictions on the mul-
tiplicities were found by Münzner [22], Abresch [1], Grove and Halperin [16],
Tang [32] and Fang [12]. This series of papers culminated in the recent work of
Stolz [29], who showed that the multiplicities of an isoparametric hypersurface
with g = 4 must be the same as those in the known examples of Ferus, Karcher
and Münzner or the two homogeneous exceptions. This certainly adds weight
to the conjecture that the known examples are actually the only isoparamet-
ric hypersurfaces with g = 4. In this paper, we prove that this conjecture is
true, if the two multiplicities satisfy m2 ≥ 2m1 − 1. Specifically, we prove (see
Theorem 47):

Classification Theorem. Let M be an isoparametric hypersurface in
the sphere Sn with four distinct principal curvatures, whose multiplicities m1,
m2 satisfy m2 ≥ 2m1 − 1. Then M is of FKM-type.

Taken together with the classifications of Takagi for the case m1 = 1 and
Ozeki and Takeuchi for m1 = 2, this handles all possible pairs (m1, m2) of mul-
tiplicities, with the exception of (4, 5) and 3 pairs of multiplicities, (3, 4), (6, 9),
(7, 8) corresponding to isoparametric hypersurfaces of FKM-type. For these 4
pairs, the classification problem for isoparametric hypersurfaces remains open.

The first part of this work (through §9) gives necessary and sufficient
conditions in terms of a natural second order moving frame for an isoparametric
hypersurface to be of FKM-type. The second part shows that these conditions
are satisfied if m2 ≥ 2m1 − 1.

Next we will provide a detailed outline of the paper. For more information
on isoparametric hypersurfaces and the extensive theory of isoparametric sub-
manifolds of codimension greater than one in the sphere, which was introduced
by Carter and West [7] and Terng [33], the reader is referred to the excellent
survey article by Thorbergsson [35], who proved that all isoparametric sub-
manifolds of codimension greater than one in the sphere are homogeneous [34].

We think of an isoparametric hypersurface as an immersion x̃ :Mn−1→Sn.
About any point of M there is a neighborhood U on which there is defined
an orthonormal frame field x̃, ẽ0, ea, ep, eα, eμ for which ẽ0 is normal to the
hypersurface and the other sets of vectors are principal directions for the four
respective principal curvatures of x̃. The index range of a, p has length m, and
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that of α, μ has length N , where m = m1 and N = m2 are the multiplicities for
our isoparametric hypersurface. The dual coframe on U is the set of 1-forms
θa, θp, θα, θμ defined on U by the equation (sum on repeated indices)

dx̃ = θaea + θpep + θαeα + θμeμ .

The curvature surfaces are the integral submanifolds of the distribution ob-
tained by setting any three sets of these forms equal to zero. The Levi-Civita
connection forms of a curvature surface are given, essentially, by the forms
θa
b = dea · eb, θp

q = deq · ep, etc. The second fundamental tensors of the
focal submanifolds are given in terms of our frame field by the four sets of
tensors Fμ

αa, Fμ
αp, Fμ

pa, and Fα
pa defined in (4.18) in which the coframe field

ωa, ωp, ωα, ωμ is defined in (4.13) as constant multiples of θa, θp, θα, θμ, respec-
tively. We derive the identities imposed on these tensors and their derivatives
by the Maurer-Cartan structure equations of the orthogonal group O(n + 1),
the isometry group of Sn.

If our isoparametric hypersurface is of FKM-type, then a simple calcula-
tion shows that the following equations hold for an appropriate choice of the
Darboux frame field.

Fμ
α a+m = Fμ

αa,(1.1)

Fα
b+m a + Fα

a+m b = 0,(1.2)

Fμ
b+m a + Fμ

a+m b = 0,(1.3)

θa
b − θa+m

b+m = La
bc(ω

c + ωc+m), La
bc = −Lb

ac = −La
cb,(1.4)

where a, b, c = 1, . . . , m and a + m, b + m run through the range of the indices
p, q. The matrices of the operators of the Clifford system in terms of our frame
field have as entries certain constants and the functions Fμ

αa, Fμ
αp, Fμ

pa, Fα
pa, and

La
bc. Thus, using these matrices, we can define these operators for an arbitrary

isoparametric hypersurface. If equations (1.1)–(1.4) hold for the isoparametric
hypersurface, then by an elementary, but extremely long, calculation we show
that these operators form a Clifford system whose FKM construction produces
the given isoparametric hypersurface. This calculation is contained in the proof
of Theorem 24.

In Proposition 19 we prove that (1.1) implies (1.2)–(1.4) on U provided
that x̃ satisfies the spanning property (Definition 8), which is:

(a) There exists a vector
∑

α xαeα such that

{
∑
a,α,μ

Fμ
αaxαyμea : (yμ) ∈ RN} = span {e1, . . . , em}.

(b) There exists a vector
∑

μ yμeμ such that

{
∑
a,α,μ

Fμ
αaxαyμea : (xα) ∈ RN} = span {e1, . . . , em}.
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Combining these results, we see that if an isoparametric hypersurface satisfies
the spanning property and (1.1) on U , then it is of FKM-type. The next step
is to see when (1.1) will be true.

The parallel hypersurface at an oriented distance t from x̃ is given by
x = cos t x̃ + sin t ẽ0. Its unit normal vector is e0 = − sin t x̃ + cos t ẽ0 and its
principal directions are still given by the remaining vectors in the frame field.
At some value of t the rank of x is less than n − 1, in which case the image
of x is a focal submanifold of the isoparametric family. Any multiple of π/4
added to this value of t again gives a focal submanifold.

From Münzner’s result that there are only two focal submanifolds, it fol-
lows that as t changes by a multiple of π/2, we return to the same focal
submanifold. If x is a focal submanifold, then we may assume that e0, ea is
a normal frame field along x and the vectors ep, eα, eμ are the principal vec-
tors for the second fundamental form IIe0 , of principal curvatures 0, 1 and −1,
respectively. Moving a distance t = π/2 from x along the geodesic in the direc-
tion of e0, we arrive at e0, which must then be a position vector on the same
focal submanifold. At e0, the normal frame field is x, ep, and the principal
vectors, of principal curvatures 0, 1 and −1 are ea, eα and eμ, respectively.

There is a simple relationship between the four sets of tensors at e0, de-
noted with the same letters barred, and these tensors at x. For our purposes,
the most important is

F̄μ
αa = Fμ

α a+m.

Use these tensors to define real bihomogeneous polynomials

pa(x, y) =
∑
α,μ

Fμ
αaxαyμ, p̄a(x, y) =

∑
α,μ

F̄μ
αaxαyμ.

In Proposition 11 we prove that if x satisfies the spanning property on U and if
at each point of U the p̄a are contained in the ideal I generated by p1, . . . , pm in
the polynomial ring R[xα, yμ], then the frame field can be chosen so that (1.1)
holds on U .

The key to linking the set of polynomials p̄a with the set of polynomials
pa comes from a formula for the isoparametric function derived by Ozeki and
Takeuchi [25] (recorded in (10.1) below). In Proposition 27 (see also Propo-
sition 28) we use this formula to prove that the zero locus of p1, . . . , pm in
RPN−1 × RPN−1 is identical to that of p̄1, . . . , p̄m.

Algebraic geometers have developed a substantial body of information
about the relationship between two polynomial ideals whose zero varieties coin-
cide. Let I be the ideal generated by p1, . . . , pm in the polynomial ring R[xα, yμ]
and let IC be the ideal they generate in the polynomial ring C[xα, yμ]. For
1 ≤ s ≤ m, define the affine bi-cones

Vs = {(x, y) ∈ RN × RN : pa(x, y) = 0, a = 1, . . . , s},
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V C
s = {(x, y) ∈ CN × CN : pa(x, y) = 0, a = 1, . . . , s}.

We denote Vm and V C
m , which are in fact what we are after, by VI and V C

I ,
respectively. Let Js be the complex subvariety of V C

s where the Jacobian
matrix of p1, . . . , ps is of rank less than s. In our Classification Theorem 47 we
prove the following. Fix a point in U . Assume N ≥ m + 2. If the codimension
of Js is greater than 1 in V C

s for all s ≤ m, then, at the point, through an
inductive procedure, we establish

(I) p1, . . . , pm form a regular sequence in C[xα, yμ],

(II) dimR VI = dimC V C
I ,

(III) IC is a prime ideal of codimension m,

(IV) The spanning property holds for x.

The primeness (more generally, reducedness) of IC is precisely the condition
which allows us to conclude that the p̄a ∈ I.

The final step in our argument is then provided by Proposition 46 which
states that for N ≥ m+2, if N ≥ 2m, then indeed codim (Js) ≥ 2 for all s ≤ m

at every point of U , so that IC is prime; as a result, if N = 2m− 1, then IC is
a reduced ideal. The proof of this estimate requires a detailed analysis of the
second fundamental forms IIea

of x. In the case m = 1, we give a simpler proof
that M is of FKM-type, thereby providing another proof of Takagi’s result.
Our approach also recovers Ozeki-Takeuchi’s result when m = 2 and N ≥ 3.

The paper is very much self-contained, and we have made an effort to
make the exposition as clear as possible. We would like to thank N. Mohan
Kumar for substantial help with the algebraic geometry and John Little for his
comments on previous versions of this paper. We are grateful to the referee,
whose many helpful comments have improved the exposition and quality of the
paper.

2. Second order frames

An immersed connected oriented hypersurface x̃ : Mn−1 → Sn is called
isoparametric if x̃ has constant principal curvatures. Such a hypersurface al-
ways occurs as part of a family, the level surfaces of an isoparametric function
f , which is a smooth function on Sn such that |∇f |2 = a(f) and Δf = b(f),
for some smooth functions a, b : R → R.

Denote the principal curvatures of x̃ by ki, with multiplicity mi, for i =
1, . . . , g, and assume that k1 > · · · > kg. Münzner [22, part I] showed that
the multiplicities satisfy mi = mi+2 (subscripts mod g). He then showed that
the isoparametric function f must be the restriction to Sn of a homogeneous
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polynomial F : Rn+1 → R of degree g satisfying the differential equations

|gradF |2 = g2r2g−2, r = |x|,
ΔF =

m2 − m1

2
g2rg−2,

where m1 and m2 are the two (possibly equal) multiplicities. The polynomial
F is called the Cartan-Münzner polynomial of the family of isoparametric
hypersurfaces, and F takes values between −1 and 1 on the sphere Sn. For
−1 < t < 1, the level set F−1(t) in Sn is one of the isoparametric hypersurfaces
in the family. The level sets M+ = F−1(1) and M− = F−1(−1) are the two
focal submanifolds of the family, having codimensions m1 + 1 and m2 + 1 in
Sn, respectively.

We now develop the local geometry of isoparametric hypersurfaces using
the method of moving frames in the sphere. In the process, we will reprove
some of the results obtained by Münzner, although this is not our primary
goal.

We assume now that g = 4, even though many of the results in Sections
2–4 have analogues for arbitrary values of g. Let ẽ0 be the unit normal vector
field along x̃ defining the orientation of M . Any point of M has an open
neighborhood U on which there exists a Darboux frame field x̃, ei, ẽ0 : U →
SO(n + 1), 1 ≤ i ≤ n− 1, for which each vector ei is a principal direction. We
adopt the index ranges

i, j, k ∈ {1, . . . , n − 1},
a, b, c ∈ {1, . . . , m1}, p, q, r ∈ {m1 + 1, . . . , m1 + m3},

α, β, γ ∈ {m1 + m3 + 1, . . . , m1 + m2 + m3},
μ, ν, σ ∈ {m1 + m2 + m3 + 1, . . . , n − 1}.

(2.1)

Arrange the frame so that the ea span the principal space for k1, the eα span
the principal space for k2, the ep span the principal space for k3, and the eμ

span the principal space for k4. We shall call such a Darboux frame field

x̃, ea, ep, eα, eμ, ẽ0(2.2)

on U a second order frame field along x̃, (a first order Darboux frame field
is one for which ẽ0 is normal and the remaining vectors are tangent, but not
necessarily principal directions). For such a frame field

dx̃ = θiei and dei = θj
i ej − θix̃ + θ0

i ẽ0(2.3)

where θi, θ0
i = −θi

0, θi
j = −θj

i are 1-forms on U and θ1, . . . , θn−1 is an orthonor-
mal coframe field on U with respect to the metric induced by x̃ on M . Notice
that θ0 = dx̃ · ẽ0 = 0. We use the Einstein summation convention unless the
contrary is stated explicitly. This means that repeated indices in a product
are to be summed over the range defined in (2.1). In some instances the re-
peated indices are both up, or both down, but still they are to be summed as
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in the standard case of one up and one down. The 1-forms in (2.3) satisfy the
Maurer-Cartan structure equations of SO(n + 1):

dθi = −θi
j ∧ θj ,

dθ0
i = −θ0

j ∧ θj
i ,

dθi
j = θi ∧ θj − θi

0 ∧ θ0
j − θi

k ∧ θk
j .

(2.4)

We also have

dẽ0 = θi
0ei(2.5)

where the 1-forms θi
0 = −θ0

i are linear combinations of the coframe forms,
namely

θ0
i = hijθ

j(2.6)

where these coefficient functions on U satisfy hij = hji as a consequence of
taking the exterior derivative of the equation θ0 = 0. The second fundamental
form of x̃ is

ĨI = −dx̃ · dẽ0 = hijθ
iθj .(2.7)

Having chosen the ei to be principal vectors, we know that the symmetric
matrix hij is a diagonal matrix. In fact, we have

θ0
a = k1θ

a, θ0
p = k3θ

p, θ0
α = k2θ

α, θ0
μ = k4θ

μ.(2.8)

Set θi
j =

∑
hi

jkθ
k, where the smooth function coefficients satisfy hi

jk = −hj
ik,

for all i, j, k = 1, . . . , n − 1. Take the exterior differential of equations (2.8),
using the structure equations of SO(n + 1), to find

θp
a = hp

aαθα + hp
aμθμ, since hp

ab = 0 = hp
aq,

θα
a = hα

apθ
p + hα

aμθμ, since hα
ab = −ha

αb = 0 = hα
aβ ,

θμ
a = hμ

apθ
p + hμ

aαθα, since hμ
ab = −ha

μb = 0 = hμ
aν ,

θα
p = hα

paθ
a + hα

pμθμ, since hα
pq = −hp

αq = 0 = hα
pβ,

θμ
p = hμ

paθ
a + hμ

pαθα, since hμ
pq = −hp

μq = 0 = hμ
pν ,

θμ
α = hμ

αaθ
a + hμ

αpθ
p, since hμ

αβ = −hα
μβ = 0 = hμ

αν .

(2.9)

The coefficient functions further satisfy

(k3 − k1)hp
aα = (k2 − k1)hα

ap = (k2 − k3)hα
pa,

(k3 − k1)hp
aμ = (k4 − k1)hμ

ap = (k4 − k3)hμ
pa,

(k2 − k1)hα
aμ = (k4 − k1)hμ

aα = (k4 − k2)hμ
αa,

(k2 − k3)hα
pμ = (k4 − k3)hμ

pα = (k4 − k2)hμ
αp.

(2.10)

At a point of M the set of principal vectors for a principal curvature ki is a
subspace of dimension mi, defined by the equations θj = 0, for all j not in
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the range of the given principal curvature. This mi-plane distribution on M

is called a curvature distribution on M .

Lemma 1. The curvature distributions are completely integrable. Their
integral submanifolds are called curvature surfaces. A curvature surface cor-
responding to kj is totally geodesic in M and its induced metric has constant
sectional curvature 1 + k2

j .

Proof. This is a simple application of the structure equations and the first
three equations in (2.9).

Remark 2. One can show that each curvature surface corresponding to kj

is also totally geodesic in the curvature sphere of M corresponding to kj (see
Theorems 4.11–4.13 of [8, pp. 149, 150]).

Additional conditions are imposed by the structure equations on the co-
efficients upon the exterior differentiation of equations (2.9).

3. Parallel hypersurfaces

Let x̃, ea, ep, eα, eμ, ẽ0 be a second order frame field (2.2) along x̃ on U .
We may arrange to have k1 > k2 > k3 > k4. It will be convenient to set
ki = cot si, for i = 1, . . . , 4, where 0 < s1 < s2 < s3 < s4 < π. For any fixed
real number t, let

x = cos t x̃ + sin t ẽ0.(3.1)

From (2.3), (2.5) and (2.8) we have

dx =(cos t − sin t cot s1)θaea + (cos t − sin t cot s3)θpep

+ (cos t − sin t cot s2)θαeα + (cos t − sin t cot s4)θμeμ.
(3.2)

We conclude that x is an immersion of M except when t ≡ si mod π, for some
i = 1, 2, 3, 4. Suppose t is not one of these exceptional values. Then the unit
normal vector field along x preserving the orientation of M is

e0 = − sin t x̃ + cos t ẽ0(3.3)

and again from (2.3), (2.5) and (2.8) we have

de0 = − (sin t + cos t cot s1)θaea − (sin t + cos t cot s3)θpep

− (sin t + cos t cot s2)θαeα − (sin t + cos t cot s4)θμeμ.
(3.4)

Since (sin t + cos t cot s)/(cos t − sin t cot s) = cot(s − t), for any s and t, we
find that the second fundamental form of x is

II = − dx · de0

= cot(s1 − t)ωaωa + cot(s3 − t)ωpωp

+ cot(s2 − t)ωαωα + cot(s4 − t) ωμωμ.

(3.5)
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We conclude that the principal curvatures of x are constant, equal to cot(si−t)
with multiplicity mi, for i = 1, 2, 3, 4, and that

x, ea, ep, eα, eμ, e0(3.6)

is a second order frame field along x on U .

4. Focal submanifolds

We consider now what happens when t is one of the exceptional values.
To be specific, suppose that t = s1. Then x is as defined in (3.1) and e0

is as defined in (3.3) with t = s1. For the frame field (3.6) along x on U ,
equation (3.2) becomes

dx = ωpep + ωαeα + ωμeμ(4.1)

whose rank is n − 1 − m1 at every point of M and where

ωp =
sin(s3 − s1)

sin s3
θp, ωα =

sin(s2 − s1)
sin s2

θα, ωμ =
sin(s4 − s1)

sin s4
θμ.(4.2)

Therefore, the image x(M) is a submanifold of codimension m1 + 1 in Sn. It
is called the focal submanifold for the principal curvature cot s1. In the same
way, there are focal submanifolds for each of the principal curvatures. For
a point v ∈ x(M), the set L = x−1{v} is a curvature surface of x for the
principal curvature cot s1. Restricted to this curvature surface, the forms θa

give a coframe field on it.
If e0 is defined by (3.3), then (4.1) shows that x, ep, eα, eμ, ea, e0 is a Dar-

boux frame field along x, with ep, eα, eμ tangent and e0, ea normal vectors.
Take a point p in the curvature surface L and let N denote the normal space
to x at p. Let Sm1 denote the unit sphere in N . The next lemma shows that
e0(L) covers an open neighborhood of e0(p) in this sphere.

Lemma 3. The rank of e0 : L → Sm1 is m1 at every point of the curvature
surface L. Therefore, e0(L) covers an open neighborhood of e0(p) in Sm1.

Proof. Consider the frame field e0, ea,x, ep, eα, eμ along e0 on L. Since θp,
θα and θμ are all zero pulled back to L, it follows from (2.9) that θp

0, θα
0 and

θμ
0 are also zero pulled back to L. Therefore, restricted to L, and using (2.8),

in which now k1 = cot s1, we have

de0 = − sin s1 θaea + cos s1 θa
0ea = − csc s1 θaea(4.3)

which has rank equal to m1 at every point of L.

We can now calculate the second fundamental form of the submanifold x
at the point x(p) = v with respect to any unit normal vector there.
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Lemma 4. At any point of M and with respect to any unit normal vector
at the point, the principal curvatures of the focal submanifold x are

cot(s2 − s1), cot(s3 − s1), cot(s4 − s1)(4.4)

with multiplicities m2, m3, m4, respectively.

Proof. From (3.4) we have for t = s1

de0 = − 1
sin s1

θaea −
cos(s3 − s1)

sin s3
θpep

− cos(s2 − s1)
sin s2

θαeα − cos(s4 − s1)
sin s4

θμeμ.

(4.5)

Combining this with (4.2) we have for the second fundamental form at p with
respect to the normal vector e0

IIe0 = −dx · de0

= cot(s3 − s1)ωpωp + cot(s2 − s1)ωαωα + cot(s4 − s1)ωμωμ

where ωp, ωα, ωμ, defined in (4.3), form an orthonormal coframe with respect
to the metric induced by x on the focal submanifold for the principal curvature
cot s1. By Lemma 3 we know that e0(L) covers some open subset of the unit
sphere in the normal space to x at p. Since the characteristic polynomial of IIn
is an analytic function of n in the unit sphere of the normal space, it follows
that the eigenvalues of IIn must be given by (4.4) for every unit normal vector
at p. (See [8, Proof Cor. 2.2, p. 249]).

Münzner [22, Part I] proved Lemma 4 and used it to prove the following
important consequence (see also [8, p. 249]).

Corollary 5. The angles si = s1 + (i − 1)π/4, for i = 2, 3, 4 and the
multiplicities satisfy m1 = m3 and m2 = m4. To simplify the notation we set
m1 = m3 = m and m2 = m4 = N .

Given these facts, our index conventions (2.1) become

i, j, k ∈ {1, . . . , n − 1}, a, b, c ∈ {1, . . . , m},
p, q, r ∈ {m + 1, . . . , 2m}, α, β, γ ∈ {2m + 1, . . . , 2m + N},
μ, ν, σ ∈ {2m + N + 1, . . . , n − 1},

(4.6)

so that 2m + 2N = n − 1, and n must be odd. Combining Lemma 4 and
Corollary 5 yields the following.

Corollary 6. At any point of M and with respect to any unit normal
vector of x at the point, the principal curvatures of x are

1, 0, −1(4.7)

with multiplicities N , m and N , respectively.
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In the light of Corollary 5, the principal curvatures ki = cot si of x̃ satisfy

k2 =
k1 − 1
k1 + 1

, k3 = − 1
k1

, k4 =
1 + k1

1 − k1
.(4.8)

We will have occasion to use the following differences of these principal curva-
tures.

k2 − k1 = −1 + k2
1

1 + k1
, k3 − k1 = −1 + k2

1

k1
,

k4 − k1 =
1 + k2

1

1 − k1
, k3 − k2 = − 1 + k2

1

k1(1 + k1)
,

k4 − k2 = 2
1 + k2

1

1 − k2
1

, k4 − k3 =
1 + k2

1

k1(1 − k1)
.

(4.9)

We use equations (4.9) to rewrite equations (2.10) as

hp
aα = − 1

1 + k1
hα

pa, hα
ap = − 1

k1
hα

pa,

hp
aμ =

1
k1 − 1

hμ
pa, hμ

ap =
1
k1

hμ
pa,

hα
aμ =

2
k1 − 1

hμ
αa, hμ

aα =
2

1 + k1
hμ

αa,

hα
pμ =

2k1

1 − k1
hμ

αp, hμ
pα =

2k1

1 + k1
hμ

αp.

