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Abstract

The question of controllability is