(4.10)

Now, with si = s1 + (i − 1)π/4, equation (4.1) takes the form

dx =
1

sin s3
θpep +

1√
2 sin s2

θαeα +
1√

2 sin s4

θμeμ,(4.11)

and with t = s1 equation (3.4) becomes

de0 = − 1
sin s1

θaea −
1√

2 sin s2

θαeα +
1√

2 sin s4

θμeμ.(4.12)

If we define a new coframe field on U ⊂ M by

ωa = − 1
sin s1

θa, ωp =
1

k1 sin s1
θp,

ωα =
1

(1 + k1) sin s1
θα, ωμ =

1
(k1 − 1) sin s1

θμ,
(4.13)

then, because

sin s2 =
1 + k1√

2
sin s1, sin s3 = k1 sin s1, sin s4 =

k1 − 1√
2

sin s1(4.14)

equations (4.11) and (4.12) become

dx = ωpep + ωαeα + ωμeμ, de0 = ωaea − ωαeα + ωμeμ.(4.15)
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One conclusion we can draw from (4.15) is that

x, e0, ea, ep, eα, eμ(4.16)

is a Darboux frame field along x on U , with e0, ea normal vectors and ep, eα, eμ

tangent vectors spanning the principal spaces of curvature 0, 1 and −1, re-
spectively of IIe0 . We shall call this a second order frame field along the focal
submanifold x on U . For each point of U , define linear subspaces of Rn+1 by

V+ = span{eα}, V− = span{eμ}, V0 = span{ep}.(4.17)

These are the +1, −1 and 0 principal curvature spaces, respectively, for the
normal vector e0 at this point. If we express the Maurer-Cartan forms (2.9) in
terms of our coframe field (4.13) as

θp
a =

∑
α

Fα
paω

α −
∑

μ

Fμ
paω

μ, θα
a =

∑
p

Fα
paω

p − 2
∑

μ

Fμ
αaω

μ,

θα
p =

∑
a

Fα
paω

a − 2
∑

μ

Fμ
αpω

μ, θμ
a = −

∑
p

Fμ
paω

p − 2
∑
α

Fμ
αaω

α,

θμ
p =

∑
a

Fμ
paω

a + 2
∑
α

Fμ
αpω

α, θμ
α =

∑
a

Fμ
αaω

a +
∑

p

Fμ
αpω

p,

(4.18)

then comparison with (2.9), using (4.10) and (4.13), gives

Fα
pa = −hα

pa sin s1, Fμ
pa = −hμ

pa sin s1,

Fμ
αa = −hμ

αa sin s1, Fμ
αp = hμ

αp cos s1.
(4.19)

Notice that the distribution obtained by setting any three sets of {ωa}, {ωp},
{ωα} and {ωμ} equal to zero is completely integrable and its integral subman-
ifolds are the respective curvature surfaces.

Equations (2.3) become, for the Darboux frame field (4.16),

dx = ωpep + ωαeα + ωμeμ,

de0 = ωaea − ωαeα + ωμeμ,

dea = −ωae0 + θb
aeb + θq

aeq + θα
a eα + θμ

aeμ,

dep = −ωpx + θb
peb + θq

peq + θα
p eα + θμ

p eμ,

deα = −ωαx + ωαe0 + θa
αea + θq

αeq + θβ
αeβ + θμ

αeμ,

deμ = −ωμx − ωμe0 + θa
μea + θq

μeq + θα
μeα + θν

μeν .

(4.20)

The Cartan-Münzner polynomial F : Rn+1 → R defining the isoparametric
function f = F |Sn : Sn → [−1, 1] has ±1 as the only two singular values, and
focal points at a distance π/2 along a normal geodesic from each other lie on
the same focal submanifold. If our second order Darboux frame field (4.16) is
along the focal submanifold

x : U ⊂ M → M+ = f−1{1} ⊂ Sn
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then the tube (3.1) with t = π/2 shows that the image of x̄ = e0 : U → M+ is
the same focal submanifold. If we let ē0 = x, then by (4.15)

dx̄ = de0 = ωaea − ωαeα + ωμeμ,

dē0 = dx = ωpep + ωαeα + ωμeμ,
(4.21)

which shows that ea, eα, eμ are tangent to M+ at x̄ = e0, while ē0, ep are normal
to M+ at x̄. The second fundamental form at x̄ with respect to ē0 is

II ē0 = −dx̄ · dē0 = −de0 · dx = IIe0 =
∑

ωαωα −
∑

ωμωμ

which implies that V+ is the +1 eigenspace and V− is the −1 eigenspace of
II ē0 at x̄. Therefore, the principal curvature spaces of ē0 at x̄ are

V̄+ = V+, V̄− = V−, V̄0 = span{ea}.(4.22)

It follows that a second order Darboux frame field along x̄ on U is

x̄ = e0, ē0 = x, ēa = ea+m, ēa+m = ea, ēα = eα, ēμ = eμ.(4.23)

From (4.21) we see that

ω̄a = ωa+m, ω̄a+m = ωa, ω̄α = −ωα, ω̄μ = ωμ(4.24)

is the coframe field dual to (4.23).
Of the forms in (4.18) for the frame field (4.23) and its coframe field (4.24),

we consider

dēα · ēμ = θ̄μ
α = F̄μ

αaω̄
a + F̄μ

α a+mω̄a+m

= deα · eμ = θμ
α = Fμ

αaω
a + Fμ

α a+mωa+m

to conclude that

F̄μ
αa = Fμ

α a+m, F̄μ
α a+m = Fμ

αa.(4.25)

Therefore, if v =
∑

(xαeα + yμeμ) ∈ V+ ⊕ V−, then

p̄a(v) =
∑
α,μ

F̄μ
αaxαyμ =

∑
α,μ

Fμ
α a+mxαyμ = pa+m(v)(4.26)

where the polynomials p̄a and pa+m are defined by these equations.

5. Consequences of the structure equations

We continue working with a second order frame field (4.16) along the
focal submanifold x defined in (3.1) with t = s1. Equations (4.19) show that
differentiating equations (2.9) is equivalent to differentiating equations (4.18),
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which we now proceed to do. In preparation for this we first take the exterior
differential of the coframe field (4.13) to obtain

dωa = −θa
b ∧ ωb − Fα

paω
p ∧ ωα − Fμ

paω
p ∧ ωμ − 4Fμ

αaω
α ∧ ωμ,

dωp = −θp
q ∧ ωq + Fα

paω
a ∧ ωα + Fμ

paω
a ∧ ωμ + 4Fμ

αpω
α ∧ ωμ,

dωα = −θα
β ∧ ωβ − Fα

paω
a ∧ ωp + Fμ

αaω
a ∧ ωμ − Fμ

αpω
p ∧ ωμ,

dωμ = −θμ
ν ∧ ων − Fμ

paω
a ∧ ωp − Fμ

αaω
a ∧ ωα + Fμ

αpω
p ∧ ωα.

(5.1)

We define the covariant derivatives of the tensors Fα
pa, Fμ

pa, Fμ
αa and Fμ

αp,
respectively, to be the 1-forms

Fα
paiω

i = dFα
pa − Fα

qaθ
q
p − Fα

pbθ
b
a + F β

paθ
α
β ,

Fμ
paiω

i = dFμ
pa − Fμ

qaθ
q
p − Fμ

pbθ
b
a + F ν

paθ
μ
ν ,

Fμ
αaiω

i = dFμ
αa − Fμ

βaθ
β
α − Fμ

αbθ
b
a + F ν

αaθ
μ
ν ,

Fμ
αpiω

i = dFμ
αp − Fμ

βpθ
β
α − Fμ

αqθ
q
p + F ν

αpθ
μ
ν .

(5.2)

Any other second order frame field along x is given in terms of (4.15) by

x, e0, êa, êp, êα, êμ(5.3)

where

êa = Ab
aeb, êp = Aq

peq, êα = Aβ
αeβ, êμ = Aν

μeν(5.4)

with (Ab
a), (A

q
p) : U → O(m) and (Aβ

α), (Aν
μ) : U → O(N) smooth maps. If the

coefficients with respect to this new frame field are denoted by the same letters
covered by a hat, then the transformation rules are tensorial. For example,

F̂α
pa = Aα

βF β
qbA

q
pA

b
a, F̂α

pab = Aα
βF β

qcdA
q
pA

c
aA

d
b(5.5)

and so forth. If we take the exterior differential of the equations (4.18) and
use (5.1) and (5.2) together with the Maurer-Cartan structure equations (2.4)
we obtain the following sets of equations (compare [25, I, p. 536 and II, p. 45]).

Fα
paF

α
qb + Fα

pbF
α
qa − (Fμ

paF
μ
qb + Fμ

pbF
μ
qa) = 0,

Fα
paF

β
pb + Fα

pbF
β
pa + 2(Fμ

αaF
μ
βb + Fμ

αbF
μ
βa) = δαβδab,

Fα
paF

β
qa + Fα

qaF
β
pa + 2(Fμ

αpF
μ
βq + Fμ

αqF
μ
βp) = δpqδαβ ,

Fμ
paF

ν
pb + Fμ

pbF
ν
pa + 2(Fμ

αaF
ν
αb + Fμ

αbF
ν
αa) = δabδμν ,

Fμ
paF

ν
qa + Fμ

qaF
ν
pa + 2(Fμ

αpF
ν
αq + Fμ

αqF
ν
αp) = δpqδμν ,

Fμ
αaF

ν
βa + Fμ

βaF
ν
αa − (Fμ

αp.F
ν
βp + Fμ

βpF
ν
αp) = 0.

(5.6)

Fα
pab = −Fμ

paF
μ
αb − 2Fμ

pbF
μ
αa,

Fα
paq = Fμ

paF
μ
αq + 2Fμ

αpF
μ
qa,

Fα
paβ = 2Fμ

αpF
μ
βa − 2Fμ

βpF
μ
αa.

(5.7)
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Fμ
pab = Fα

paF
μ
αb + 2Fα

pbF
μ
αa,

Fμ
paq = −Fα

paF
μ
αq − 2Fμ

αpF
α
qa,

Fμ
paν = 2Fμ

αpF
ν
αa − 2Fμ

αaF
ν
αp.

(5.8)

Fμ
αab = −1

2
Fμ

paF
α
pb +

1
2
Fμ

pbF
α
pa,

Fμ
αaβ = Fμ

αpF
β
pa + 2Fμ

βpF
α
pa,

Fμ
αaν = Fμ

αpF
ν
pa + 2Fμ

paF
ν
αp.

(5.9)

Fμ
αpq =

1
2
Fμ

paF
α
qa −

1
2
Fμ

qaF
α
pa,

Fμ
αpβ = −Fμ

αaF
β
pa − 2Fμ

βaF
α
pa,

Fμ
αpν = −Fμ

αaF
ν
pa − 2Fμ

paF
ν
αa.

(5.10)

Fα
paμ = −Fμ

paα = −2Fμ
αap = −2Fμ

αpa.(5.11)

6. Second fundamental forms of a focal submanifold

Consider the focal submanifold x of (3.1) with t = s1 with a second order
frame field (4.16) along it on U . For each point of x, Corollary 6 tells us the
principal curvatures of the second fundamental forms IIea

of x. In order to
derive the consequence of this knowledge, we begin by finding the expression
of IIea

of x in terms of the orthonormal coframe field ωp, ωα, ωμ and from that
obtain the matrices of the corresponding shape operators with respect to the
orthonormal tangent frame field ep, eα, eμ. For our frame, equations (2.3) have
become, in part,

dx = ωpep + ωαeα + ωμeμ,

dea = (k1e0 − x)θa + θb
aeb + θp

aep + θα
a eα + θμ

aeμ.
(6.1)

The shape operator Sa is the symmetric operator on the tangent space at x
given by

IIea
= −dea · dx = dx ◦ Sa · dx.(6.2)

That is, Sa is the tangential component of −dea. Combining the second equa-
tion in (6.1) with (4.18), we find

Sa = (2Fμ
αaeμ − Fα

paep)ωα + (2Fμ
αaeα + Fμ

paep)ωμ + (−Fα
paeα + Fμ

paeμ)ωp.

Recall the curvature spaces V0, V+, V− defined in (4.17). Define linear operators

Aa = 2Fμ
αaeαωμ : V− → V+,

Ba = −Fα
paeαωp : V0 → V+,

Ca = Fμ
paeμωp : V0 → V−,

(6.3)
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and their transposes
tAa = 2Fμ

αaeμωα : V+ → V−,
tBa = −Fα

paepω
α : V+ → V0,

tCa = Fμ
paepω

μ : V− → V0.

(6.4)

With respect to the orthogonal direct sum decomposition V+ ⊕ V− ⊕ V0 of the
tangent space to x at the point, the operator Sa has the block form

Sa =

⎛
⎝ 0 Aa Ba

tAa 0 Ca
tBa

tCa 0

⎞
⎠ .(6.5)

Restriction of the second fundamental forms IIe0 and IIea
to V+ ⊕ V− defines

quadratic forms

p0(x, y) = IIe0((x, y), (x, y)) =
∑
α

x2
α −

∑
μ

y2
μ,

pa(x, y) =
1
4
IIea

((x, y), (x, y)) = Fμ
αaxαyμ,

(6.6)

where x = xαeα ∈ V+ and y = yμeμ ∈ V−.
Note that by Corollary 6, the minimal polynomial of Sa is x(x2 − 1), and

therefore

Sa = S3
a(6.7)

for all a at every point of U .

Proposition 7. If m < N , then the operators Aa in (6.3) must be lin-
early independent at every point of U .

Proof. Suppose that the operators Aa are linearly dependent at a point
p ∈ U . This means that there exists a unit vector u = (ua) ∈ Rm such that

uaFμ
αa = 0(6.8)

for all μ and α, at the point p. Then multiplying the second equation in (5.6)
by uaub, summing on a and b and using (6.8) gives

2Fα
pau

aF β
pbu

b = δαβ .

Therefore,

{
√

2
∑
a,p

Fα
pau

aep : α = 2m + 1, 2m + 2, . . . , 2m + N}

is an orthonormal set of N vectors in the m-dimensional subspace V0 defined
in (4.17), which contradicts the assumption that m < N .
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We need a condition which is stronger than the linear independence of
the Aa.

Definition 8 (Spanning Property). The focal submanifold x satisfies the
spanning property at a point of M if

(a) There exists a vector X =
∑

α xαeα ∈ V+ such that the set of vectors
{∑α,μ Fμ

αaxαeμ : a = 1, . . . , m} in V− are linearly independent; and

(b) There exists a vector Y =
∑

μ yμeμ ∈ V− such that the set of vectors
{∑α,μ Fμ

αayμeα : a = 1, . . . , m} in V+ are linearly independent.

Remark 9. Condition (a) is equivalent to

(a′) There exists X =
∑

α xαeα ∈ V+ such that

{
∑
a,α,μ

Fμ
αaxαyμea : Y = yμeμ ∈ V−} = span{e1, . . . , em}

and (b) is equivalent to

(b′) There exists Y =
∑

μ yμeμ ∈ V− such that

{
∑
a,α,μ

Fμ
αaxαyμea : X = xαeα ∈ V+} = span{e1, . . . , em}.

Remark 10. If x satisfies the spanning property at a point of M , then it
satisfies it on some open neighborhood of the point by a standard argument
on the rank of the N × m matrix (Fμ

αaxα).

Let x, e0, ea, ep, eα, eμ be a second order frame field (4.16) along x on U ,
where x(U) ⊂ M+ is a focal submanifold. Let the same letters with bars
denote the second order frame field (4.23) along x̄ = e0 on U . At each point
of U define bihomogeneous polynomials pa and p̄a in R[xα, yμ] by

pa(x, y) =
∑
α,μ

Fμ
αaxαyμ, p̄a(x, y) =

∑
α,μ

F̄μ
αaxαyμ(6.9)

where Fμ
αa and F̄μ

αa are as defined in (4.18) for the respective frame fields.

Proposition 11. If at each point of U there exist polynomials fab in the
polynomial ring R[xα, yμ] such that

p̄a =
∑

b

fabpb(6.10)

and if the spanning property holds for x on U , then there exists a second order
frame field x, e0, êa, êp, êα, êμ along x on U with respect to which

F̂μ
α a+m = F̂μ

αa(6.11)

for all a, α, μ, at each point of U .
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Proof. If we let pa+m(x, y) =
∑

α,μ Fμ
α a+mxαyμ, then by (4.26), pa+m = p̄a

and therefore (6.10) implies that at each point of U

pa+m =
∑

b

fabpb.(6.12)

If we expand the right side of this equation in terms of the bihomogeneous
components of the fab and collect all terms of the same bi-degrees, then all
terms must cancel except those of bi-degree (1, 1), since pa+m has bi-degree
(1, 1). This results in an expression for pa+m as a linear combination of the pb

with constant coefficients, since each pb has bi-degree (1, 1). Hence, we may
assume that the fab in (6.12) are constant polynomials. Now (6.12) implies
that

Fμ
α a+m =

∑
b

fabF
μ
αb(6.13)

for all α, μ at each point of U . We claim that the functions fab : U → R are
smooth. In fact, if we let Aa+m = 2

∑
α,μ Fμ

α a+meαωμ : V− → V+ and let Aa be
the operators defined in (6.3), then (6.13) implies that Aa+m =

∑
b fabAb. The

spanning property implies that the operators Ab are linearly independent in
End(V−, V+), and therefore at each point of U an inner product can be defined
on this space of endomorphisms, depending smoothly on the point of U , such
that {Ab} is an orthonormal set. Then fab = 〈Aa+m, Ab〉 : U → R is smooth.

Fix α = α0 and for each μ define vectors in Rm

Wμ = t(Fμ
α0 1, . . . , Fμ

α0 m), Vμ = t(Fμ
α0 m+1, . . . , Fμ

α0 m+m).

If we define the m × m matrix B = (fab), then by (6.13), we have

Vμ = BWμ(6.14)

for each μ. The sixth equation in (5.6) says that for any μ and ν

Vμ · Vν = Wμ · Wν .

Combining these equations, we have

Wμ · Wν = BWμ · BWν(6.15)

for all μ, ν. It follows that B is orthogonal, provided that the set {Wμ} spans
Rm. By the spanning property, this is true for some choice of α0, for some
choice of frame field. Therefore, assuming we have made that choice, we have
a smooth map

B = (fab) : U → O(m).

Alter the second order frame field along x by

êa+m =
∑

b

eb+mfba



ISOPARAMETRIC HYPERSURFACES 21

leaving the other vectors in the frame unchanged. If we let F̂μ
αa, etc. be the

coefficients with respect to this new frame field, then by (5.5), we have F̂μ
αa =

Fμ
αa and, also using (6.13), we have

F̂μ
α a+m =

∑
b

Fμ
α b+mfba =

∑
b,c

fbcF
μ
αcfba =

∑
c

F̂μ
αcδca = F̂μ

αa

which proves (6.11).

7. The Ferus-Karcher-Münzner construction

Let P0, P1, . . . , Pm be a Clifford system on R2l. Recall that this means
that these are symmetric operators on R2l satisfying

PiPj + PjPi = 2δijI, i, j = 0, 1, . . . , m.(7.1)

It follows that each operator Pi is also orthogonal. For this section we modify
the index conventions (4.6) by

i, j, k ∈ {0, . . . , m}(7.2)

and now N = l−m−1 and n+1 = 2l. If A = (Aj
i ) ∈ SO(m+1), and if we let

Qi = Aj
iPj(7.3)

then Q0, Q1, . . . , Qm is also a Clifford system on R2l. Since Q2
0 = I, the

eigenvalues of Q0 must be ±1. If E± are the eigenspaces of Q0, then R2l =
E+ ⊕ E− is an orthogonal direct sum and E± each has dimension l, because
for any a, the operator Qa interchanges E+ and E−.

Because P0, . . . , Pm are linearly independent,

M+ = {x ∈ S2l−1 ⊂ R2l : Pix · x = 0, i = 0, . . . , m}(7.4)

is a submanifold of S2l−1 of codimension m+1. If x ∈ M+, then Q0x, . . . , Qmx
is an orthonormal set of unit normal vectors to M+ in S2l−1. Therefore, this is
a global frame field for the normal bundle of M+ and the unit normal bundle
of M+ is isomorphic to the trivial bundle

M = M+ × Sm.(7.5)

Consider the principal bundle

SO(m + 1) → Sm

A �→ A0

(7.6)

where for any A ∈ SO(m + 1) we let Ai denote the ith column of A. For a
section A of (7.6), denote its pull-back to Sm of the Maurer-Cartan form of
SO(m + 1) by

A−1dA = τ = (τ i
j),(7.7)
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an o(m + 1)-valued form on Sm. Then dAi = Ajτ
j
i , and thus, for the Clifford

systems

Qi = Aj
iPj ,(7.8)

depending on A ∈ SO(m + 1), we have

dQi = Qjτ
j
i(7.9)

for each i. Observe that τ1
0 , . . . , τm

0 is a local coframe field in Sm. For each
(x, A0) ∈ M = M+ × Sm, there is an orthogonal direct sum

R2l = span{x} ⊕ M⊥
+ (x) ⊕ T0(x, A0) ⊕ T+(x, A0) ⊕ T−(x, A0),(7.10)

which is determined by the second fundamental form of M+ (see Section 4.5
of [13, p. 488]). In Lemmas 12–14 below, we provide the details of the rela-
tionship between this decomposition and the second fundamental form of M+.
The subspaces of the decomposition are

M⊥
+ (x) = span{Q0x, . . . , Qmx} = span{P0x, . . . , Pmx},

T0(x, A0) = span{QaQ0x : for all a},
T+(x, A0) = E− ∩ TxM+ = {X ∈ E− : X · Qix = 0 for all i}

= {X ∈ R2l : Q0X = −X and X · Pix = 0, for all i},
T−(x, A0) = E+ ∩ TxM+ = {X ∈ E+ : X · Qix = 0, for all i}

= {X ∈ R2l : Q0X = X and X · Pix = 0, for all i}.

(7.11)

Then dimM⊥
+ (x) = m + 1, dimT0(x, A0) = m, dimT+(x, A0) = N and

dimT−(x, A0) = N , where N = l − (m + 1). Notice that

Q0 : T0(x, A0) → M⊥
+ (x)(7.12)

because Q0QaQ0x = −Qax ∈ M⊥
+ , for any a.

For any point in M = M+ × Sm, there is an open neighborhood about
it of the form U × V , where U ⊂ M+ and V ⊂ Sm, such that the section A

of (7.6) is defined on V and such that there exist smooth orthonormal bases
eα of T+(x, A0) and eμ of T−(x, A0) on U × V . This means that at each point
of U × V

Q0eα = −eα and eα · Qix = 0,

Q0eμ = eμ and eμ · Qix = 0.
(7.13)

Compose x : M+ → S2l−1 with the projection M = M+ × Sm → M+ so that
we may regard it as a mapping x : M → S2l−1. Then

x, ei = Qix, ep = Qp−mQ0x, eα, eμ(7.14)

is a Darboux frame field along x on U × V , where the ei are normal vectors
and the rest are tangent to x.
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Lemma 12. For any x ∈ M+

QiQjQkx · x = 0(7.15)

for all i, j, k and

La
bc = QaQbQce0 · x(7.16)

is skew-symmetric in a, b, c.

Proof. If i, j, k are distinct, then

QiQjQkx · x = x · QkQjQix = −x · QiQjQkx

which implies (7.15). If the indices are not distinct, then the product is a single
±Qi and Qix · x = 0 by definition of M+.

If any two of a, b, c are the same, then the product QaQbQc is a single
operator ±Qa, for some a, and we know that Qae0 · x = 0. If a, b, c are
distinct, then QaQbQc changes sign if any two indices are switched. Therefore,
La

bc is skew-symmetric in a, b, c.

Lemma 13. For the Darboux frame field (7.14) along x,

Qix · x = 0, for all i,(7.17)

Qiej · ek = 0, for all i, j, k,(7.18)

Qiep · eq = 0, for all i, p, q,(7.19)

Qaeα · eβ = 0, for all a, α, β,(7.20)

Qaeμ · eν = 0, for all a, μ, ν,(7.21)

at each point of U × V .

Proof. The first equation follows from the definition of M+. For the second
equation

Qiej · ek = QiQjx · Qkx = QkQiQjx · x = 0

by Lemma 12. For the third equation

Qaep · eq = QaQp−mQ0x · Qq−mQ0x = −Qq−mQaQp−mx · x = 0

by Lemma 12 and

Q0ep · eq = Q0Qp−mQ0x · Qq−mQ0x = −x · Qp−mQq−mQ0x = 0

by Lemma 12. Equations 4 and 5 follow from the observation made above that
Qa interchanges E− and E+.

Lemma 14. For the frame field (7.14),

dx = ωpep + ωαeα + ωμeμ,(7.22)
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de0 = ωaea − ωαeα + ωμeμ,(7.23)

where ωp, ωα, ωμ are linearly independent one-forms on U with coefficients be-
ing functions on U × V , and

ωa = τa
0 − ωa+m.(7.24)

A smooth coframe field on U × V is given by ωa, ωp, ωα, ωμ.

Proof. The expression (7.22) for dx follows from the fact that x : U → R2l

is an immersion and then ωA = dx · eA, for A = m + 1, . . . , 2l − 1. Combining
this with (7.9), we have

de0 = dQ0 x + Q0dx

= τa
0 Qax + ωa+mQ0QaQ0x + ωαQ0eα + ωμQ0eμ

= (τa
0 − ωa+m)ea − ωαeα + ωμeμ

(7.25)

which proves (7.23).

For t ∈ R, the tube of radius t about M+ is given by the immersion

x̃ : M → S2l−1, x̃ = cos tx + sin t e0.(7.26)

A unit normal vector field along x̃ is

ẽ0 = − sin tx + cos t e0(7.27)

and a Darboux frame field along x̃ is given by

x̃, ea, ep, eα, eμ, ẽ0.(7.28)

From (7.22) we compute

dx̃ = sin t ωaea + cos t ωpep

+ (cos t − sin t)ωαeα + (cos t + sin t)ωμeμ,

dẽ0 = cos t ωaea − sin t ωpep

− (cos t + sin t)ωαeα + (cos t − sin t)ωμeμ,

(7.29)

which shows that

θa = sin t ωa, θp = cos t ωp,

θα = (cos t − sin t)ωα, θμ = (cos t + sin t)ωμ(7.30)

is an orthonormal coframe field in M for the metric dx̃ · dx̃ induced by x̃. The
second fundamental form of x̃ is then

IIẽ0 =−dx̃ · dẽ0

=− cot t θaθa + tan t θpθp +
cot t + 1
cot t − 1

θαθα − cot t − 1
cot t + 1

θμθμ

= cot(−t)θaθa + cot(
π

2
− t)θpθp + cot(

π

4
− t)θαθα + cot(

3π

4
− t)θμθμ
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from which we conclude that the principal curvatures are the constants cot(−t)
and cot(π/2 − t), each with multiplicity m and the constants cot(π/4 − t)
and cot(3π/4 − t), each with multiplicity N . In addition, the Darboux frame
field (7.28) along x̃ is of second order. Therefore, the x̃ for t ∈ R is an
isoparametric family of hypersurfaces in S2l−1 and x is a focal submanifold.
This is the Ferus-Karcher-Münzner construction, (FKM construction) [13], of
an isoparametric hypersurface from a given Clifford system.

We next calculate equations (4.18) for the FKM construction for a given
Clifford system.

Lemma 15. For the Darboux frame field (7.14) along x, the coefficients
of the forms θA

B = deA · eB in (4.18) are given by

Fα
pa = Qp−mQax · eα, Fμ

pa = Qp−mQax · eμ,

Fμ
αa = −1

2
Qaeμ · eα, Fμ

αp = −1
2
Qp−meμ · eα.

(7.31)

Proof. These coefficients are determined by θp
a, θα

a and θα
p . From (7.9)

and (7.22) we have

dea = dQa x + Qadx

= −τa
0 e0 + τ b

aeb + ωb+mQaeb+m + ωαQaeα + ωμQaeμ

(7.32)

and from (7.9) and (7.23) we have

dea+m = dQa e0 + Qade0

= −τa
0 x + τ b

aeb+m + ωbQaeb − ωαQaeα + ωμQaeμ.
(7.33)

Using Lemma 13 and (4.18) we have

Fα
b+m aω

α − Fμ
b+m aω

μ = θb+m
a = dea · eb+m

= ωαQaeα · eb+m + ωμQaeμ · eb+m,
(7.34)

which implies that

Fα
b+m a = Qaeα · eb+m = Qaeα · QbQ0x

= Q0eα · QaQbx = −eα · QaQbx = QbQax · eα

which is the first formula in (7.31), and similarly,

−Fμ
b+m a = Qaeμ · QbQ0x = Qaeμ · Qbx = eμ · QaQbx

which gives the second formula in (7.31). In the same way,

Fα
b+m aω

b+m − 2Fμ
αaω

μ = θα
a = dea · eα

= ωb+mQaeb+m · eα + ωμQaeμ · eα

(7.35)
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which implies that −2Fμ
αa = Qaeμ · eα, which is the third formula in (7.31).

Next,

Fα
a+m bω

b − 2Fμ
αa+mωμ = θα

a+m = dea+m · eα

= ωbQaeb · eα + ωμQaeμ · eα

(7.36)

which implies that −2Fμ
αa+m = Qaeμ ·eα, which is the fourth formula in (7.31).

Corollary 16. With respect to a Darboux frame (7.14) along an FKM
construction x : M → S2l−1, the coefficients (7.31) satisfy the equations

Fμ
α a+m = Fμ

αa, Fα
a+m b = −Fα

b+m a, Fμ
a+m b = −Fμ

b+m a.(7.37)

Proof. From (7.31),

Fμ
α a+m = −1

2
Qaeμ · eα = Fμ

αa,

Fα
a+m b + Fα

b+m a = (QaQb + QbQa)x · eα = 0,

Fμ
a+m b + Fμ

b+m a = (QaQb + QbQa)x · eμ = 0.

(7.38)

Proposition 17. For the Darboux frame field (7.14), at any point of
U × V ⊂ M , the operators Q0, Qa are given by

Q0x = e0, Q0e0 = x, Q0ea = −ea+m,

Q0ea+m = −ea, Q0eα = −eα, Q0eμ = eμ,
(7.39)

and for each a

Qax = ea,

Qae0 = ea+m,

Qaeb = δabx − Lc
abec+m + Fα

a+m beα + Fμ
a+m beμ,

Qaeb+m = δabe0 + Lc
abec + Fα

b+m aeα − Fμ
b+m aeμ,

Qaeα = Fα
a+m beb + Fα

b+m aeb+m − 2Fμ
α aeμ,

Qaeμ = Fμ
a+m beb − Fμ

b+m aeb+m − 2Fμ
α aeα,

(7.40)

where the coefficients are as defined in (7.16) and (7.31).

Proof. The expansion (7.39) of Q0 can be verified by inspection. Also easy
are the calculations Qax = ea and Qae0 = QaQ0x = ea+m. To calculate Qa

on the remaining basis vectors, we use the fact that the basis is orthonormal.
In the following calculations we use (7.1), (7.15), (7.14), (7.16) and (7.31).

Qaeb · x = QaQbx · x = δab,

Qaeb · e0 = QaQbx · Q0x = Q0QaQbx · x = 0,

Qaeb · ec = QaQbx · Qcx = QcQaQbx · x = 0,
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Qaeb · ec+m = QaQbx · QcQ0x = QbQaQcQ0x · x = Lb
ac = −Lc

ab,

Qaeb · eα = QaQbx · eα = Fα
a+m b,

Qaeb · eμ = QaQbx · eμ = Fμ
a+m b

give the expansion of Qaeb.

Qaeb+m · x = QaQbQ0x · x = 0,

Qaeb+m · e0 = QaQbQ0x · Q0x = δab,

Qaeb+m · ec = QaQbQ0x · Qcx = QcQaQbQ0x · x = Lc
ab,

Qaeb+m · ec+m = QaQbQ0x · QcQ0x = −QcQaQbx · x = 0,

Qaeb+m · eα = QaQbQ0x · eα = −QaQbx · eα = Fα
b+m a,

Qaeb+m · eμ = QaQbQ0x · eμ = QaQbx · eμ = −Fμ
b+m a

give the expansion of Qaeb+m. Using also (7.13), we find

Qaeα · x = eα · Qax = 0,

Qaeα · e0 = Qaeα · Q0x = Qaeα · x = 0,

Qaeα · eb = Qaeα · Qbx = eα · QaQbx = Fα
a+m b,

Qaeα · eβ = 0,

Qaeα · eμ = Qaeα · eμ = −2Fμ
αa

give the expansion of Qaeα.

Qaeμ · x = eμ · Qax = 0,

Qaeμ · e0 = Qaeμ · Q0x = −Qaeμ · x = 0,

Qaeμ · eb = Qaeμ · Qbx = eμ · QaQbx = Fμ
a+m b,

Qaeμ · eb+m = Qaeμ · QbQ0x = eμ · QaQbx = −Fμ
b+m a,

Qaeμ · eα = −2Fμ
αa,

Qaeμ · eν = 0

give the expansion of Qaeμ.

Lemma 18. For the Darboux frame field (7.14) along x,

θb
a = τ b

a + Lb
acω

c+m + Fα
a+m bω

α + Fμ
a+m bω

μ,

θb+m
a+m = τ b

a + Lc
abω

c + Fα
a+m bω

α + Fμ
a+m bω

μ
(7.41)

and therefore

θb
a − θb+m

a+m = Lb
ac(ω

c + ωc+m).(7.42)

Proof. Using (7.9) and (7.22), we find

θb
a = dea · eb = d(Qax) · eb

= (τ i
aQix + ωpQaep + ωαQaeα + ωμQaeμ) · eb

= τ b
a + ωc+mQaec+m · eb + ωαQaeα · eb + ωμQaeμ · eb

(7.43)
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which combined with (7.40) gives the first formula in (7.41). The second
formula is derived in the same way.

8. Necessary conditions to be FKM

Let x̃, ea, ep, eα, eμ, ẽ0 be a second order frame field (2.2) in U ⊂ M along
an isoparametric hypersurface x̃ : M → Sn. We continue using the index
conventions in (4.6). Let x = cos s1 x̃ + sin s1 ẽ0 be a focal submanifold and
let e0 = − sin s1 x̃ + cos s1 e0 so that x, e0, ea, ep, eα, eμ is a Darboux frame
field (4.16) along x on U . Let ωa, ωp, ωα, ωμ be its coframe field (4.13) on U .
We look for conditions on this Darboux frame field which imply that x comes
from an FKM construction.

Proposition 19. Suppose that x satisfies the spanning property (Def. 8)
on U . If

Fμ
α a+m = Fμ

αa(8.1)

on U , then

Fα
b+m a + Fα

a+m b = 0(8.2)

Fμ
b+m a + Fμ

a+m b = 0(8.3)

θa
b − θa+m

b+m = La
bc(ω

c + ωc+m), where La
bc = −Lb

ac = −La
cb(8.4)

on U .

Remark 20. By Corollary 16 and Lemma 18, equations (8.1)–(8.4) hold
for the Darboux frame field (7.14) defined along an FKM x.

Proof. The summation convention is not used in this proof. If we subtract
the fourth equation in (5.2), with p = a + m, from the third equation in (5.2),
we obtain ∑

i

(Fμ
αai − Fμ

α a+m i)ω
i =

∑
b

Fμ
αb(θ

b+m
a+m − θb

a).(8.5)

Putting (8.1) into the second equation of (5.9) gives

Fμ
αaβ =

∑
b

(Fμ
αbF

β
b+m a + 2Fμ

βbF
α
b+m a)(8.6)

and putting (8.1) into the second equation of (5.10) gives

Fμ
α a+m β = −

∑
b

(Fμ
αbF

β
a+m b + 2Fμ

βbF
α
a+m b).(8.7)

Subtracting (8.7) from (8.6) we get

Fμ
αaβ − Fμ

α a+m β =
∑

b

(
Fμ

αb(F
β
b+m a + F β

a+m b) + 2Fμ
βb(F

α
b+m a + Fα

a+m b)
)

.

(8.8)
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Likewise, using the third equation in (5.9) and in (5.10), gives

Fμ
αaν − Fμ

α a+m ν =
∑

b

(
Fμ

αb(F
ν
b+m a + F ν

a+m b) + 2F ν
αb(F

μ
b+m a + Fμ

a+m b)
)
.

(8.9)

Expressing θa
b − θa+m

b+m in terms of our coframe field, we have

θa
b − θa+m

b+m =
∑

c

(La
bcω

c + La
b c+mωc+m) +

∑
α

La
bαωα +

∑
μ

La
bμωμ(8.10)

where the coefficients are smooth functions on U , each skew-symmetric in a, b.
By the spanning property, as expressed in (a′) of Remark 9, we may assume

the basis of V+ chosen so that for some α, the set of vectors

{
∑

a

Fμ
αaea : all μ}

spans V0. Fix this choice of α. Substitute (8.10) into (8.5) and compare the
coefficients of ωα on each side to obtain

Fμ
αaα − Fμ

α a+m α =
∑

b

Fμ
αbL

a
bα.(8.11)

Compare this to (8.8), in which we set β = α, to obtain∑
b

Fμ
αb

(
3(Fα

b+m a + Fα
a+m b) − La

bα

)
= 0(8.12)

for all a and μ. By the spanning property, then, the vectors∑
b

(3(Fα
b+m a + Fα

a+m b) − La
bα)eb

for each a and μ, are orthogonal to every vector in V0. Therefore,

3(Fα
b+m a + Fα

a+m b) = La
bα.(8.13)

The left side of this equation is symmetric in a, b, while the right side is skew-
symmetric in a, b. Therefore, for our choice of α, (8.2) holds and

La
bα = 0(8.14)

for all a, b. Now, (8.8) becomes, for our choice of α and for any β,

Fμ
αaβ − Fμ

α a+m β =
∑

b

Fμ
αb(F

β
b+m a + F β

a+m b).(8.15)

Substitute (8.10) into (8.5) and compare the coefficient of ωβ with (8.15) to
obtain ∑

b

Fμ
αb(F

β
b+m a + F β

a+m b − La
bβ) = 0
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for all a, β, and μ. Again, the spanning property then implies that

F β
b+m a + F β

a+m b = La
bβ

for all a, b, and β. Hence, as before, each side of this equation must be zero.
Therefore, (8.2) and (8.14) hold for all a, b, and α.

We can prove (8.3) and

La
bμ = 0(8.16)

for all a, b and μ in a similar way, by first fixing an appropriate μ and comparing
coefficients of ωμ in (8.5) after substitution of (8.10) into it. In this case (b′)
of the spanning property is used.

With (8.2) and (8.3) now true, we see that (8.8) and (8.9) become

Fμ
αaβ = Fμ

α a+m β, Fμ
αaν = Fμ

α a+m ν(8.17)

and (8.14) and (8.16) substituted into (8.10) give

θa
b − θa+m

b+m =
∑

c

(La
bcω

c + La
b c+mωc+m).(8.18)

Substitute this into (8.5) and compare coefficients of ωc and ωc+m to get∑
b

Fμ
αbL

a
bc = Fμ

αac − Fμ
α a+m c,∑

b

Fμ
αbL

a
b c+m = Fμ

αa c+m − Fμ
α a+m c+m.

(8.19)

Subtracting gives∑
c

Fμ
αc(L

a
cb − La

c b+m) = Fμ
αab − Fμ

α a+m b − Fμ
αa b+m + Fμ

α a+m b+m.(8.20)

We want to show now that the right hand side of this equation is zero on U .
To that end, we begin with the first equation in (5.9), which says

Fμ
αab = −1

2

∑
c

Fμ
c+m aF

α
c+m b +

1
2

∑
c

Fμ
c+m bF

α
c+m a.(8.21)

Also, (5.11) says

Fμ
α a+m b =

1
2
Fμ

a+m bα, Fμ
αa b+m =

1
2
Fμ

b+m aα(8.22)

and the first equation in (5.10) states

Fμ
α a+m b+m =

1
2

∑
c

Fμ
a+m cF

α
b+m c −

1
2

∑
c

Fμ
b+m cF

α
a+m c.(8.23)

Hence, by (8.2) and (8.3), the right hand side of (8.20) is

Fμ
αab − Fμ

α a+m b − Fμ
αa b+m + Fμ

α a+m b+m

= −1
2

∑
c

Fμ
c+m aF

α
c+m b +

1
2

∑
c

Fμ
c+m bF

α
c+m a −

1
2
Fμ

a+m bα − 1
2
Fμ

b+m aα
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+
1
2

∑
c

Fμ
a+m cF

α
b+m c −

1
2

∑
c

Fμ
b+m cF

α
a+m c = −1

2
(Fμ

a+m bα + Fμ
b+m aα)

+
1
2

∑
c

Fμ
a+m c(F

α
c+m b + Fα

b+m c) +
1
2

∑
c

Fμ
c+m b(F

α
c+m a + Fα

a+m c)

= −1
2
(Fμ

a+m bα + Fμ
b+m aα)

and so we want to show that this last term is zero on U when (8.1), (8.2)
and (8.3) hold. By the second equation in (5.2),∑

i

Fμ
a+m biω

i = dFμ
a+m b −

∑
c

Fμ
c+m bθ

c+m
a+m −

∑
c

Fμ
a+m cθ

c
b +

∑
ν

F ν
a+m bθ

μ
ν

and∑
i

Fμ
b+m aiω

i = dFμ
b+m a −

∑
a

Fμ
c+m aθ

c+m
b+m −

∑
c

Fμ
b+m cθ

c
a +

∑
ν

F ν
b+m aθ

μ
ν .

Sum these two equations and use (8.2) and (8.3) to get∑
i

(Fμ
a+m bi + Fμ

b+m ai)ω
i =

∑
c

(
Fμ

b+m c(θ
c+m
a+m − θc

a) + Fμ
a+m c(θ

c+m
b+m − θc

b)
)
.

By (8.18), the right hand side of this equation is in the span of the set of
1-forms {ωc, ωc+m : c = 1, . . . , m}, and therefore the coefficients of ωα and ωμ

on the left hand side must vanish, to give

Fμ
a+m bα + Fμ

b+m aα = 0, Fμ
a+m bν + Fμ

b+m aν = 0(8.24)

and we have finally proved that the right hand side of (8.20) is zero on U , and
therefore ∑

b

Fμ
αb(L

a
bc − La

b c+m) = 0(8.25)

on U , for all a, c, α, and μ. Multiplying this equation by the X =
∑

xαeα of
(a) of the spanning property, we conclude that

La
bc − La

b c+m = 0(8.26)

on U for all a, b, c. Substitution of this into (8.18) gives

θa
b − θa+m

b+m =
∑

c

La
bc(ω

c + ωc+m).(8.27)

To complete the proof of (8.4), it remains to show that

La
bc + La

cb = 0(8.28)
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on U , for all a, b, c. By (5.2), (8.1) and (8.27), and the known skew-symmetry
La

bc = −Lb
ac,∑

i

Fμ
α a+m iω

i =
∑

i

Fμ
αaiω

i +
∑
b,c

Fμ
αbL

b
ac(ω

c + ωc+m).(8.29)

Comparing the coefficients of ωc, we have

Fμ
α a+m c = Fμ

αac +
∑

b

Fμ
αbL

b
ac.(8.30)

Interchanging a and c and then summing, we have

Fμ
α a+m c + Fμ

α c+m a = Fμ
αac + Fμ

αca +
∑

b

Fμ
αb(L

b
ac + Lb

ca).(8.31)

By the first equation in (5.9),

Fμ
αac + Fμ

αca = 0.(8.32)

Hence

Fμ
α a+m c + Fμ

α c+m a =
∑

b

Fμ
αb(L

b
ac + Lb

ca)(8.33)

on U for all α and μ. In (8.29) compare the coefficients of ωc+m to get

Fμ
α a+m c+m = Fμ

αa c+m +
∑

b

Fμ
αbL

b
ac.

Interchange a and c and sum, to get

Fμ
α a+m c+m + Fμ

α c+m a+m = Fμ
αa c+m + Fμ

αc a+m +
∑

b

Fμ
αb(L

b
ac + Lb

ca).(8.34)

By the first equation in (5.10),

Fμ
α a+m c+m + Fμ

α c+m a+m = 0

and the last equation in (5.11) says that

Fμ
αa c+m = Fμ

α c+m a and Fμ
αc a+m = Fμ

α a+m c.

Therefore, (8.34) is

Fμ
α c+m a + Fμ

α a+m c = −
∑

b

Fμ
αb(L

b
ac + Lb

ca).(8.35)

Combining this with (8.33), we conclude that∑
b

Fμ
αb(L

b
ac + Lb

ca) = 0(8.36)

for all a, c, α, μ. The spanning property then implies (8.28).
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Resume use of the summation convention.

Proposition 21. If equations (8.1) through (8.4) hold on U , then

Fα
c+m aL

c
bd + Fα

c+m bL
c
ad = 2(Fμ

αaF
μ
d+m b + Fμ

αbF
μ
d+m a),(8.37)

Fμ
c+m aL

c
bd + Fμ

c+m bL
c
ad = 2(Fα

b+m dF
μ
αa + Fα

a+m dF
μ
αb),(8.38)

Fμ
α b+m a = Lc

baF
μ
αc −

1
2
Fμ

d+m bF
α
d+m a +

1
2
Fμ

d+m aF
α
d+m b.(8.39)

Proof. These identities come from differentiating (8.1) through (8.3). Us-
ing our definition of covariant derivative in (5.2), we have

dFα
b+m a + F β

b+m aθ
α
β − Fα

c+m aθ
c+m
b+m − Fα

b+m cθ
c
a = Fα

b+m aiω
i,

dFα
a+m b + F β

a+m bθ
α
β − Fα

c+m bθ
c+m
a+m − Fα

a+m cθ
c
b = Fα

a+m biω
i.

(8.40)

Summing these two equations and using (8.2) and (8.4), we get

(Fα
c+m aL

c
bd + Fα

c+m bL
c
ad)(ω

d + ωd+m) = (Fα
b+m ai + Fα

a+m bi)ω
i.(8.41)

Equating the coefficients of ωd, we have

Fα
c+m aL

c
bd + Fα

c+m bL
c
ad = Fα

b+m ad + Fα
a+m bd.(8.42)

From (5.7) we see that the right side of (8.42) is

−Fμ
b+m aF

μ
αd−2Fμ

b+m dF
μ
αa − Fμ

a+m bF
μ
αd − 2Fμ

a+m dF
μ
αb

= 2Fμ
d+m bF

μ
αa + 2Fμ

d+m aF
μ
αb

(8.43)

where the last equality comes from using (8.3). Now (8.37) follows from (8.42)
and (8.43). Equating the coefficients of ωd+m in (8.41) leads again to (8.37).
Equating the other coefficients leads to the identities

Fα
b+m aβ + Fα

a+m bβ = 0 and Fα
b+m aμ + Fα

a+m bμ = 0.(8.44)

We next find the consequences of taking the covariant derivative of equa-
tion (8.3). Again by (5.2), we have

dFμ
b+m a + F ν

b+m aθ
μ
ν − Fμ

c+m aθ
c+m
b+m − Fμ

b+m cθ
c
a = Fμ

b+m aiω
i,

dFμ
a+m b + F ν

a+m bθ
μ
ν − Fμ

c+m bθ
c+m
a+m − Fμ

a+m cθ
c
b = Fμ

a+m biω
i.

(8.45)

Summing these equations and using (8.3) and (8.4), we get

(Fμ
c+m aL

c
bd + Fμ

c+m bL
c
ad)(ω

d + ωd+m) = (Fμ
b+m ai + Fμ

a+m bi)ω
i.(8.46)

Equating the coefficients of ωd we have

Fμ
c+m aL

c
bd + Fμ

c+m bL
c
ad = Fμ

b+m ad + Fμ
a+m bd.(8.47)

By (5.8), the right side of (8.47) is

Fα
b+m aF

μ
αd + 2Fα

b+m dF
μ
αa + Fα

a+m bF
μ
αd + 2Fα

a+m dF
μ
αb.(8.48)
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Using (8.2) in (8.48), we then arrive at (8.38). Equating coefficients of ωd+m

in (8.46) also leads to (8.38). Equating coefficients of ωα and of ωμ gives

Fμ
b+m aα + Fμ

a+m bα = 0 and Fμ
b+m aν + Fμ

a+m bν = 0.(8.49)

Finally, substitute the first equation of (5.9) into (8.30) to arrive at (8.39).

We define the covariant derivatives of the La
bc to be the coefficients La

bci

of the 1-form

dLa
bc + Ld

bcθ
a
d − La

dcθ
d
b − La

bdθ
d
c = La

bciω
i.(8.50)

Remark 22. If the La
bc are skew-symmetric in all three indices, then the

functions La
bci are skew-symmetric in a, b, c.

Proposition 23. If equations (8.1) through (8.4) hold, then the La
bcd are

skew-symmetric in all four indices, and

La
bcd =

1
2
(δadδbc − δacδbd) +

1
2
(La

ceL
e
bd − La

deL
e
bc)

+ Fα
c+m aF

α
d+m b − Fμ

c+m bF
μ
d+m a;

(8.51)

La
bc d+m =

1
2
(δacδbd − δadδbc) + La

beL
e
dc +

1
2
(La

ceL
e
bd − La

deL
e
bc)

+ Fα
d+m aF

α
c+m b − Fμ

d+m bF
μ
c+m a;

(8.52)

La
bcα = La

beF
α
e+m c + 2(Fμ

αaF
μ
c+m b − Fμ

αbF
μ
c+m a);(8.53)

La
bcμ = La

beF
μ
e+m c + 2(Fμ

αbF
α
c+m a − Fμ

αaF
α
c+m b);(8.54)

2δacδbd − δadδbc − δabδdc = La
beL

c
de + La

deL
c
be

+ 2(Fα
b+m cF

α
d+m a + Fα

b+m aF
α
d+m c);

(8.55)

La
bc d+m + La

bd c+m = 0.(8.56)

Proof. This proposition is a consequence of taking the exterior derivative
of (8.4). Notice that (8.56) follows directly from (8.52).

Using (4.18) and the structure equations (2.4), we find

d(θa
b − θa+m

b+m ) = ωa ∧ ωb − ωa+m ∧ ωb+m

+(Fα
c+m aF

α
d+m b + Fμ

c+m aF
μ
d+m b)(ω

c+m ∧ ωd+m − ωc ∧ ωd)

+[La
dcθ

d
b − Ld

bcθ
a
d + La

edL
e
bc(ω

d + ωd+m) + 2(Fμ
αaF

μ
c+m b − Fμ

αbF
μ
c+m a)ω

α

+2(Fμ
αbF

α
c+m a − Fμ

αaF
α
c+m b)ω

μ] ∧ (ωc + ωc+m).
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By (5.1),

d(La
bc(ω

c + ωc+m)) = (dLa
bc − La

bdθ
d
c − La

beL
e
dcω

d+m

− La
bdF

α
d+m cω

α − La
bdF

μ
d+m cω

μ) ∧ (ωc + ωc+m).

The exterior differential of (8.4) is obtained by equating the preceding two
equations and using (8.50), to get

La
beiω

i ∧ (ωe + ωe+m)

=[−δaeω
b − δbeω

a+m

+ (La
dcL

d
be + Fα

e+m aF
α
c+m b + Fμ

e+m aF
μ
c+m b)ω

c

+ (La
bdL

d
ce + La

dcL
d
be + Fα

c+m aF
α
e+m b + Fμ

c+m aF
μ
e+m b)ω

c+m

+ (La
bcF

α
c+m e + 2Fμ

αaF
μ
e+m b − 2Fμ

e+m aF
μ
αb)ω

α

+ (La
bcF

μ
c+m e + 2Fα

e+m aF
μ
αb − 2Fμ

αaF
μ
e+m b)ω

μ] ∧ (ωe + ωe+m).

(8.57)

Equating the skew-symmetrized coefficients of ωc∧ωe in this equation, we have

La
bec − La

bce = La
dcL

d
be − La

deL
d
bc − δaeδbc + δacδbe

+ Fα
e+m aF

α
c+m b − Fα

c+m aF
α
e+m b

+ Fμ
e+m aF

μ
c+m b − Fμ

c+m aF
μ
e+m b.

(8.58)

Rewrite (8.58) with b and e interchanged and add the result to (8.58). Using
the facts that Ld

be, La
bec, Fα

e+m b and Fμ
e+m b are all skew-symmetric in b and e,

we get from this sum

La
bce + La

ecb = La
bdL

c
ed + La

edL
c
bd + δaeδbc + δabδec − 2δacδbe

+ Fα
b+m cF

α
e+m a + Fα

b+m aF
α
e+m c

+ Fμ
e+m aF

μ
b+m c + Fμ

b+m aF
μ
e+m c.

(8.59)

Equating the coefficients of ωc ∧ ωe+m in (8.57), we find

La
bec − La

bc e+m = La
dcL

d
be − La

bdL
d
ec − La

deL
d
bc.(8.60)

Rewrite this equation with b and c interchanged and add the result to (8.60).
From the skew-symmetry of La

bc and La
bcd in a, b, c, it follows from this sum

that

La
bec + La

ceb = 0(8.61)

from which we conclude that La
bcd is skew-symmetric in all four indices. Putting

(8.61) into (8.59), interchanging d and e and using the first equation in (5.6),
we arrive at (8.55). Putting (8.61) into (8.58) and using the first equation
of (5.6), we get (8.51). Substitute (8.51) into (8.60) to obtain (8.52). Go
back to (8.57) and equate coefficients of ωα ∧ ωc to obtain (8.53), and equate
coefficients of ωμ ∧ ωc to obtain (8.54).
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9. A sufficient condition to be FKM

Let x̃, ea, ep, eα, eμ, ẽ0 be a second order frame field (2.2) in U ⊂ M along
an isoparametric hypersurface x̃ : M → Sn ⊂ Rn+1. We continue using the
index conventions in (4.6). Let x = cos s1 x̃ + sin s1 ẽ0 be a focal submanifold
and let e0 = − sin s1 x̃ + cos s1 ẽ0 so that

x, e0, ea, ep, eα, eμ(9.1)

is a Darboux frame field (4.16) along x on U . Let

ωa, ωp, ωα, ωμ(9.2)

be its coframe field (4.13) on U .

Theorem 24. If x satisfies the spanning property (Definition 8) and con-
dition (8.1), Fμ

α a+m = Fμ
αa, on U , then it comes from an FKM construction.

Proof. It is sufficient to prove the theorem locally, on some open neigh-
borhood, because isoparametric hypersurfaces are algebraic. For each point in
U , the vectors of our Darboux frame field (9.1) form an orthonormal basis of
Rn+1. Linear operators Q0, Qa on Rn+1, depending on the point in U , can
thus be defined by (7.39) and (7.40), which we recopy here for easier reference

Q0x = e0, Q0e0 = x, Q0ea = −ea+m,

Q0ea+m = −ea, Q0eα = −eα, Q0eμ = eμ,
(9.3)

and for each a

Qax = ea,

Qae0 = ea+m,

Qaeb = δabx − Lc
abec+m + Fα

a+m beα + Fμ
a+m beμ,

Qaeb+m = δabe0 + Lc
abec + Fα

b+m aeα − Fμ
b+m aeμ,

Qaeα = Fα
a+m beb + Fα

b+m aeb+m − 2Fμ
α aeμ,

Qaeμ = Fμ
a+m beb − Fμ

b+m aeb+m − 2Fμ
α aeα,

(9.4)

where the coefficients are defined as in (4.18) and (8.4). We first outline the
quite elementary proof of the theorem, and then follow that with a proof of
the details. The first detail is:

(I). At each point of U these operators are symmetric, orthogonal and
satisfy

QiQj + QjQi = 2δijI, for i, j = 0, 1, . . . , m.(9.5)

Given that, next one proves the second detail:
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(II). There exist a (constant) Clifford system P0, . . . , Pm on Rn+1 and a
smooth map

B : U → SO(m + 1)(9.6)

such that at every point of U ,

Qj =
m∑

i=0

Bi
jPi, for j = 0, 1, . . . , m(9.7)

It will then follow that x maps U onto an open subset of the focal submanifold
M+ defined in (7.4) by this Clifford system, and that the Darboux frame
field (7.14) coming from the FKM construction applied to P0, . . . , Pm coincides
with our frame field (9.1). Therefore, our x : U → Sn coincides with the FKM
construction applied to this Clifford system.

We turn now to the proof of detail (I). The verification that each Qi is
symmetric can be done almost by inspection. It is equally clear that Q0 is
orthogonal, since it sends the orthonormal basis (9.1) to an orthonormal basis.
The operator Qa sends the orthonormal basis (9.1) to the set of vectors given on
the right hand side of (9.4). Among these vectors, Qax, Qae0 is an orthonormal
pair orthogonal to the remaining vectors because La

bc are skew-symmetric in
a, b, c and Fα

a+m b and Fμ
a+m b are skew-symmetric in a and b.

In the following verification that

{Qaeb, Qaeb+m, Qaeα, Qaeμ : b, a, μ}

is orthonormal, we do not use the Einstein summation convention as a will
always be a repeated index which is not summed. We proceed through all the
cases.

Qaeb · Qaed = δabδad +
∑

c

Lb
acL

d
ac

+
∑
α

Fα
a+m bF

α
a+m d +

∑
μ

Fμ
a+m bF

μ
a+m d = δbd

by (8.55) with c changed to b and b changed to a.

Qaeb · Qaed+m =
∑
α

Fα
a+m bF

α
d+m a −

∑
μ

Fμ
a+m bF

μ
d+m a = 0

by the first equation in (5.6).

Qaeb · Qaeα =
∑

c

Lb
acF

α
c+m a − 2

∑
μ

Fμ
a+m bF

μ
αa = 0

by (8.37) with d changed to a.

Qaeb · Qaeμ = −
∑

c

Lb
acF

μ
c+m a − 2

∑
α

Fα
a+m bF

μ
αa = 0
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by (8.38) with d changed to a.

Qaeb+m · Qaed+m = δabδad +
∑

c

Lc
abL

c
ad

+
∑
α

Fα
b+m aF

α
d+m a +

∑
μ

Fμ
b+m aF

μ
d+m a = δbd

by (8.55) with c changed to b and b changed to a.

Qaeb+m · Qaeα =
∑

c

Lc
abF

α
a+m c + 2

∑
μ

Fμ
b+m aF

μ
αa = 0

by (8.37) with d changed to a.

Qaeb+m · Qaeμ =
∑

c

Lc
abF

μ
a+m c − 2

∑
α

Fα
b+m aF

μ
αa = 0

by (8.38) with d changed to a.

Qaeα · Qaeβ = 2
∑

b

Fα
b+m aF

β
b+m a + 4

∑
μ

Fμ
αaF

μ
βa = δαβ

by the second equation in (5.6).

Qaeα · Qaeμ =
∑

b

Fα
a+m bF

μ
a+m b −

∑
b

Fα
b+m aF

μ
b+m a = 0

by (8.2) and (8.3).

Qaeμ · Qaeν = 2
∑

b

Fμ
b+m aF

ν
b+m a + 4

∑
α

Fμ
αaF

ν
αa = δμν

by the fourth equation in (5.6). This completes the verification that each Qi

is an orthogonal transformation.
We proceed now to verify (9.5). For this we return to using the Einstein

summation convention. Clearly Q2
0 = I. To verify that Q0Qa + QaQ0 = 0, for

all a, we set S = Q0Qa + QaQ0 and evaluate it on the basis vectors.

Sx= Q0ea + Qae0 = −ea+m + ea+m = 0.

Se0 = Q0ea+m + Qax = −ea + ea = 0.

Seb = Q0(δabx + Lb
acec+m + Fα

a+m beα + Fμ
a+m beμ) + Qa(−eb+m)

= δabe0 − Lb
acec − Fα

a+m beα + Fμ
a+m beμ

−δabe0 − Lc
abec − Fα

b+m aeα + Fμ
b+m aeμ = 0.

Seb+m = Q0(δabe0 + Lc
abec + Fα

b+m aeα − Fμ
b+m aeμ) + Qa(−eb)

= δabx − Lc
abec+m − Fα

b+m aeα − Fμ
b+m aeμ

−δabx − Lb
acec+m − Fα

a+m beα − Fμ
a+m beμ = 0.

Seα = Q0(Fα
a+m beb + Fα

b+m aeb+m − 2Fμ
αaeμ) + Qa(−eα)
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=−Fα
a+m beb+m − Fα

b+m aeb − 2Fμ
αaeμ

−Fα
a+m beb − Fα

b+m aeb+m + 2Fμ
αaeμ = 0.

Seμ = Q0(F
μ
a+m beb − Fμ

b+m aeb+m − 2Fμ
αaeα) + Qaeμ

=−Fμ
a+m beb+m + Fμ

b+m aeb + 2Fμ
αaeα

+Fμ
a+m beb − Fμ

b+m aeb+m − 2Fμ
αaeα = 0.

Therefore, S = 0, which is what we wanted to prove.
Next we verify that QaQd + QdQa = 2δadI for all a and d. For this

verification we let T = QaQd + QdQa and evaluate it on the basis vectors.
Tx= Qaed + Qdea = δadx + Ld

acec+m + Fα
a+m deα + Fμ

a+m deμ

+δdax + La
dcec+m + Fα

d+m aeα + Fμ
d+m aeμ = 2δadx;

Te0 = Qaed+m + Qdea+m = δade0 + Lc
adec + Fα

d+m aeα − Fμ
d+m aeμ

+δdae0 + Lc
daec + Fα

a+m deα − Fμ
a+m deμ = 2δade0;

Teb = Qa(δdbx + Lb
dcec+m + Fα

d+m beα + Fμ
d+m beμ)

+Qd(δabx + Lb
acec+m + Fα

a+m beα + Fμ
a+m beμ)

= (Lb
da + Lb

ad)e0 + (δbdδae + δbaδde + Lb
dcL

e
ac + Lb

acL
e
dc

+Fα
d+m bF

α
a+m e + Fα

a+m bF
α
d+m e + Fμ

d+m bF
μ
a+m e + Fμ

a+m bF
μ
d+m e)ee

+(Fα
d+m bF

α
e+m a + Fα

a+m bF
α
e+m d − Fμ

d+m bF
μ
e+m a − Fμ

a+m bF
μ
e+m d)ee+m

+(Lb
dcF

α
c+m a + Lb

acF
α
c+m d − 2Fμ

d+m bF
μ
αa − 2Fμ

a+m bF
μ
αd)eα

−(Lb
dcF

μ
c+m a + Lb

acF
μ
c+m d + 2Fα

d+m bF
μ
αa + 2Fα

a+m bF
μ
αd)eμ

= 2δadδbeee = 2δadeb;

where the coefficient of ee comes from (8.55), the coefficient of ee+m is zero by
the first equation of (5.6), the coefficient of eα is zero by (8.37) (with the roles
of b and d reversed) and the coefficient of eμ is zero by (8.38) (with the roles
of b and d reversed).
Teb+m = (La

db + Ld
ab)x

+(Fα
b+m dF

α
a+m c + Fα

b+m aF
α
d+m c − Fμ

b+m dF
μ
a+m c − Fμ

b+m aF
μ
d+m c)ec

+(δdbδae + δabδde + Lc
dbL

c
ae + Lc

abL
c
de

+Fα
b+m dF

α
e+m a + Fα

b+m aF
α
e+m d + Fμ

b+m dF
μ
e+m a + Fμ

b+m aF
μ
e+m d)ee+m

+(Lc
dbF

α
a+m c + Lc

abF
α
d+m c + 2Fμ

b+m dF
μ
αa + 2Fμ

b+m aF
μ
αd)eα

+(Lc
dbF

μ
a+m c + Lc

abF
μ
d+m c − 2Fα

b+m dF
μ
αa − 2Fα

b+m aF
μ
αd)eμ

= 2δadδbeee+m = 2δadeb+m,

where the coefficient of ee+m comes from (8.55), the coefficient of ec is zero by
the first equation of (5.6), the coefficient of eα is zero by (8.37) (with the roles
of b and d reversed) and the coefficient of eμ is zero by (8.38) ( with the roles
of b and d reversed).

Teα = (Fα
d+m a + Fα

a+m d)x + (Fα
a+m d + Fα

d+m a)e0
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+(Fα
b+m dL

c
ab + Fα

b+m aL
c
db − 2Fμ

αdF
μ
a+m c − 2Fμ

αaF
μ
d+m c)ec

+(Fα
d+m bL

b
ac + Fα

a+m bL
b
dc + 2Fμ

αdF
μ
c+m a + 2Fμ

αaF
μ
c+m d)ec+m

+2(Fα
b+m dF

β
b+m a + Fα

b+m aF
β
b+m d + 2Fμ

αdF
μ
βa + 2Fμ

αaF
μ
βd)eβ

+(Fα
b+m dF

μ
b+m a + Fα

b+m aF
μ
b+m d − Fα

b+m dF
μ
b+m a − Fα

b+m aF
μ
b+m d)eμ

= 2δαβδadeβ = 2δadeα,

where the coefficients of x and e0 are clearly zero, the coefficients of ec and
of ec+m are zero by (8.37) (in which the roles of a, b, c, d are here played by
a, d, b, c), the coefficient of eβ comes from the second equation of (5.6) and the
coefficient of eμ is clearly zero.

Teμ = (Fμ
d+m a + Fμ

a+m d)x − (Fμ
a+m d + Fμ

d+m a)e0

−(2(Fμ
αdF

α
a+m b + Fμ

αaF
α
d+m b) + Fμ

c+m dL
b
ac + Fμ

c+m aL
b
dc)eb

−(Fμ
d+m cL

b
ac + 2Fμ

αdF
α
b+m a + Fμ

a+m cL
b
dc + 2Fμ

αaF
α
b+m d)eb+m

+(Fμ
d+m bF

α
a+m b − Fμ

b+m dF
α
b+m a + Fμ

a+m bF
α
d+m b − Fμ

b+m aF
α
b+m d)eα

+2(Fμ
d+m bF

ν
a+m b + 2Fμ

αdF
ν
αa + Fμ

a+m bF
ν
d+m b + 2Fμ

αaF
ν
αd)eν

= 2δadδμνeν = 2δadeμ,

where the coefficients of x and e0 are clearly zero, the coefficients of eb and eb+m

are zero by (8.38) (in which the roles of b and d are reversed), the coefficient
of eα is zero by (8.2) and (8.3), and the coefficient of eμ comes from the fifth
equation of (5.6). This completes the proof of detail (I).

In order to prove (II), we must find a Clifford system P0, . . . , Pm which
is related to Q0, . . . , Qm by (9.7). We do this by finding the map B : U →
SO(m + 1) of (9.6). Let

νa = ωa + ωa+m(9.8)

Use (5.1) together with (8.2)–(8.4) to find

dνa = −νa
b ∧ νb(9.9)

where

νa
b = θa

b + La
cbω

c+m + Fα
a+m bω

α + Fμ
a+m bω

μ = −νb
a.(9.10)

Set

ν0
b = −νb

0 = −νb = −(ωb + ωb+m).(9.11)

We shall verify below that

dQj =
m∑

k=0

Qkν
k
j , for j = 0, . . . , m.(9.12)
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Differentiating this, we find that

dνi
j = −

m∑
k=0

νi
k ∧ νk

j , for i, j = 0, . . . m.(9.13)

In fact, (9.9) is the case i = a, j = 0 and also implies the case i = 0, j = a. To
verify the remaining cases in (9.13), we take the exterior derivative of (9.12)
when j = a, and then use (9.12) and (9.9) to find

0 = ddQa = dQ0 ∧ ν0
a + Q0dν0

a + dQb ∧ νb
a + Qbdνb

a

= Qbν
b ∧ ν0

a + Q0ν
a
b ∧ νb + (Q0ν

0
b + Qcν

c
b) ∧ νb

a + Qbdνb
a

= Qb(dνb
a + νb

c ∧ νc
a + νb ∧ ν0

a) + Q0(νa
b ∧ νb + ν0

b ∧ νb
a),

(9.14)

which implies (9.13) because the coefficient of Q0 is zero and the Qb are linearly
independent at each point of U , as can be seen from the fact that Qbx = eb

are linearly independent at each point. Define the o(m + 1)-valued 1-form ν

to be

ν =
(

0 ν0
b

νa
0 νa

b

)
.(9.15)

Then (9.9) and (9.13) imply that dν = −ν∧ν. Therefore, on a simply connected
subset of U , which we continue to call U , there exists a smooth map

A : U → SO(m + 1)(9.16)

such that A−1dA = ν. Denote the entries of A by the functions Ai
j , i, j =

0, . . . , m, so that the entries of dA = Aν are given by

dAi
j =

m∑
k=0

Ai
kν

k
j .(9.17)

Let

Pi =
m∑

j=0

Ai
jQj , for i = 0, . . . , m(9.18)

which, at each point of U , is a set of symmetric, orthogonal transformations of
Rn+1 satisfying the conditions PiPj +PjPi = 2δijI, since QiQj +QjQi = 2δijI

and A ∈ SO(m + 1). By (9.12) and (9.17),

dPi =
m∑

j=0

((dAi
j)Qj + Ai

jdQj) =
m∑

j,k=0

(Ai
kQjν

k
j + Ai

jQkν
k
j ) = 0(9.19)

since νi
j + νj

i = 0. Therefore, each Pi is constant on U and P0, . . . , Pm define
a Clifford system on Rn+1 and (9.7) holds with B = A−1.

All that remains of the proof of detail (II) is to verify (9.12), for which
we need the Maurer-Cartan equations (4.20) for our Darboux frame field. We
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first verify (9.12) for j = 0, then for j = a, in both cases by evaluating each
side on the basis vectors. Differentiating equations in (9.3) and using (4.20),
we get

(dQ0)x= d(Q0x) − Q0 dx

= de0 − Q0(ωa+mea+m + ωαeα + ωμeμ)

= ωaea − ωαeα + ωμeμ + ωa+mea + ωαeα − ωμeμ

= νaea = νaQax.

(dQ0)e0 = d(Q0e0) − Q0 de0

= dx − Q0(ωaea − ωαeα + ωμeμ)

= νaea+m = νaQae0.

(dQ0)ea = d(Q0ea) − Q0dea = −dea+m − Q0 dea

= νax + (ωb+m
a − ωb

a+m)eb + (ωb
a − ωb+m

a+m)eb+m

+(ωα
a − ωα

a+m)eα − (ωμ
a+m + ωμ

a )eμ

= νb(δabx + Lc
abec+m + Fα

b+m aeα + Fμ
b+m aeμ)

= νbQbea.

(dQ0)ea+m = d(Q0ea+m) − Q0 dea+m = −dea − Q0 dea+m

= (ωa + ωa+m)e0 + (ωb+m
a+m − ωb

a)eb + (ωb
a+m − ωb+m

a )eb+m

+(ωα
a+m − ωα

a )eα − (ωμ
a+m + ωμ

a )eμ

= νb(δabe0 − Lc
abec + Fα

a+m beα − Fμ
a+m beμ) = νbQbea+m.

(dQ0)eα = d(Q0eα) − Q0 deα = −deα − Q0 deα

= (ωa+m
α − ωa

α)ea + (ωa
α − ωa+m

α )ea+m − 2ωμ
αeμ

= νb(Fα
b+m aea − Fα

b+m aea+m − 2Fμ
αbeμ) = νbQbeα

(dQ0)eμ = d(Q0eμ) − Q0 deμ = deμ − Q0 deμ

= (θa
μ + θa+m

μ )(ea + ea+m) + 2θα
μeα

= νb(Fμ
b+m a(ea + ea+m) − 2Fμ

αbeα) = νbQbeμ.

This completes the verification of (9.12) for the case j = 0.
We now verify the equations in (9.12) for the cases j = a by applying each

side to the basis vectors. By (9.4) and (4.20),

(dQa)x= d(Qax) − Qadx = dea − Qa(ωb+meb+m + ωαeα + ωμeμ)

=−νae0 + (θb
a − Lb

acω
c+m − Fα

a+m bω
α − Fμ

a+m bω
μ)eb

+(θb+m
a − Fα

b+m aω
α − Fμ

b+m aω
μ)eb+m

+(θα
a − Fα

b+m aω
b+m + 2Fμ

αaω
μ)eα + (θμ

a + Fμ
b+m aω

b+m + 2Fμ
αaω

α)eμ

=−νa
0e0 + νb

aeb = (ν0
aQ0 + νb

aQb)x.
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(dQa)e0 = d(Qae0) − Qade0 = dea+m − Qa(ωbeb − ωαeα + ωμeμ)

= (−ωa+m − ωa)x + (θb
a+m + Fα

a+m bω
α − Fμ

a+m bω
μ)eb

+(θb+m
a+m − Lc

abω
c + Fα

b+m aω
α + Fμ

b+m aω
μ)eb+m

+(θα
a+m − Fα

a+m bω
b + 2Fμ

αaω
μ)eα

+(θμ
a+m − Fμ

a+m bω
b − 2Fμ

αaω
α)eμ

=−νax + (θb+m
a+m − Lc

abω
c + Fα

b+m aω
α + Fμ

b+m aω
μ)eb+m

=−νax + νb
aeb+m = (ν0

aQ0 + νb
aQb)e0,

where the coefficients of eb, eα and eμ are zero by (4.18), and (9.10) is used in
the coefficient of eb+m.

In order to verify (9.12) when both sides are applied to eb, we must verify
that

d(Qaeb) − Qadeb = (dQa)eb = ν0
aQ0eb + νc

aQceb

= νb
ax + (δbdν

a + Ld
bcν

c
a)ed+m + Fα

c+m bν
c
aeα + Fμ

c+m bν
c
aeμ.

(9.20)

Using (9.4) and (4.20), and gathering together the coefficients of each basis
vector, we get

d(Qaeb) − Qadeb

= (Lc
abω

c+m − Fα
a+m bω

α − Fμ
a+m bω

μ − θa
b )x

+ (Fα
a+m bω

α − Fμ
a+m bω

μ − θa+m
b )e0

+ (−Lc
abθ

d
c+m + Fα

a+m bθ
d
α + Fμ

a+m bθ
d
μ

− Ld
acθ

c+m
b − Fα

a+m dθ
α
b − Fμ

a+m dθ
μ
b )ed

+ (δabω
c+m − dLc

ab − Ld
abθ

c+m
d+m + Fα

a+m bθ
c+m
α + Fμ

a+m bθ
c+m
μ

+ δacω
b + Lc

adθ
d
b − Fα

c+m aθ
α
b + Fμ

c+m aθ
μ
b )ec+m

+ (δabω
α − Lc

abθ
α
c+m + dFα

a+m b + F β
a+m bθ

α
β

+ Fμ
a+m bθ

α
μ − Fα

a+m cθ
c
b − Fα

c+m aθ
c+m
b + 2Fμ

αaθ
μ
b )eα

+ (δabω
μ − Lc

abθ
μ
c+m + Fα

a+m bθ
μ
α + dFμ

a+m b

+ F ν
a+m bθ

μ
ν − Fμ

a+m cθ
c
b + Fμ

c+m aθ
c+m
b + 2Fμ

αaθ
α
b )eμ.

(9.21)

The coefficient of x is νb
a by (9.10). The coefficient of e0 is zero. Substitut-

ing (4.18) into the coefficient of ed, we get

(−Fα
a+m bF

α
c+m d − Fα

a+m dF
α
c+m b + Fμ

a+m bF
μ
c+m d + Fμ

a+m dF
μ
c+m b)ω

c+m

−(Lb
acF

α
c+m d + Ld

acF
α
c+m b − 2Fμ

a+m bF
μ
αd − 2Fμ

a+m dF
μ
αb)ω

α

+(Lb
acF

μ
c+m d + Ld

acF
μ
c+m b + 2Fα

a+m bF
μ
αd + 2Fα

a+m dF
μ
αb)ω

μ

which is zero since the coefficient of ωc+m is zero by the first equation in (5.6),
the coefficient of ωα is zero by (8.37) and the coefficient of ωμ is zero by (8.38).
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Thus, the coefficient of ed is zero, in agreement with the right hand side
of (9.20).

By (4.18), (8.50) and (9.8) with (9.10), the coefficient of ec+m becomes

−Lc
dbν

d
a + νaδc

b

−(Lc
abd − Le

abL
c
ed + Fα

a+m bF
α
c+m d + Fμ

a+m bF
μ
c+m d − δacδbd + δbcδad)ωd

+(−Lc
ab d+m + Lc

ebL
e
da + Le

abL
c
ed − Fα

c+m aF
α
d+m b

−Fμ
c+m aF

μ
d+m b + δabδcd − δbcδad)ωd+m

+(−Lc
abα + Lc

dbF
α
d+m a − 2Fμ

a+m bF
μ
α c+m − 2Fμ

c+m aF
μ
αb)ω

α

+(−Lc
abμ + Lc

dbF
μ
d+m a + 2Fα

a+m bF
μ
α c+m + 2Fα

c+m aF
μ
αb)ω

μ.

We now verify that zero is the coefficient of each of ωd, ωd+m, ωα, ωμ.
The coefficient of ωd can be seen to be zero by taking (8.51) (with indices

in the order c, a, b, d) and subtracting half of (8.55) (with indices as is).
The coefficient of ωd+m can be seen to be zero by using (8.60), then

adding (8.51) (with indices in the order c, a, b, d), then adding half of (8.55)
(with indices as is), and then using (8.55) again (with the roles of d and c

reversed).
The coefficient of ωα can be seen to be zero from (8.53) and (8.37).
The coefficient of ωμ is zero by (8.54).
Hence, we have shown that the coefficient of ec+m in (dQa)eb is as given

in (9.20).
Using (5.2), (8.4) and (9.10), we can rewrite the coefficient of eα in (dQa)eb

(9.21) as

Fα
c+m bν

c
a + (Fα

a+m bc + Lb
adF

α
d+m c − Fμ

a+m bF
μ
αc − Fα

d+m bL
d
ac)ω

c

+ (Fα
a+m b c+m − Fμ

a+m bF
μ
α c+m − 2Fμ

αaF
μ
c+m b)ω

c+m

+ (Fα
a+m bβ + δabδαβ − Fα

c+m aF
β
c+m b − 4Fμ

αaF
μ
βb − Fα

c+m bF
β
c+m a)ω

β

+ (Fα
a+m bμ − 2Lb

acF
μ
αc + Fα

c+m aF
μ
c+m b − Fα

c+m bF
μ
c+m a)ω

μ.

We see the coefficient of ωc as zero by using the first equation in (5.7) and then
using (8.37). The coefficient of ωc+m is zero by the second equation in (5.7).
The coefficient of ωβ is zero by the third equation in (5.7) and then by the
second equation in (5.6). The coefficient of ωμ is seen to be zero by use of (5.11)
and then by (8.39) (with the roles of a and b interchanged).

Using (5.2) and (9.10), we can rewrite the coefficient of eμ in (dQa)eb

(9.21) as

Fμ
c+m bν

c
a + (Fμ

a+m bc + Lb
adF

μ
d+m c + Fα

a+m bF
μ
αc − Fμ

d+m bL
d
ac)ω

c

+ (Fμ
a+m b c+m + Fα

a+m bF
μ
α c+m + 2Fμ

αaF
α
c+m b)ω

c+m

+ (Fμ
a+m bα + 2Lb

acF
μ
α c+m + Fμ

c+m aF
α
c+m b − Fμ

c+m bF
α
c+m a)ω

α

+ (Fμ
a+m bν + δabδμν − Fμ

c+m aF
ν
c+m b − 4Fμ

αaF
ν
αb − Fμ

c+m bF
ν
c+m a)ω

ν .



ISOPARAMETRIC HYPERSURFACES 45

The coefficient of ωc is seen to be zero by use of the first equation in (5.8) and
then by (8.38). The coefficient of ωc+m is zero by the second equation in (5.8).
The coefficient of ωα is zero by (8.39). The coefficient of ωμ is seen to be zero
by use of the third equation in (5.8) and then by the fourth equation in (5.6).
This completes the verification of (9.20).

The next case is to verify (9.12) when both sides are applied to eb+m. We
must verify that

d(Qaeb+m) − Qadeb+m = (dQa)eb+m = ν0
aQ0eb+m + νc

aQceb+m

= νaeb + νb
ae0 + Lc

dbν
d
aec + Fα

b+m cν
c
aeα − Fμ

b+m cν
c
aeμ

(9.22)

by (9.4). Using (9.4) to compute Qaeb+m and (4.20) to compute deb+m, we see
that the left hand side becomes

(−Fα
b+m aω

α + Fμ
b+m aω

μ − θa
b+m)x

+ (−Lc
abω

c + Fα
b+m aω

α + Fμ
b+m aω

μ − θa+m
b+m )e0

+ (δabω
c + dLc

ab + Ld
abθ

c
d + Fα

b+m aθ
c
α − Fμ

b+m aθ
c
μ

+ δacω
b+m − Lc

adθ
d+m
b+m − Fα

a+m cθ
α
b+m − Fμ

a+m cθ
μ
b+m)ec

+ (Lc
abθ

d+m
c + Fα

b+m aθ
d+m
α − Fμ

b+m aθ
d+m
μ − Lc

adθ
c
b+m

− Fα
d+m aθ

α
b+m + Fμ

d+m aθ
μ
b+m)ed+m

+ (−δabω
α + Lc

abθ
α
c + dFα

b+m a + F β
b+m aθ

α
β − Fμ

b+m aθ
α
μ

− Fα
a+m cθ

c
b+m − Fα

c+m aθ
c+m
b+m + 2Fμ

αaθ
μ
b+m)eα

+ (δabω
μ + Lc

abθ
μ
c + Fα

b+m aθ
μ
α − dFμ

b+m a − F ν
b+m aθ

μ
ν

− Fμ
a+m cθ

c
b+m + Fμ

c+m aθ
c+m
b+m + 2Fμ

αaθ
α
b+m)eμ.

(9.23)

We want to verify that this is equal to the right side of (9.22), where νc
a is

given by (9.10). We do this by comparing the coefficients of the basis vectors
x, e0, ec, ec+m, eα, eμ.

The coefficient of x is 0 by (4.18).
The coefficient of e0 is

θb
a + Lb

caω
c+m + Fα

b+m aω
α + Fμ

b+m aω
μ − Lb

ca(ω
c + ωc+m) + (θb+m

a+m − θb
a) = νb

a

by (8.4), (9.8) and (9.10).
The coefficient of ec in (dQa)eb+m in (9.23) is, by (4.18) and (8.50) and

the skew-symmetry of La
bcd in all four indices,

Lc
db(θ

d
a + Ld

eaω
e+m + Fα

d+m aω
α + Fμ

d+m aω
μ) + (ωa + ωa+m)δbc

+(La
bcd + δabδcd − δadδbc + Lc

aeL
e
bd − Fα

a+m cF
α
b+m d − Fμ

a+m cF
μ
b+m d)ω

d

+(Lc
ab d+m + δacδbd − δadδbc + Lc

ebL
e
ad + Lc

aeL
e
bd

−Fα
b+m aF

α
d+m c − Fμ

b+m aF
μ
d+m c)ω

d+m
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+(Lc
abα − Lc

ebF
α
e+m a − 2Fμ

b+m aF
μ
αc − 2Fμ

a+m cF
μ
αb+m)ωα

+(Lc
abμ − Lc

ebF
μ
e+m a + 2Fα

b+m aF
μ
αc + 2Fα

a+m cF
μ
αb+m)ωμ

= Lc
dbν

d
a + νaδbc

by (9.8) and (9.10) and the following. By (8.45) for La
bcd, the coefficient of ωd

becomes

δabδcd −
1
2
(δacδbd + δadδbc)

+
1
2
(Lc

aeL
e
bd − La

deL
e
bc) + Fμ

c+m aF
μ
b+m d − Fμ

c+m bF
μ
d+m a

which is zero by (8.49) combined with the first equation of (5.6). In the coef-
ficient of ωd+m, substitute (8.46) for La

bc d+m = Lc
ab d+m, and gather together

terms using skew-symmetries, to get

3
2
(δacδbd − δadδbc) +La

beL
d
ce +

1
2
La

deL
e
bc +

1
2
La

ceL
d
be − Fα

a+m dF
α
c+m b

−Fα
a+m bF

α
c+m d + Fμ

d+m bF
μ
a+m c + Fμ

a+m bF
μ
d+m c

which is zero by the first equation in (5.6) and then by (8.49). The coefficient
of ωα is zero by (8.47). The coefficient of ωμ is zero by (8.48).

The coefficient of ed+m in (dQa)eb+m in (9.23) is, by (4.18),

(−Fα
b+m aF

α
d+m c + Fμ

b+m aF
μ
d+m c − Fα

d+m aF
α
b+m c + Fμ

d+m aF
μ
b+m c)ω

c

+(Lc
baF

α
c+m d − 2Fμ

a+m bF
μ
αd + Lc

daF
α
c+m b − 2Fμ

a+m dF
μ
α b+m)ωα

+(−Lc
baF

μ
c+m d + 2Fα

b+m aF
μ
α d+m − Lc

daF
μ
c+m b + 2Fα

d+m aF
μ
α b+m)ωμ = 0

because the coefficient of ωc is 0 by the first equation in (5.6), the coefficient
of ωα is 0 by (8.37) and (8.1), and the coefficient of ωμ is 0 by (8.38) and (8.1).

The coefficient of eα in (dQa)eb+m in (9.23) is, by (4.18) and (5.2),

Fα
b+m c(θ

c
a + Lc

daω
d+m + F β

c+m aω
β + Fμ

c+m aω
μ)

+(Fα
b+m ac + Fμ

b+m aF
μ
αc + 2Fμ

αaF
μ
b+m c)ω

c

+(Fα
b+m a d+m + Lc

baF
α
c+m d + Lc

daF
α
c+m b + Fμ

b+m aF
μ
α d+m)ωd+m

+(−δabδαβ + Fα
b+m aβ + Fα

a+m cF
β
b+m c − Fα

b+m cF
β
c+m a + 4Fμ

αaF
μ
β b+m)ωβ

+(−2Lc
abF

μ
αc + Fα

b+m aμ − Fα
a+m cF

μ
b+m c − Fα

b+m cF
μ
c+m a)ω

μ

= Fα
b+m cν

c
a

by (9.10), because the other terms are zero as follows. The coefficient of ωc

is zero by the first equation in (5.7). The coefficient of ωd+m is zero by the
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second equation in (5.7) and (8.37). The coefficient of ωβ is zero by the third
equation of (5.7) and the third equation of (5.6). The coefficient of ωμ is zero
by the third equation in (5.11) and (8.39).

Finally, the coefficient of eμ in (dQa)eb+m from (9.23) is, by (4.18) and (5.2)

− Fμ
b+m c(θ

c
a − Lc

adω
d+m + Fα

c+m aω
α + F ν

c+m aω
ν)

+ (Fα
b+m aF

μ
αc − Fμ

b+m ac + 2Fμ
αaF

α
b+m c)ω

c

+ (−Lc
abF

μ
d+m c − Lc

adF
μ
b+m c + Fα

b+m aF
μ
α d+m − Fμ

b+m a d+m)ωd+m

+ (−2Lc
abF

μ
αc − Fμ

b+m aα + Fμ
a+m cF

α
b+m c + Fμ

b+m cF
α
c+m a)ω

α

+ (δabδμν − Fμ
b+m aν − Fμ

a+m cF
ν
b+m c + Fμ

b+m cF
ν
c+m a − 4Fμ

αaF
ν
α b+m)ωμ

= − Fμ
b+m cν

c
a

and by (9.10), because the other terms are zero as follows. The coefficient of
ωc is zero by the first equation in (5.8). The coefficient of ωd+m is zero by the
second equation in (5.8) and by (8.38). The coefficient of ωα is zero by (5.11)
and (8.39). The coefficient of ων is zero by the fourth equation in (5.6).

That concludes the verification of (9.22).
The next case is to verify (9.12) when both sides are applied to eα. We

must verify that

d(Qaeα) − Qadeα = (dQa)eα = ν0
aQ0eα + νc

aQceα

= νaeα + Fα
b+m cν

b
aec + Fα

c+m bν
b
aec+m − 2Fμ

αbν
b
aeμ.

(9.24)

Using (9.4) and (4.20), and gathering together the coefficients of each basis
vector, we get

(dQa)eα = (−Fα
b+m aω

b+m + 2Fμ
αaω

μ − θa
α)x

+ (−Fα
a+m bω

b + 2Fμ
αaω

μ − θa+m
α )e0

+ (dFα
a+m c + Fα

a+m bθ
c
b + Fα

b+m aθ
c
b+m − 2Fμ

αaθ
c
μ

+ δacω
α − Lc

abθ
b+m
α − F β

a+m cθ
β
α − Fμ

a+m cθ
μ
α)ec

+ (Fα
a+m bθ

c+m
b + dFα

c+m a + Fα
b+m aθ

c+m
b+m − 2Fμ

αaθ
c+m
μ

− δacω
α + Lc

abθ
b
α − F β

c+m aθ
β
α + Fμ

c+m aθ
μ
α)ec+m

+ (Fα
a+m bθ

β
b + Fα

b+m aθ
β
b+m − 2Fμ

αaθ
β
μ − F β

a+m bθ
b
α

− F β
b+m aθ

b+m
α + 2Fμ

βaθ
μ
α)eβ

+ (Fα
a+m bθ

μ
b + Fα

b+m aθ
μ
b+m − 2F ν

αaθ
μ
ν − 2dFμ

αa

− Fμ
a+m bθ

b
α + Fμ

b+m aθ
b+m
α + 2Fμ

βaθ
β
α)eμ.

(9.25)
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The coefficient of x is zero and the coefficient of e0 is zero, both by (4.18).
For the coefficient of ec, use (4.18), (5.2) and (8.4), and add and subtract
appropriate terms, to rewrite it as

Fα
b+m c(θ

b
a − Lb

adω
d+m + F β

b+m aω
β + Fμ

b+m aω
μ)

+(Fα
a+m cd − Fα

b+m cL
b
ad + Fα

b+m dL
c
ab − Fμ

a+m cF
μ
αd)ω

d

+(Fα
a+m c d+m − 2Fμ

α a+mFμ
d+m c − Fμ

a+m cF
μ
α d+m)ωd+m

+(−Fα
b+m cF

β
b+m a − Fα

b+m aF
β
b+m c + Fα

a+m cβ − 4Fμ
αaF

μ
βc + δacδαβ)ωβ

+(−Fα
b+m cF

μ
b+m a + Fα

b+m aF
μ
b+m c + Fα

a+m cμ − 2Lc
abF

μ
α b+m)ωμ

= Fα
b+m cν

b
a

by (9.10), because the other terms are zero as follows. The coefficient of ωd

is zero by the first equation of (5.7) and (8.37). The coefficient of ωd+m is
zero by the second equation of (5.7). The coefficient of ωβ is zero by the third
equation of (5.7) and then the second equation of (5.6). The coefficient of ωμ

is zero by (5.11) and then (8.39).
The coefficient of ec+m in (dQa)eα from (9.25) is, by (4.18),

Fα
c+m b(θ

b
a + Lb

daω
d+m + F β

b+m aω
β + Fμ

b+m aω
μ)

+(Fα
c+m ad + 2Fμ

αaF
μ
c+m d + Fμ

c+m aF
μ
αd)ω

d

+(Fα
c+m a d+m − Lc

abF
α
d+m b + Fμ

c+m aF
μ
α d+m − Lb

daF
α
c+m b)ω

d+m

+(Fα
c+m aβ + Fα

a+m bF
β
c+m b + 4Fμ

αaF
μ
β c+m − δacδαβ − Fα

c+m bF
β
b+m a)ω

β

+(Fα
c+m aμ − Fα

a+m bF
μ
c+m b + 2Lc

abF
μ
αb − Fα

c+m bF
μ
b+m a)ω

μ

= Fα
c+m bν

b
a,

by (9.10), because the other terms are zero as follows. The coefficient of ωd

is zero by the first equation in (5.7). The coefficient of ωd+m is zero by the
second equation in (5.7) and then (8.37). The coefficient of ωβ is zero by the
third equation in (5.7) and then the second equation in (5.6). The coefficient
of ωμ is zero by (5.11) and then (8.39).

The coefficient of eβ in (dQa)eα in (9.25) is, by (4.18),

(Fα
b+m aF

β
b+m c + 2Fμ

αaF
μ
βc + 2Fμ

βaF
μ
αc + F β

b+m aF
α
b+m c)ω

c

+(Fα
a+m bF

β
c+m b + 2Fμ

αaF
μ
β c+m + 2Fμ

βaF
μ
α c+m + F β

a+m bF
α
c+m b)ω

c+m

−2(Fα
a+m bF

μ
βb + Fα

b+m aF
μ
β b+m + F β

a+m bF
μ
αb + F β

b+m aF
μ
α b+m)ωμ

= δαβ(ωa + ωa+m) = δαβνa

by (9.8), because the coefficient of ωc is δαβδac by the second equation of (5.6),
and the coefficient of ωc+m is also δαβδac by (8.1), (8.2) and the second equation
of (5.6); and the coefficient of ωμ is zero by (8.1) and (8.2).



ISOPARAMETRIC HYPERSURFACES 49

The coefficient of eμ from (dQa)eα in (9.25) is, by (4.18) and (5.2),

−2Fμ
αb(θ

b
a + Lb

caω
c+m + F β

b+m aω
β + F ν

b+m aω
ν)

+(−2Fμ
αac + Fα

b+m aF
μ
b+m c − Fμ

b+m aF
α
b+m c)ω

c

+(−2Fμ
αa c+m + 2Fμ

αbL
b
ca − Fα

a+m bF
μ
c+m b + Fμ

a+m bF
α
c+m b)ω

c+m

+2(−Fμ
αaβ + F β

b+m aF
μ
αb − Fα

a+m bF
μ
βb + Fα

b+m aF
μ
β b+m)ωβ

+2(−Fμ
αaν + Fμ

αbF
ν
b+m a − Fμ

a+m bF
ν
αb + Fμ

b+m aF
ν
α b+m)ων

= −2Fμ
αbν

b
a,

by (9.8), because the coefficient of ωc is zero by the first equation in (5.9), the
coefficient of ωc+m is zero by (5.11) and then (8.39), the coefficient of ωβ is
zero by (8.1), (8.2) and the second equation in (5.9); and the coefficient of ων

is zero by (8.1), (8.3) and the third equation in (5.9).
This completes the verification of (9.24), which verifies that (9.12) holds

when both sides are applied to eα.
The final case is to verify (9.12) when both sides are applied to eμ. We

must verify that

d(Qaeμ) − Qa(deμ) = (dQa)eμ = ν0
aQ0eμ + νb

aQbeμ(9.26)

=−νaeμ + Fμ
b+m cν

b
aec − Fμ

c+m bν
b
aec+m − 2Fμ

αbν
b
aeα.

Using (9.4) and (4.20), and gathering together the coefficients of each basis
vector, we get for the left hand side

(dQa)eμ = (Fμ
b+m aω

b+m + 2Fμ
αaω

α − θa
μ)x(9.27)

−(Fμ
a+m bω

b + 2Fμ
αaω

α + θa+m
μ )e0

+(dFμ
a+m c + Fμ

a+m bθ
c
b − Fμ

b+m aθ
c
b+m − 2Fμ

αaθ
c
α + δacω

μ

−Lc
abθ

b+m
μ − Fα

a+m cθ
α
μ − F ν

a+m cθ
ν
μ)ec

+(Fμ
a+m bθ

c+m
b − dFμ

c+m a − Fμ
b+m aθ

c+m
b+m − 2Fμ

αaθ
c+m
α + δacω

μ

+Lc
abθ

b
μ − Fα

c+m aθ
α
μ + F ν

c+m aθ
ν
μ)ec+m

+(Fμ
a+m bθ

α
b − Fμ

b+m aθ
α
b+m − 2dFμ

αa − 2Fμ
βaθ

α
β − Fα

a+m bθ
b
μ

−Fα
b+m aθ

b+m
μ + 2F ν

αaθ
ν
μ)eα

+(Fμ
a+m bθ

ν
b − Fμ

b+m aθ
ν
b+m − 2Fμ

αaθ
ν
α

−F ν
a+m bθ

b
μ + F ν

b+m aθ
b+m
μ + 2F ν

αaθ
α
μ)eν .

The coefficient of x is zero by (4.18). The coefficient of e0 is zero by (4.18)
and (8.1).

After applying (5.2) and (4.18) and adding and then subtracting some
terms in the definition of νb

a in (9.10), we can rewrite the coefficient of ec as
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Fμ
b+m c(θ

b
a + Lb

daω
d+m + F β

b+m aω
β + F ν

b+m aω
ν)

+(Fμ
a+m cd − Fμ

b+m cL
b
ad + Lc

abF
μ
b+m d + Fα

a+m cF
μ
αd)ω

d

+(Fμ
a+m c d+m + 2Fμ

αaF
α
d+m c + Fα

a+m cF
μ
α d+m)ωd+m

+(Fμ
a+m cα + Fμ

b+m aF
α
b+m c + 2Lc

abF
μ
α b+m − Fμ

b+m cF
α
b+m a)ω

α

+(Fμ
a+m cν − Fμ

b+m aF
ν
b+m c − 4Fμ

αaF
ν
αc + δacδμν − Fμ

b+m cF
ν
b+m a)ω

ν

= Fμ
b+m cν

b
a

by (9.10) and the following. The coefficient of ωd is zero by the first equation
in (5.8) and then (8.38). The coefficient of ωd+m is zero by (8.1) and (5.8).
The coefficient of ωα is zero by (5.11) and then (8.39). The coefficient of ωμ

is zero by the third equation in (5.8) and then (8.1) and the fourth equation
in (5.6).

Using (5.2) and (4.18), we can rewrite the coefficient of ec+m in (dQa)eμ

from (9.27) as

−Fμ
c+m b(θ

b
a + Lb

daω
d+m + Fα

b+m aω
α + F ν

b+m aω
ν)

+(−Fμ
c+m ab + 2Fμ

αaF
α
c+m b + Fα

c+m aF
μ
αb)ω

b

+(Lb
daF

μ
c+m b − Fμ

c+m a d+m + Lc
abF

μ
d+m b + Fα

c+m aF
μ
α d+m)ωd+m

+(Fμ
c+m bF

α
b+m a − Fμ

c+m aα + Fμ
a+m bF

α
c+m b + 2Fμ

αbL
c
ab)ω

α

+(Fμ
c+m bF

ν
b+m a − Fμ

c+m aν − Fμ
a+m bF

ν
c+m b − 4Fμ

αaF
ν
α c+m + δacδμν)ων

= −Fμ
c+m bν

b
a,

by (9.10) and the following. The coefficient of ωb is zero by the first equa-
tion in (5.8). The coefficient of ωd+m is zero by the second equation in (5.8)
and then (8.1) and (8.38). The coefficient of ωα is zero by (5.11), then (8.2)
and (8.3) and (8.39). The coefficient of ων is zero by the third equation in (5.8),
then (8.1) and (8.3) and then the fourth equation in (5.6).

Using (5.2) and (4.18), we can rewrite the coefficient of eα in (dQa)eμ

in (9.27) as

−2Fμ
αb(θ

b
a + Lb

caω
c+m + F β

b+m aω
β + F ν

b+m aω
ν)

+(−2Fμ
αac − Fμ

b+m aF
α
b+m c + Fα

b+m aF
μ
b+m c)ω

c

+(−2Fμ
αa c+m + 2Fμ

αbL
b
ca + Fμ

a+m bF
α
c+m b − Fμ

c+m bF
α
a+m b)ω

c+m

+2(−Fμ
αaβ + Fμ

αbF
β
b+m a − Fμ

βbF
α
a+m b + Fμ

β b+mFα
b+m a)ω

β

+2(−Fμ
αaν + Fμ

αbF
ν
b+m a − Fμ

a+m bF
ν
αb + Fμ

b+m aF
ν
α b+m)ων

= −2Fμ
αbν

b
a,

by (9.10) and the following. The coefficient of ωc is zero by the first equation
in (5.9). The coefficient of ωc+m is zero by (5.11), then (8.2) and (8.3) and
then (8.39). The coefficient of ωβ is zero by the second equation in (5.9) and
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then (8.1)-(8.3). The coefficient of ων is zero by the third equation in (5.9),
then (8.1) and (8.3).

Using (4.18), we can rewrite the coefficient of eμ in (dQa)eμ in (9.27) as

(−Fμ
b+m aF

ν
b+m c − 2Fμ

αaF
ν
αc − F ν

b+m aF
μ
b+m c − 2F ν

αaF
μ
αc)ω

c

+(−Fμ
a+m bF

ν
c+m b − 2Fμ

αaF
ν
α c+m − F ν

a+m bF
μ
c+m b − 2F ν

αaF
μ
α c+m)ωc+m

+2(−Fμ
a+m bF

ν
αb − Fμ

b+m aF
ν
α b+m − F ν

a+m bF
μ
αb − F ν

b+m aF
μ
α b+m)ωα

= −δμν(ωa + ωa+m) = −δμνν
a

by (8.1), (8.3) and the fourth equation in (5.6). This completes the verification
of (9.12) when both sides are applied to eμ, and therefore also completes the
verification of (9.12).

10. The quadratic forms

For the remainder of the paper, we will again refer to the two multiplicities
as m1 and m2, rather than m and N , respectively, and we will no longer use the
Einstein summation convention. Our task now is to solve (8.1) through (8.4).
It is known that m1 = m2 only when m1 = m2 = 1, which is of FKM-
type, or m1 = m2 = 2, which is not of FKM-type [1]. Therefore we assume
m1 �= m2 henceforth. Our convention is that m1 < m2 and we denote by
M+ (respectively, M−) the focal submanifold whose co-dimension is m1 + 1
(respectively, m2 + 1) in the ambient sphere. We change the Cartan-Münzner
polynomial F to −F if necessary so that always M+ = f−1(1) with respect to
the isoparametric function f . In view of Theorem 24, we look for conditions
on m1 and m2 that imply the validity of (8.1) and the spanning property.

As in Section 4 let x ∈ M+ and let e0 be a unit normal vector to M+ at x
for which the shape operator Se0 assumes the eigenspaces V0, V+ and V− with
eigenvalues 0, 1, and −1, respectively. For an orthonormal basis e0, . . . , em1

of the normal space to M+ at x we introduce the quadratic homogeneous
polynomials

p̌i(y) := Sei
y · y

for 0 ≤ i ≤ m1, where y is tangent to M+ at x. When such y has no V0

component, we shall write z instead of y. Regarding V+ ⊕V− as a subspace of
R2l by parallel translation, consider the set

Ď := {z ∈ V+ ⊕ V− : |z| = 1, p̌i(z) = 0, 0 ≤ i ≤ m1}.

Proposition 25. Ď = (V+ ⊕ V−) ∩ M+.
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Proof. This follows from the formula of [25, I, pp.524-526], that reads

F (tx + y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(
m1∑
i=0

p̌i(y)wi)t

+ |y|4 − 2
m1∑
i=0

(p̌i(y))2 + 8
m1∑
i=0

qi(y)wi

+ 2
m1∑

i,j=0

(∇p̌i · ∇p̌j)wiwj − 6|y|2|w|2 + |w|4.

(10.1)

Here, the homogeneous polynomials of degree three, qi(y), are the components
of the third fundamental form of M+, w =

∑m1
i=0 wiei, and y is tangent to M+.

For the convenience of the reader, let us briefly recall that Ozeki and Takeuchi
expanded F (tx + y + w) in terms of t and substituted it into its governing
partial differential equations mentioned in Section 2 to get

F (tx + y + w) = t4 + At2 + Bt + C,

where A is derived on p. 525, B is on p. 526, and C = C0 + · · ·+ C4, in which
Cs (given on p. 526) is the homogeneous part of C of degree s in the normal
coordinates w0, . . . , wm1 . When one sets t = 0, w = 0 and y = z ∈ V+ ⊕ V− in
the formula (10.1) one gets

F (z) − |z|4 = −2
m1∑
i=0

(p̌i(z))2.

Hence when |z| = 1, we have F (z) = 1 if and only if p̌i(z) = 0 for 0 ≤ i ≤ m1.

Remark 26. It is not obvious that the set Ď is non-empty. In Theorem 47
of Section 12, we will prove that Ď is non-empty when m2 ≥ 2m1 − 1. Propo-
sition 28 below still holds in the case where Ď is empty. In that case, the zero
locus of each set of polynomials in Proposition 28 is empty.

In view of Proposition 25 we set pi to be the restriction of 1
4 p̌i to the space

V+ ⊕ V− for 1 ≤ i ≤ m1, and set p0 to be the restriction of p̌0 to this space.
These are the quadratic polynomials p0, pa defined in (6.6). Recall from (4.26)
and (6.6), that relative to a second order Darboux frame we have variables
x = (xα) and y = (yμ) in terms of which these polynomials are

p0(x, y) =
m2∑
α=1

(xα)2 −
m2∑
μ=1

(yμ)2, pa(x, y) =
m2∑

α,μ=1

Fμ
αaxαyμ.(10.2)

For notational ease, as the context should remove any possibility of confusion,
we will stick to the range 1 ≤ α, μ ≤ m2 for xα and yμ from now on even
though α and μ live in the designated ranges as given in (4.6).
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As mentioned in Section 4, we know e0 also lies in M+ with the normal
space span(x, em1+1, . . . , e2m1). The 0,+1,−1 eigenspaces of the shape oper-
ator Sx at e0 are, respectively, span(e1, . . . , em1), V+ and V−. With respect
to the normal basis x, ep, m1 + 1 ≤ p ≤ 2m1, at e0, we let p0, . . . , pm1

be
the counterparts of p0, . . . , pm1 , respectively, as in (6.9). Then Proposition 25
immediately gives the following simple but crucial observation.

Proposition 27. Ď = {z ∈ V+ ⊕ V− : |z| = 1, pi(z) = 0, 0 ≤ i ≤ m1}.

Now Ď can be viewed from a different angle. Observe that all

z = (x1, . . . , xm2 , y1, . . . , ym2) ∈ Ď

must satisfy
∑m2

α=1(xα)2 +
∑m2

μ=1(yμ)2 = 1. It follows that z ∈ Sm2−1 × Sm2−1

due to the fact that p0(z) = 0, where Sm2−1 is the standard sphere of radius
1/

√
2. The real projective variety out of Sm2−1×Sm2−1 is RPm2−1×RPm2−1.

Note that the solution to pa = 0, 1 ≤ a ≤ m1, lives naturally in RPm2−1 ×
RPm2−1, which is parametrized by [x1 : · · · : xm2 ] × [y1 : · · · : ym2 ]. As a
consequence the projectivized Ď in RPm2−1 ×RPm2−1 via the map Sm2−1 ×
Sm2−1 −→ RPm2−1 × RPm2−1 is exactly

D := {[z] ∈ RPm2−1 × RPm2−1 : pa(z) = 0, 1 ≤ a ≤ m1}.(10.3)

Note that Ď �= ∅ if and only if D �= ∅. Since the +1 and −1 eigenspaces of
the shape operator Sx at e0 are V+ and V−, respectively, it follows from (10.2)
that p0 = p0. Hence, Proposition 27 can be rephrased as follows.

Proposition 28. The zero locus of p1, . . . , pm1 in RPm2−1 ×RPm2−1 is
identical with that of p1, . . . , pm1

.

Lemma 29. If m2 ≥ m1 + 2, then the quadratic forms p1, . . . , pm1 are
linearly independent and irreducible, both over the real numbers R and over
the complex numbers C.

Proof. The quadratic form pa(x, y) is given by

4pa(x, y) =
(

0 Aa
tAa 0

) (
x

y

)
·
(

x

y

)
= 2Aay · x

where Aa is the matrix with respect to eα, eμ of the operator defined in the
first equation of (6.3). Recall that the rank of pa is defined to be the rank of
the matrix of the associated bilinear form. Hence rank (pa) = 2 rank(Aa).

Let Sa = U+V be the shape operator given in (6.5), where U is the matrix
that retains the Aa and tAa blocks and is zero elsewhere. Then rank Sa ≤
rankU +rankV . Since rankSa = 2m2, rankU = 2 rankAa and rankV ≤ 2m1,
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we get
2(m2 − m1) ≤ 2 rankAa = rank (pa)

for all a, as proved by Ozeki and Takeuchi [25, II, p45].
If pa is reducible, then pa = fg is a product of linear forms f = aαxα+aμyμ

and g = bαxα + bμyμ. If we let a = t(aα aμ) and b = t(bα bμ) ∈ R2m2 then the
symmetric matrix of the quadratic form 4pa(x, y) must be (atb+bta)/2, which
has rank ≤ 2, as each column is a linear combination of a and b. In particular,
if m2 − m1 ≥ 2, then rank (pa) ≥ 4 > 2 and hence, pa is irreducible over R.
Notice that this discussion is unchanged if we work over the complex numbers,
which shows that they are irreducible over C as well. Linear independence of
p1, . . . , pm1 over R is equivalent to linear independence of A1, . . . , Am1 , which
follows under our hypotheses from Proposition 7. Being real polynomials, they
are also linearly independent over C.

11. Commutative algebra and algebraic geometry

We will explore in more depth the fact that pa, 1 ≤ a ≤ m1, are irre-
ducible when m2 ≥ m1 + 2 and are bihomogeneous, i.e., are homogeneous
in x1, . . . , xm2 and in y1, . . . , ym2 , of bi-degree (1, 1) in this section. We shall
pursue commutative algebra only to the extent that serves our need, and shall
stress the geometry behind the algebra. A few ad hoc proofs and examples will
be given to convey to the reader, who might be unfamiliar with the subject,
some intuition about the concepts encountered. Henceforth, n is just an index
that has nothing to do with the dimension of the ambient sphere in which the
isoparametric hypersurface sits.

Definition 30. Let F be either R or C and let F[x1, . . . , xs, y1, . . . , ys]
be the polynomial ring in variables x1, . . . , xs, y1, . . . , ys over F. Given bi-
homogeneous polynomials p1, . . . , pn, we say that the ideal I := (p1, . . . , pn) in
F[x1, . . . , xs, y1, . . . , ys] is reduced if

(i) The bi-projective variety

PbVI := {([x], [y]) ∈ FP s−1 × FP s−1 : pa(x, y) = 0, 1 ≤ a ≤ n}

is not empty, and

(ii) Whenever f ∈ F[x1, . . . , xs, y1, . . . , ys] satisfies f |PbVI
≡ 0 then

f = p1f1 + · · · + pnfn

for some f1, . . . , fn ∈ F[x1, . . . , xs, y1, . . . , ys].

We call the affine variety VI := {(x, y) ∈ Cs×Cs : pa(x, y) = 0, 1 ≤ a ≤ n}
a bi-affine cone.
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For instance, when F = C, the radical of I, denoted by rad(I), is always
reduced, if PbVI �= ∅. This is Hilbert’s Nullstellensatz indeed [11]. In particu-
lar, since a prime ideal equals its radical, the ideal I will be reduced if I is a
prime ideal. PbVI is not empty automatically in this case, because otherwise
VI = (Cs × {0}) ∪ ({0} × Cs) would not be irreducible. We will extensively
probe the primeness of I subsequently. (See [14] and [21] for bi-projective ge-
ometry.) Before we proceed, let us introduce some notation. When p is a real
polynomial, we denote by pC the same polynomial whose variables are over
the complex numbers. We call pC the complexification of p. Likewise, when
p1, · · · , pn are bi-homogeneous in R[x1, . . . , xs, y1, . . . , ys], we denote by V the
resulting real bi-affine cone and by V C the complex bi-affine cone defined by
the complexifications of p1, · · · , pn.

Lemma 31. Suppose V is a bi-affine cone in Rs ×Rs defined by the real
polynomials p1, · · · , pn, such that its complex counterpart V C is irreducible and
such that dimR(V ) = dimC(V C). If a real polynomial p(x1, . . . , xs, y1, . . . , ys)
satisfies p|V ≡ 0, then pC|V C ≡ 0.

Here, by the dimension of V we mean the maximal dimension of all the
irreducible components of V .

Proof. Suppose pC|V C is not identically zero on V C. Then pC cuts out
a subvariety X, all of whose irreducible components are of co-dimension 1 in
V C [28, p. 59]. Clearly, V ⊂ X. Then we have

dimR(V ) ≤ dimC(X) = dimC(V C) − 1,

in contradiction to the assumption that dimR(V ) = dimC(V C). The inequality
holds true because any real analytic parametrization σ : t = (t1, · · · , tk) �−→
(x1, · · · , xs, y1, · · · , ys) ∈ V around a smooth point, at t = 0, of V , satisfies
p1(σ(t)) = · · · = pn(σ(t)) = p(σ(t)) = 0. The convergent power series defining
σ remain so when t1, · · · , tk are allowed to be complex variables, and then
σ(t) is a holomorphic map, nonsingular at t = 0, such that pC

1 (σ(t)) = · · · =
pC

n (σ(t)) = pC(σ(t)) = 0 because a holomorphic function vanishing on the
real part is identically zero. That is, σ(t), with t complex, is a holomorphic
map, nonsingular at t = 0, into X. Therefore, we conclude that dimC(X) ≥
dimR(V ).

Proposition 32. If p1, . . . , pn ∈ R[x1, . . . , xs, y1, . . . , ys] are bihomo-
geneous polynomials of positive degree in each set of variables, and if pC

1 , . . . , pC
n ,

their complexifications, are such that

(1) V C := {z ∈ Cs × Cs : pC
a (z) = 0, 1 ≤ a ≤ n} is irreducible,

(2) rad(I) = I, where I := (pC
1 , . . . , pC

n ), and
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(3) dimR(V )=dimC(V C), where V :={z ∈ Rs × Rs : pa(z)=0, 1≤a≤n},

then the real ideal (p1, . . . , pn) is reduced.

Proof. I is a prime ideal by the first two assumptions. Therefore, the re-
mark immediately after Definition 30 ensures that PbV

C is not empty. More-
over, dimC(V C) > s by the first assumption and the fact that the reducible
(Cs × {0}) ∪ ({0} × Cs) is contained in V C. Hence PbV is not empty either
by the third assumption. So the first condition in Definition 30 holds. Let f

be a real polynomial vanishing on PbV so that f vanishes on V as well; by
Lemma 31 its complexification fC vanishes on V C. It follows from the re-
ducedness of I that there are complex bi-homogeneous polynomials h1, . . . , hn

such that
fC = pC

1 h1 + · · · + pC
n hn.

Let f1, . . . , fn be, respectively, the real parts of h1, . . . , hn when they are re-
stricted to the real variables. Since f and p1, . . . , pn are real, f = p1f1 + · · ·+
pnfn.

We now review some important notions and properties from commutative
algebra, leaving detailed expositions to [11] and [19].

Definition 33. Let R be a commutative ring with identity. We say that
n elements x1, . . . , xn ∈ R form a regular sequence if (x1, . . . , xn) �= R, x1 is
not a zero divisor in R and xi+1 is not a zero divisor in the quotient ring R/Ii,
where Ii is the ideal (x1, . . . , xi), for 1 ≤ i ≤ n − 1.

Example 34. A single nonconstant p ∈ C[z1, . . . , zL] clearly forms a regu-
lar sequence.

Example 35. Let p1 and p2 in C[z1, . . . , zL] be relatively prime homoge-
neous polynomials of degree ≥ 1. Then p1 and p2 form a regular sequence.
This follows simply from the fact that p2f = p1g implies f = p1h for some h.
Moreover, (p1, p2) is not the entire polynomial ring due to the homogeneity of
p1 and p2.

Definition 36. Let P be a prime ideal in a commutative ring R with iden-
tity. We define the codimension of P to be

codim(P) = sup{s : there is a prime chain Ps ⊂ · · · ⊂ P1 ⊂ P0 = P},
where the set inclusions are all proper. For an arbitrary ideal I we define

codim(I) = inf
I⊂P

{codim(P)},

and define the depth of I to be

depth(I) = sup{n : there is a regular sequence x1, . . . , xn ∈ I}.
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We define the dimension of R to be

dim(R) = sup{s : there is a prime chain Ps ⊂ · · · ⊂ P1 ⊂ P0 ⊂ R}.
Lastly, R is Cohen-Macaulay if, for every maximal ideal M of R (and such
ideals are necessarily prime), we have

depth(M) = codim(M).

Example 37. Consider R := C[x, y, z] with p1 = xz and p2 = yz. The
ideal I := (p1, p2) has the property rad(I) = I so that R/I is the coordinate
ring of the zero locus of p1 and p2, which is made up of the (x, y)-plane and the
z-axis. It is not hard to see that dim(R/I) = 2 �= 1, the ambient dimension
minus the number of equations. So the ring R/I is not Cohen-Macaulay.
In fact, at the origin the maximal ideal M = (x, y, z)/I is the first term
in a maximal descending prime chain (x, y, z)/I, (y, z)/I and (z)/I so that
codim(M) = 2. However, depth(M) = 1, since x + z mod(I), for instance,
forms a maximal regular sequence in M.

The following ingredient, on the other hand, generates many Cohen-
Macaulay rings.

FACT([11, p. 455]). If p1, . . . , pn form a regular sequence in the ring
R := C[z1, . . . , zL] with ideal I = (p1, . . . , pn), then codim(I) = n, the ring
R/I is Cohen-Macaulay, and dim(R/I) = L − n.

Remark 38. The FACT can be interpreted geometrically. In the case
when rad(I) = I, for instance, the quotient ring R/I is the coordinate ring
of an affine variety. This quotient ring being Cohen-Macaulay says that each
point of the affine variety is the zero locus of L − n coordinate functions from
R/I (technically, in a maximal regular sequence vanishing at the point), and
thus the codimension in the variety of each point is the expected value L − n.
The affine variety is then called a complete intersection. It is of dimension
L − n on all of its irreducible components.

We now come to the major recipe for inductively constructing Cohen-
Macaulay rings in this paper.

Proposition 39. If p1, . . . , pn are linearly independent homogeneous
polynomials of equal degree ≥ 1 in the ring C[z1, . . . , zL] such that the ideal
(p1, . . . , pn−1) is prime and such that p1, . . . , pn−1 form a regular sequence, then
p1, · · · , pn form a regular sequence. In particular, the FACT above implies that
the quotient ring C[z1, . . . , zL]/(p1, . . . , pn) is Cohen-Macaulay.

Proof. We know Vn−1 is irreducible since In−1 := (p1, · · · , pn−1) is prime.
Thus pn cannot vanish identically on Vn−1. Otherwise the Nullstellensatz ap-
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plied to pn on the prime In−1 would imply

pn = p1f1 + · · · + pn−1fn−1

for some f1, . . . , fn−1 ∈ C[z1, . . . , zL]. As shown in Proposition 11, we may
assume that f1, . . . , fn−1 are constant polynomials, because all of p1, . . . , pn

are homogeneous of the same degree ≥ 1. But this would imply that p1, . . . , pn

are linearly dependent, which is not the case by assumption.
Suppose there are f, f1, . . . , fn−1 ∈ C[z1, . . . , zL] such that

pnf = p1f1 + · · · + pn−1fn−1.

Then f |Vn−1 ≡ 0 since pn does not vanish identically on the irreducible Vn−1.
So once more the Nullstellensatz applied to f on In−1 implies that

f = p1g1 + · · · + pn−1gn−1

for some g1, . . . , gn−1 ∈ C[z1, . . . , zL].
Lastly, (p1, . . . , pn) �= C[z1, . . . , zL] since p1, . . . , pn are all homogeneous

of the same degree ≥ 1. This confirms that p1, . . . , pn form a regular sequence.

For our later applications on the variety level, Proposition 39 is not quite
sufficient, because the ring C[z1, . . . , zL]/(p1, . . . , pn) in the proposition, though
being Cohen-Macaulay, may have nilpotent elements, in which case the ring is
not the coordinate ring of an affine variety. If the ring contains no nilpotent
elements, then it is called reduced.

Example 40. Let p1 = y − x2 and p2 = y in C[x, y]. The zero locus
of p1 and p2 is {(0, 0)}. However, the Cohen-Macaulay ring C[x, y]/(p1, p2)
has a nilpotent element, namely, x mod((p1, p2)). Geometrically, the parabola
y = x2 intersects y = 0 with multiplicity 2.

What we must do now is to find conditions under which the quotient ring
in Proposition 39 is reduced, in which case the variety associated with the ring
is called a Cohen-Macaulay variety.

Proposition 41. Let Jn be the subvariety of the variety

Vn := {z ∈ CL : p1(z) = 0, . . . , pn(z) = 0}

where the Jacobian matrix of p1, . . . , pn is not of rank n. If codim(Jn) ≥ 1 in
Vn, then the affine coordinate ring C[z1, . . . , zL]/(p1, . . . , pn) is reduced.

Proof. This is just Serre’s criterion of reducedness [11, p. 457].

Remark 42. If we assume in Proposition 39 that Jn−1, the subvariety of
Vn−1 = {z : p1(z) = · · · = pn−1(z) = 0} where the Jacobian of p1, . . . , pn−1
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is not of rank n − 1, is of codimension ≥ 2 in Vn−1, then we can give a
somewhat more geometric account of Proposition 41 as follows. (In fact, in
our applications to follow, codim(Jn−1) ≥ 2 always holds true.) Let R =
C[z1, . . . , zL], let I = (p1, . . . , pn−1) and let J = (pn). We must show R/(I +J)
has no nilpotents. That is, whenever f ∈ R satisfies

fk = p1f1 + · · · + pnfn ∈ I + J

for some k and f1, . . . , fn, we must have f ∈ I + J . We may assume fk is not
in I, or else we are done since then f ∈ I by the primeness of I. It follows that
f is nonzero on Vn−1 and is zero on Vn.

Let Vn = W1 ∪ · · · ∪ Ws be the irreducible decomposition of Vn in Vn−1.
We know codim(Wi) = 1 in Vn−1 for all i. Then by codim(Jn) ≥ 1 in Vn the
polynomial pn cuts out Wi with multiplicity 1 for each i (it comes down to
the implicit function theorem in calculus). That is, pn = 0 defines the divisor
W1 + · · · + Ws in Vn−1.

Now since f vanishes on Vn, the divisor defined by f = 0 assumes multi-
plicity ≥ 1 on each Wi. At this point the principle that says that the poles get
cancelled by the zeros seems to suggest that the rational function f/pn is reg-
ular everywhere on Vn−1. This is certainly true if Vn−1 is smooth [28, p. 129],
because the germs of local regular functions on Vn−1 then form a unique fac-
torization domain; more generally, the normality of the variety suffices for the
conclusion [28, p. 111]. From this it follows that (f/pn)|Vn−1 = g for some
regular g on Vn−1. In other words, (f − png)|Vn−1 ≡ 0. Therefore,

f − png = p1g1 + · · · + pn−1gn−1 ∈ I

by the primeness of I. We conclude that f ∈ I + J , proving the reducedness
of R/(I + J).

It remains to ensure the normality of Vn−1, which is true if the co-
dimension of Jn−1 is at least 2. This is a consequence of Serre’s criterion
of primeness [11, p. 457], because Vn−1 is a Cohen-Macaulay variety since
codim(I) = n − 1. In any event we resort to Serre’s criterion one way or
another.

The next proposition plays a vital role in the applications to follow.

Proposition 43. Assume the notation in Proposition 41. If furthermore
codim(Jn) ≥ 2 in Vn and Vn is connected, then (p1, . . . , pn) is a prime ideal.

Proof. Proposition 41 asserts that Vn is a connected Cohen-Macaulay va-
riety. Now Xn, the complement of Jn in Vn, is smooth on the one hand. On
the other hand, Xn is also connected on account of Hartshorne’s connectedness
theorem [11, p. 454], that says that a connected Cohen-Macaulay variety re-
mains connected when a subvariety of codimension ≥ 2 is removed. Being both
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smooth and connected, Xn must be irreducible. However, since codim(Jn) ≥ 2,
Jn cannot be an irreducible component of Vn due to the fact that a Cohen-
Macaulay variety is of equal dimension on all of its irreducible components.
Vn is then irreducible. As a consequence (p1, . . . , pn) is a prime ideal because
Proposition 41 establishes the reducedness of (p1, . . . , pn).

Example 44. This example shows that codim(Jn) ≥ 2 in Vn is a must in
Proposition 43. Let p1 = z and p2 = x2 − y2 + z2 in C[x, y, z]. Then V2 =
{(x,±x, 0)} and J2 = {(0, 0, 0)}, which is of codimension 1 in V2. But V2 is
reducible albeit connected. It also illustrates that the codimension 2 condition
in Hartshorne’s connectedness theorem cannot be improved to codimension 1.

12. The classification theorem

We now return to the isoparametric case. For a given second order Dar-
boux frame field (4.16) along x on U ⊂ M , recall that we have, for 1 ≤ a ≤ m1,
bihomogeneous polynomials

pa =
m2∑

α,μ=1

Fμ
αaxαyμ

of bi-degree (1, 1) in the polynomial ring R[x1, . . . , xm2 , y1, . . . , ym2 ], irreducible
and linearly independent if m2 ≥ m1 + 2 by Lemma 29. Before proving the
theorem, we first introduce a generalized spanning property. For n = 1, . . . , m1,
we define the linear map Sx

n : Rm2 → Rn

Sx
n(y) = (p1(x, y), . . . , pn(x, y))(12.1)

for a fixed x, and the linear map Sy
n : Rm2 → Rn

Sy
n(x) = (p1(x, y), . . . , pn(x, y))(12.2)

for a fixed y.

Definition 45. We say that the n-spanning property holds if there is an
x ∈ Rm2 such that Sx

n is surjective and there is a y ∈ Rm2 such that Sy
n is

surjective.

Note that when n = m1, this definition agrees with that of the spanning
property in Definition 8 for the second fundamental form (see Remark 9). As
for the spanning property, the n-spanning property is an open condition.

We now set up an induction procedure toward our solution to (8.1) and
the spanning property.

Induction hypothesis S(n).

(I) p1, . . . , pn, n ≤ m1, being irreducible and linearly independent imply that
pC
1 , . . . , pC

n form a regular sequence.
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(II) Vn := {z = (x, y) ∈ Rm2 × Rm2 : pa(z) = 0, a = 1, . . . , n} and V C
n :=

{z = (x, y) ∈ Cm2 × Cm2 : pC
a (z) = 0, a = 1, . . . , n} satisfy dimR(Vn) =

dimC(V C
n ) = 2m2 − n, where dimR Vn is the maximal dimension of all

the irreducible components of Vn.

(III) In := (pC
1 , . . . , pC

n ) is a prime ideal.

(IV) The n-spanning property is true.

Let Jn be the subvariety of V C
n where the Jacobian matrix of pC

1 , . . . , pC
n is of

rank < n. Proposition 43 points out that codim(Jn) ≥ 2 plays a decisive role
in determining the primeness of In. We will establish in the next section the
following estimate.

Proposition 46. Assume m2≥m1+2. If m2≥2m1, then codim(Jn)≥2
for all n ≤ m1. If m2 = 2m1 − 1, then codim(Jn) ≥ 2 for all n ≤ m1 − 1
whereas codim(Jm1) ≥ 1.

Assuming this proposition for the time being, let us prove the classification
theorem of this paper.

Theorem 47 (Classification). If m2 ≥ 2m1 − 1, then the isoparametric
hypersurface is of FKM-type.

Proof. When m1 = 1, then a = 1, p = 2 and equations (5.6) through (5.10)
simplify sufficiently that one easily shows that there exists a second order frame
field for which

Fμ
α a+m1

= δα+m2 μ = Fμ
αa,

Fα
pa = 0 = Fμ

pa

for all α, μ. The first line of these equations implies (8.1) and the spanning
property. Hence, Theorem 24 implies Takagi’s result [30] that all such isopara-
metric hypersurfaces are of FKM-type.

Suppose m2 ≥ max(m1 +2, 2m1). Our strategy is to show that the induc-
tion procedure can be completed for n ≤ m1. When n = m1 what we achieve
out of the induction is that (8.1) and the spanning property hold true. It
follows from Theorem 24 that the isoparametric hypersurface is of FKM-type.

S(1) is true. (I) holds because pC
1 is irreducible by Lemma 29, and pC

1

cannot generate the polynomial ring since it is of degree 2. (II) is valid because
p1 is bihomogeneous of bi-degree (1,1), and so one can easily solve for one
variable in terms of the remaining ones regardless of whether the variables
are real or complex. (III) is verified because (pC

1 ) is a prime ideal due to the
irreducibility of pC

1 . (IV) is also clear since p1 �= 0.
Suppose S(n− 1) is true for n− 1 ≤ m1. We show S(n) is true if n ≤ m1.

Now, (I) comes from Proposition 39, so that the same proposition allows us to
conclude that C[x1, . . . , xm2 , y1, . . . , ym2 ]/(pC

1 , . . . , pC
n ) is Cohen-Macaulay.
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We wish to establish (II) next. To this end, note first that V C
n is of

equal dimension 2m2 − n on all irreducible components, because V C
n is the

intersection of the irreducible V C
n−1 and the irreducible hypersurface defined

by pC
n = 0. It follows that the real variety Vn has the property

dimR(Vn) ≤ dimC(V C
n ) = 2m2 − n,

because as established in Lemma 31, Vn is a real subvariety of V C
n and any

real subvariety is of dimension at most half the (real) dimension of V C
n . We

claim that there is a component of Vn having dimension 2m2 − n so that

dimR(Vn) = dimC(V C
n ),

which will establish (II). To prove the claim, consider

Vn
ι−→ Rm2 × Rm2 π1−→ Rm2 ,

where ι is the natural embedding and π1 is the projection onto the first sum-
mand. Note that (x, y) ∈ (π1 ◦ ι)−1(x) precisely when y belongs to the kernel
of the linear map Sx

n, which has dimension ≥ m2 − n > 0; in particular, π1 ◦ ι

is surjective. The set L of x where the dimension of the kernel of Sx
n achieves

the minimum value t is Zariski open. Since π1 ◦ ι is surjective, one of the
irreducible components W of Vn must be mapped onto an open subset of L
by Sard’s theorem. Around a regular value x of π1 ◦ ι in L we know Vn is a
product with fiber Rt, which is therefore contained in the irreducible W . Then
since t ≥ m2 − n,

dim(W ) = m2 + t ≥ m2 + m2 − n = 2m2 − n.

Therefore
dimR(Vn) = 2m2 − n = dimC(V C

n ),

which proves (II).
Now that dimW = 2m2 − n, the fact that Vn is a product with fiber Rt

around the regular value x gives

dim((π1 ◦ ι)−1(x)) = m2 − n.

That is, Sx
n spans Rn. Likewise, there is some y �= 0 in Rm2 such that Sy

n spans
Rn if we consider the projection π2 : Rm2 × Rm2 −→ Rm2 onto the second
summand. In conclusion, we have shown that (IV) is true.

To finish the induction, we must show that In is a prime ideal so that
(III) holds. Proposition 43 and Proposition 46 tell us that this is true if V C

n is
connected, which is the case because V C

n is a cone. In fact, if z and w are any
two points in V C

n , then the real lines from z to the origin and from the origin
to w are in V C

n , thus showing that V C
n is path connected.

Thus, by Propositions 43 and 46, the induction procedure is completed.
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Setting n = m1 in the induction, we obtain the spanning property in
Definition 8 by induction item (IV). Note also that PbVm1 is D defined in (10.3),
and PbVm1 is not empty by induction item (II), which says that dimR(Vm1) =
2m2 − m1 > m2, and thus Vm1 contains more than {0} × Rm2 ∪ Rm2 × {0}.

We are only left with handling (8.1). By Proposition 28 we know pa, 1 ≤
a ≤ m1, vanish on PbVm1 so that pa|Vm1

≡ 0, which warrants that pC
a |V C

m1
≡ 0

in view of the induction item (II) and Lemma 31, so that pC
a ∈ Im1 by the

induction item (III). Hence there are complex polynomials τab, 1 ≤ a, b ≤ m1,

such that

pC
a =

m1∑
b=1

τabp
C
b .

As shown in the proof of Proposition 11, we may assume that the τab are
constant polynomials, since each of the polynomials pC

a and pC
b is of bi-degree

(1, 1). Restricting to the real variables we obtain

pa =
m1∑
b=1

fabpb

for some real constants fab. The above argument establishes this at every point
of the open set U on which the frame is defined. By Proposition 11, after a
possible change of second order frame field along x on U , equation (8.1) holds
on U . Theorem 24 then finishes the proof in the case m2 ≥ max(m1 +2, 2m1).

When m2 ≥ m1 + 2 and m2 = 2m1 − 1, we can only conclude that V C
m1

is a reduced variety since codim(Jm1) ≥ 1. Now, pC
1 , . . . , pC

m1
is still a reg-

ular sequence. From the proof of (II) above, the (real) Vm1 is of dimension
2m2 − m1. Let W be an irreducible component of V C

m1
that contains an irre-

ducible component V of Vm1 of dimension 2m2 −m1. By Proposition 28 all pi

vanish on V . Then all pC
i vanish on W by Lemma 31. Hence, we may pick

a generic smooth point z of W for the Nullstellensatz to be true at z. That
is, W is (transversally) cut out by the ideal (pC

1 , . . . , pC
m1

) localized and still
reduced at z, because, in algebraic terms, localization at the maximal ideal
corresponding to p in the polynomial ring preserves Cohen-Macaulayness [11,
p. 456]. In other words, we obtain pC

i =
∑m1

j=1 sijp
C
j for some local functions sij

at z, i.e., sij = rij/qi with rij and qi polynomials and qi(z) �= 0. Equivalently,

pC
i qi =

m1∑
j=1

rijp
C
j .

Let the (x, y)-coordinates of z be (h1, . . . , hm2 , k1, . . . , km2) and set Xα =
xα − hα and Yμ = yμ − kμ. Now, since pa =

∑
α,μ Fμ

αaxαyμ, we substitute
(Xα, Yμ) into the above Nullstellensatz equation to compare the 1st-order terms
of (Xα, Yμ) to conclude kμF

μ
αa =

∑
b rμαbF

μ
αb and hαF

μ
αa =

∑
b sμαbF

μ
αb for
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some constants rμαb and sμαb. We may assume that none of the hα or kμ are
zero by performing a generic linear transformation. Then, one more time

F
μ
αa =

m1∑
b=1

fabF
μ
αb

for some constants fab.
When (m1, m2) = (2, 3), Ozeki-Takeuchi [25, II] proved that p1, p2 are

still irreducible and relatively prime, so that they form a regular sequence.
Moreover, we will show in Remark 53 that codim(J2) = 1. We are done by the
preceding arguments.

Remark 48. In contrast, for m1 = m2 = 2 of non-FKM-type, we have
two pairs of (p1, p2) depending on which one of the two focal submanifolds is
referred to as M+. One pair of (p1, p2) = (0, 0). The other pair is (2x2y1 −
2x1y2,−2x1y1 − 2x2y2), out of which the real bi-projective variety PbV2 is
empty whereas the complex bi-projective variety PbV

C
2 consists of four points

[1 : ±
√
−1] × [1 : ±

√
−1]. This case fails miserably to satisfy Proposition 32 .

13. The estimate

We now prove Proposition 46 to complete the classification theorem in
the preceding section. Recall for V C

n , its subvariety Jn is where the Jacobian
matrix of pC

1 , . . . , pC
n fails to be of rank n. From now on Sx

n and Sy
n in (12.1)

and (12.2) will be set in the complex category.

Lemma 49. Notation is as in (6.5). For any choice of a ∈ {1, . . . , m1},
there is an orthonormal basis in V+ and an orthonormal basis in V− such that
relative to these bases,

(1) Ba = Ca with rank = r ≤ m1, and

(2) Aa =
(

I 0
0 Δ

)
, where Δ is an r × r matrix in the block form Δ =

diag(Δ1,Δ2,Δ3, · · · ), in which Δ1 = 0 and Δi, i ≥ 2, are nonzero skew-
symmetric matrices in the block form Δi = diag(Θi,Θi, · · · ) with Θi a

2-by-2 matrix of the form
(

0 fi

−fi 0

)
.

Proof. We know Ba : V0 −→ V+, so that Ba
tBa : V+ −→ V+. Pick an

orthonormal basis X1, . . . , Xm2−r, Y1, . . . , Yr of V+ for some r such that

Ba
tBa :Xt �−→ 0,(13.1)

:Ys �−→ (σs)2Ys,
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where 1 ≤ t ≤ m2 − r, 1 ≤ s ≤ r, and σs > 0. Now tBa(Xt) = 0 be-
cause Ker(Ba) ∩ Im(tBa) = 0; hence Xt ∈ Ker(tBa). That is, Ker(tBa) is
the eigenspace of Ba

tBa with eigenvalue zero. On the other hand, we know
(Ker(tBa))⊥ = Im(Ba). So the eigenspace decomposition of Ba

tBa is

V+ = Ker(tBa) ⊕ Im(Ba)

with X1, . . . , Xm2−r spanning the first summand and Y1, . . . , Yr spanning the
second. As a result, it follows that r = rank(Ba). Likewise,

V0 = Ker(Ba) ⊕ Im(tBa).

Knowing from above that tBa(Xt) = 0 we set

tBa : Ys �−→ σsWs(13.2)

for some Ws. An easy calculation shows Wi ·Wj = δij so that W1, . . . , Wr form
an orthonormal basis of Im(tBa). In conclusion,

V0 = Ker(Ba) ⊕ Im(tBa),

where W1, . . . , Wr span the second summand and we let Z1, . . . , Zm1−r be an
orthonormal basis generating the first. We find by (13.1) that

Ba :Zt �−→ 0,(13.3)

:Ws �−→ σsYs.

We calculate to see that tBaBa : V0 −→ V0 satisfies

tBaBa :Zt �−→ 0,(13.4)

:Ws �−→ (σs)2Ws.

Now consider
Ca : V0 −→ V−.

In the same manner as above for Ba, we get V0 = Ker(Ca) ⊕ Im(tCa) with

Ca :Z∗
t �−→ 0,(13.5)

:W ∗
s �−→ σ∗

sY
∗
s ,

where Z∗
1 , . . . , Z∗

m1−p span Ker(Ca) and W ∗
1 , . . . , W ∗

p span Im(tCa) for some p.
However,

tCaCa = tBaBa

by the first equation of (5.6); we thus obtain Ker(Ba) = Ker(Ca) and Im(tBa) =
Im(tCa). In particular, p = r and we may take Z1, . . . , Zm1−r to be identi-
cal to Z∗

1 , . . . , Z∗
m1−r, and W1, . . . , Wr to be identical to W ∗

1 , . . . , W ∗
r . There-

fore (13.3) and (13.5) imply that we can pick a basis of V+ and a basis of V−
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relative to which the matrices of these operators, denoted by the same letters
as the operators, satisfy

Ba = Ca,(13.6)

because from
tCaCa :Z∗

t �−→ 0,

:W ∗
s �−→ (σ∗

s)
2W ∗

s

and Ws = W ∗
s , we know (σs)2 = (σ∗

s)
2, and hence we may assume σs = σ∗

s by
adjusting the basis in V−.

The second and the fourth equations of (5.6) together with (13.6) yield

Aa
tAa = tAaAa = I − 2Ba

tBa.(13.7)

We have three more equations

Ba
tBa

tAa + AaBa
tBa = 0,(13.8)

Ba
tBaAa + tAaBa

tBa = 0,(13.9)
tBa

tAaBa + tBaAaBa = 0,(13.10)

which can be derived from (13.6) and the three diagonal blocks of (6.7). Let

Aa =
(

α β

γ μ

)
where α is of size (m2 − r) × (m2 − r) and μ is of size r × r. Let σ =
diag(σ1, . . . , σr) be the diagonal matrix with the indicated diagonal entries so
that by (13.2) and (13.3), Ba and tBa are of the same form(

0 0
0 σ

)
,(13.11)

with Ba
tBa =

(
0 0
0 σ2

)
of the same block sizes as Aa. From (13.8) we obtain

β = γ = 0,(13.12)

σ2(tμ) =−μσ2.(13.13)

Moreover from (13.7) we see

αtα = I,(13.14)

μtμ= tμμ = I − 2σ2.(13.15)

Similarly, (13.9) yields

σ2μ = −tμσ2,(13.16)

and (13.10) gives

σtμσ = −σμσ.(13.17)
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With (13.13) and (13.16) we deduce

μij = −(σi/σj)2μji,

and
μji = −(σi/σj)2μij .

We therefore conclude

μij = 0 if σi �= σj ,

and
μij = −μji if σi = σj .

In other words,

Aa =
(

α 0
0 μ

)
with αtα = I and μ is in blocked form

μ = diag(Δ1,Δ2,Δ3, · · · ),
where all the Δi are skew-symmetric such that the number of Δi is the num-
ber of different non-zero eigenvalues of Ba

tBa. Then (13.17) is automatically
satisfied. Now by the skew-symmetry of μ and (13.15) we derive

Δ2
i = −(1 − 2σ2

i )I.(13.18)

In view of (13.14) and the skew-symmetry of μ we can perform an orthonormal
basis change so that α = I and

Δi = diag(
(

0 r1

−r1 0

)
,

(
0 r2

−r2 0

)
, · · · ).

Thus (13.18) implies r2
1 = r2

2 = · · · = 1 − 2σ2
i , and so

Δi =
√

1 − 2σ2
i diag(

(
0 1
−1 0

)
,

(
0 1
−1 0

)
, · · · )

if 1 − 2σ2
i > 0. We set Δ1 ≡ 0 so that σ1 = 1/

√
2. We are done.

Corollary 50. dim(Ker(Aa)) = dim(Δ1) ≤ r = rank(Ba) ≤ m1.

Remark 51. When (m1, m2)=(2, m2), m2≥3, Ozeki and Takeuchi showed
[25, II, p. 49], that r as given in Lemma 49 is 1, essentially by exploring the fact
that p1 and p2 form a regular sequence in the spirit of Example 35 above. It

follows immediately from Lemma 49 that we have Δ = 0 and so A1 =
(

I 0
0 0

)

as given in [25, II, p. 51]. With this it is not hard to see that A2 =
(

B 0
0 0

)

of the same block sizes as A1 with B =
(

0 −I

I 0

)
, where I in B is of size l× l

and m2 = 2l + 1.
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Proof of Proposition 46. We must estimate the codimension in V C
n of

Jn = {(x, y) ∈ V C
n : dpC

1 ∧ · · · ∧ dpC
n = 0}.

We first estimate the dimension of the subvariety Zn of Cm2 × Cm2 , defined
to be the locus of points where the Jacobian matrix of pC

1 , . . . , pC
n is of rank

< n. At (x, y) ∈ Zn, the differentials dpC
1 , . . . , dpC

n are linearly dependent, i.e.,
there exists [c1 : · · · : cn] ∈ CPn−1, depending on (x, y), such that

0 =
n∑

a=1

cadpC
a =

∑
α

(
∑
a,μ

caF
μ
αayμ)dxα +

∑
μ

(
∑
a,α

caF
μ
αaxα)dyμ,

which requires that the coefficients of dxα be zero and that the coefficients of
dyμ also be zero. Thus

Zn = {(x, y) ∈ Cm2 × Cm2 : ∃[c1 : · · · : cn],
∑

a

ca
tAax =

∑
a

caAay = 0}.

In order to estimate dimZn, let us define, for a fixed [c1 : · · · : cn] ∈ CPn−1,

Z(c1,...,cn) := {(x, y) ∈ Cm2 × Cm2 :
∑

a

ca
tAax =

∑
a

caAay = 0}.

Consider the incidence space Yn in CPn−1 × Cm2 × Cm2 given by

Yn = {([c1 : · · · : cn], x, y) : (x, y) ∈ Z(c1,...,cn)}.(13.19)

The standard projection of Yn to Cm2 × Cm2 maps Yn onto Zn. Let π be the
standard projection of Yn to CPn−1. Then with respect to π we have

dim(Zn) ≤ dim(Yn) ≤ dim(base) + dim(fiber),(13.20)

where dim(fiber) is the maximal dimension of all fibers. We first estimate the
dimension of the fibers π−1{[c1 : · · · : cn]} = Z(c1,...,cn). In fact, it comes down
to estimating the dimension of

T(c1,...,cn) := {y ∈ Cm2 :
∑

a

caAay = 0}

for a fixed [c1 : · · · : cn], because

dim(ker (
∑

a

ca
tAa)) = dim(ker (

∑
a

caAa)),(13.21)

thus giving us the estimate

dim(Z(c1,...,cn)) ≤ 2 dim(T(c1,...,cn)).

Remark 52. Let us examine the case (m1, m2) = (2, m2), m2 ≥ 3, before
we proceed. By the above standard matrix form of A1 and of A2 in Remark 51
we see that for ty = (tz, s) ∈ Cm2 , where s ∈ C,

A1
t(z, s) = t(z, 0) A2

t(z, s) = t(Bz, 0).
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Hence
∑n=2

a=1 caAay = 0 precisely when z = 0 or z is an eigenvector of B, with
eigenvalue ε

√
−1, where ε is ±. In other words, when [c1 : c2] = [ε

√
−1 : 1] in

CP 1, then

Z(c1,c2) = {((u,−ε
√
−1u, t), (v, ε

√
−1v, s)) : u, v ∈ Cl, s, t ∈ C},(13.22)

and Z(c1,c2) = {((0, 0, t), (0, 0, s)) : s, t ∈ C} for other values of [c1 : c2]. Thus

Z2 = Z(
√
−1,1) ∪ Z(−

√
−1,1),(13.23)

and so that

dim(Z2) = 2l + 2 = m2 + 1.(13.24)

We continue on now to estimate the dimension of Z(c1,...,cn).

Case (1). c1, . . . , cn are either all real or all purely imaginary. Say it is
the latter, so that ck =

√
−1dk with dk real. Then for y ∈ T(c1,...,cn),

n∑
k=1

dkAky = 0.

However, the second fundamental form S has the property

d1Se1 + · · · + dnSen
=

√
d2

1 + · · · + d2
nSe,

where
e = (d1e1 + · · · + dnen)/

√
d2

1 + · · · + d2
n.

We may therefore rename e to be e1 in the normal basis, and so by restricting
to the A-block in the matrix of S we see that Sey = 0 comes down to, after
the renaming, A1y = 0. Corollary 50 then establishes that

dim(T(c1,...,cn)) ≤ r ≤ m1

and

dim(Z(c1,...,cn)) ≤ 2 dimT(c1,...,cn) ≤ 2m1.

Case (2). c1, . . . , cn are not all real and not all purely imaginary. Write

ck = αk +
√
−1βk,

where not all αk and not all βk are zero. Then

c1Se1 + · · · + cnSen
= (α1Se1 + · · · + αnSen

) +
√
−1(β1Se1 + · · · + βnSen

).

As in Case (1), we know α1Se1 + · · · + αnSen
is a multiple of Se for some unit

vector e. Hence without loss of generality we may assume, after renaming e to
be e1, that

c1Se1 + · · · + cnSen
= α1Se1 +

√
−1(β1Se1 + · · · + βnSen

).
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On the other hand β2Se2 + · · ·+ βnSen
is a multiple of Sf for some unit vector

f perpendicular to e1. We rename f to be e2 so that we may assume without
loss of generality that

c1Se1 + · · · + cnSen
= (α1 +

√
−1β1)Se1 +

√
−1β2Se2 .

By restricting to the A-block in S again we see that (
∑

a caAa)y = 0 is reduced
to

β2A2y =
√
−1(α1 +

√
−1β1)A1y.

We may assume both coefficients are nonzero, or else we would be back to
Case (1). Hence we are now handling

(A2 − zA1)y = 0(13.25)

for some nonzero z ∈ C. By Lemma 49, we may assume A1 =
(

I 0
0 Δ

)
. Write

A2 =
(

Θ Λ
Ω Γ

)
of the same block sizes as A1. By the second equation of (5.6), which is

A2
tA1 + A1

tA2 + 2(B2
tB1 + B1

tB2) = 0,

we obtain

Θ + tΘ = 0(13.26)

when we invoke (13.11). If we write

y = t(u, v), u ∈ Cm2−r, v ∈ Cr

then part of (13.25) reads,

(zI − Θ)u = Λv.(13.27)

Consider the map G : Cm2 −→ Cm2−r given by

G : (u, v) �−→ (zI − Θ)u − Λv.

The kernel of G consists of all y = t(u, v) satisfying (13.27). If z is not an
eigenvalue of Θ, then the rank of G is at least the rank of zI − Θ, which is
m2−r. Thus, the rank of G is m2−r, so that the kernel of G has dimension r.
On the other hand if z is an eigenvalue of Θ, then because Θ is skew-symmetric
by (13.26), the rank of zI−Θ is at least (m2−r)/2 due to the fact that a nonzero
eigenvalue of Θ is purely imaginary, and its conjugate is also an eigenvalue of
Θ. It follows that the rank of G is no less than (m2 − r)/2, so that its kernel
is of dimension ≤ (m2 + r)/2. The upshot is that, since r ≤ m1 and since
dim(Tc1,...,cn

) is an integer, we have arrived at the estimate

dim(T(c1,...,cn)) ≤ [(m2 + r)/2] ≤ [(m2 + m1)/2] = (m2 + m1 − 1)/2,
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where [p] is the greatest integer in the number p; the last equality is true
because m2 +m1 is an odd number when 2 ≤ m1 < m2 by a result of Münzner
[22, II]. Therefore,

dim(fiber) = dim(Z(c1,...,cn)) ≤ 2 dim(T(c1,...,cn)) ≤ m2 + m1 − 1.(13.28)

This estimate is sharp in light of (13.24). Note that m2 + m1 − 1 is greater
than the upper bound 2m1 for dim(Z(c1,...,cn)) in Case (1), since m2 ≥ m1 + 2,

by assumption.
We next stratify the incidence space Yn of (13.19) in another way as

follows. We let s ≤ m2 be the largest integer for which
∑n

i=1 ciAi is of rank
s for some, and hence for generic, [c1 : · · · : cn], the set of which constitutes a
Zariski open set U of CPn−1. A look at Corollary 50 shows that s ≥ m2 −m1,

so that for [c1 : · · · : cn] in U ,

rank(
n∑

i=1

ciAi) = s ≥ m2 − m1,

and thus, by (13.21),

dim(fiber) = dim(Z(c1,...,cn)) = dim(ker(
n∑
1

ciAi)) + dim(ker(
n∑
1

ci
tAi))

= 2(m2 − rank(
n∑
1

ciAi)) = 2(m2 − s) ≤ 2m1.

It follows that over U , (13.20) extends to

dim(fiber) + dim(base) ≤ 2m1 + (n − 1).(13.29)

On the other hand, over a subvariety W , contained in CPn−1, of dimension
≤ n− 2, the rank of

∑n
i=1 ciAi is less than s. In view of (13.28), we have that

over W

dim(fiber) + dim(base) ≤ dim(fiber) + n − 2

≤ m1 + m2 − 1 + n − 2 = m1 + m2 + n − 3.
(13.30)

The part of Yn over U , call it A, is irreducible because each fiber over U is
a Euclidean space of a fixed dimension, whereas the part over W , call it B,
is Zariski closed in Yn. It follows that the closure of A, call it A, in Yn is
an irreducible component of Yn, and the closure of B not in A constitutes the
remaining irreducible components in Yn. Therefore, the larger of the two upper
bounds in (13.29) and (13.30) will be an upper bound for the dimension of Yn.
However, 2m1 + n− 1 ≤ m1 + m2 + n− 3, because m2 ≥ m1 + 2. We conclude
that over CPn−1

dim(Yn) ≤ m1 + m2 + n − 3(13.31)

if m2 ≥ m1 + 2.
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Now, Lemma 29 says that pC
1 , · · · , pC

n are linearly independent. Consider
the map

f : (x, y) ∈ Cm2 × Cm2 �→ (pC
1 (x, y), . . . , pC

n (x, y)) ∈ Cn.

Note that Zn is the singular point set of f and Jn = f−1(0) ∩ Zn.
Let us make a general remark about a refined version of Sard’s theorem

before proceeding. In the following, the irreducible objects X in the projec-
tivized domain of f , which is CPm2−1 × CPm2−1 with PV C

n removed, are all
quasi-projective, i.e., are all Zariski open subsets of projective varieties. f |X
can be considered as a rational map into CPn−1. So, by [21, p. 50], there
is a Zariski open set O of f(X) in Cn (with the origin excluded) such that
dim(f |−1

X (y)) = dim(X)− dim(f(X)) is a constant for all y ∈ O; we call it the
generic fiber dimension of f |X . Furthermore, codim(f(X) \ O) ≥ 2 in f(X).

Recall from (13.19) that the projection Π : Yn → Cm2 × Cm2 is Zn.
Observe that at (x, y), the dimension of the kernel of the Jacobian matrix
of pC

1 , . . . , pC
n at (x, y) is 1 more than the dimension of the projective space

Π−1((x, y)). Cm2 ×Cm2 is stratified into locally closed sets (i.e., Zariski open
sets in their respective closures) X−1, X0, X1, · · · , Xn−1 such that df has rank
n − j − 1 on Xj (Xj may be empty). Note that Π has fiber dimension j over
Xj . Let k be the first j ≥ 0 for Xj to be nonempty. Then Zn = ∪n−1

j=k Xj and
∪n−1

j=k+1Xj is a Zariski closed set of Zn. Let U0 be an irreducible component
of Zn. The smooth part of U0 consists of irreducible components of Xk. Then
the generic rank of f |U0 is n − k − 1, so that dim(f(U0)) = n − k − 1. Set
S := U0∩ (∪n−1

j=k+1Xj). S is Zariski closed of codimension at least 1 in U0. The
generic fiber F0 of Π over U0 has dimension k.

We now use an inductive procedure. Suppose Ui of codimension i in U0

has been defined and the generic hyperplanes Li chosen (L0 is the empty set),
in such a way that Si := Ui ∩ S is of codimension at least 1 in Ui, so that the
generic fiber dimension of Π over Ui is k. Let W be an irreducible component
of Ui. Observe that since dim(W ) = dim(Ui) so that W ∩Si is of codimension
at least 1 in W , we have that f(W ∩ Si) is of codimension at least 1 in f(W );
or else the generic fiber dimension of f |W over f(W ) would be reduced to a
smaller number.

Now, if f(W ) �= {0}, we pick a generic hyperplane Li+1, transversal to
Lj , 0 ≤ j ≤ i, through the origin and transversal to f(W ) and f(W ∩Si). (This
is possible. Since f and the hyperplanes L1, L2, · · · , Li are all homogeneous,
we may consider the cuts to be done in the projective setting, and thereby get
that Li+1 is a hyperplane through the origin.) This warrants that the cone
Li+1(p1, · · · , pn) = 0 intersects W and W ∩ Si transversally to cut out QW of
codimension 1 in W and QW ∩ Si of codimension at least 1 in QW , as we go
through each of the irreducible components W with f(W ) �= 0. Let Ui+1 be
the union of all such QW . Ui+1 is of codimension i + 1 in U0. Furthermore,
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Si+1 = Ui+1∩S = ∪W (QW ∩Si) is of codimension at least 1 in Ui+1. Therefore,
the generic fiber Fi+1 of Π over Ui+1 has dimension k = dim(F0).

On the other hand, if an irreducible component L of Ui satisfies f(L) = 0,
then codim(L) = i in U0. We claim the generic fiber of Π over L is of dimension
n − i − 1. This is because when i = 0, f(U0) = 0 implies df has rank 0, so
that Π has generic fiber dimension n − 1 over U0; k = n − 1 in this case. If
f(U0) �= 0, we go to U1. If f(L) = 0 for some irreducible component of U1,
then since df = 0 on L at its generic points, which are also generic in U0, and
since df �= 0 on U0 generically, we see df has rank 1 at a generic point of L.
That is, Π has generic fiber dimension n − 2 over L; k = n − 2 in this case.
Then we move to U2, etc. Accordingly, we set Ti to be the union of all such L;
we have k = n − i − 1 for a nonempty Ti. In particular, Ti are all empty for
0 ≤ i < n − k − 1. The first possibly nontrivial one is thus Tn−k−1.

Continuing in this fashion, the next-to-last f(Un−k−2) consists of finitely
many lines through the origin. Then the last cut by the generic hyperplane
Ln−k−1 picks up the origin of Cn. But then f(Un−k−1) = 0 means Tn−k−1 =
Un−k−1. The cutting procedure ends.

Consequently, with dim(Fn−k−1) = k and codim(Un−k−1) = n − k − 1 in
U0, we have

dim(Un−k−1)≤dim(Zn) − (n − k − 1)

≤dim(Yn) − dim(Fn−k−1) − (n − k − 1)

≤m1 + m2 − 2

by (13.31). Now, since the variety Jn is the union of all Un−k−1 as U0 goes
through all the irreducible components of Zn, we deduce dim(Jn) ≤ m1+m2−2.
Hence, if m2 ≥ m1 + n (respectively, m2 ≥ m1 + n − 1), then

dim(Jn) ≤ m1 + m2 − 2 ≤ 2m2 − n − 2 ≤ dim(V C
n ) − 2

(respectively, ≤ dim(V C
n ) − 1). So, if m2 ≥ 2m1, then Jn is of codimension at

least 2 for all n ≤ m1. Further, if m2 = 2m1 − 1, then Jn is of codimension at
least 2 for all n ≤ m1 − 1, and Jm1 is of codimension at least 1. This implies
the statements of Proposition 46.

The classification result Theorem 47 is therefore established.

Remark 53. The standard matrix form of A1 and of A2 in the case (m1, m2)
= (2, m2), m2 ≥ 3, given in Remark 51, leads to

p1 = 2
l∑

j=1

(xjyj + xl+jyl+j), p2 = −2
l∑

j=1

(xjyl+j − xl+jyj),
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where m2 = 2l + 1. Then J2 = V C
2 ∩ Z2, which by (13.22) and (13.23) is

J2 = {((u,−ε
√
−1u, t), (v, ε

√
−1v, s)) ∈ Z2 :

l∑
j=1

ujvj = 0},(13.32)

where u, v ∈ Cl, t, s ∈ C, and ε = ±. It follows that dim(J2) = dim(Z2) − 1
= m2, by (13.24). Thus, codim (J2) ≥ 2 in V C

2 (which is of dimension 2m2−2),
provided m2 ≥ 4.

For m2 = 3, J2 has codimension 1 in V C
2 . Indeed, in this case the bi-

projective variety PbV
C
2 defined by p1 = p2 = 0 in CP 2 × CP 2 is made up of

four irreducible components,

PbV
C
2 = CP 1

+ × CP 1
+ ∪ CP 1

− × CP 1
−

∪ {[0 : 0 : 1]} × CP 2 ∪ CP 2 × {[0 : 0 : 1]}

where CP 1
ε ↪→ CP 2 by [u : s] �→ [u : ε

√
−1u : s]. Hence (p1, p2) is not a prime

ideal in C[x1, x2, y1, y2] and Proposition 43 says then that codim (J2) ≤ 1 in
V C

2 . In fact, in this case codim (J2) = 1 in V C
2 , and x2(y2

1 + y2
2) ∈ (p1, p2), but

neither x2 nor y2
1 + y2

2 is in the ideal.

In view of the known classification of Takagi [30] for m1 = 1, Ozeki-
Takeuchi [25, II] for m1 = 2, and Stolz’s result [29] on the multiplicities
m1 ≤ m2 that states that (m1, m2) �= (2, 2) or (4, 5) must be that of an
isoparametric hypersurface of FKM-type, we obtain from Theorem 47 that all
isoparametric hypersurfaces with four principal curvatures in spheres, whose
multiplicities are not (2, 2) or (4, 5), are of FKM-type, except possibly for those
whose multiplicities are one of the following 3 pairs (3, 4), (6, 9), (7, 8). The
(4, 5) case also remains unclassified.
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(1980), 57–71 and 256 (1981), 215–232.

[23] K. Nomizu, Some results in E. Cartan’s theory of isoparametric families of hypersurfaces,
Bull. Amer. Math. Soc. 79 (1973), 1184–1188.
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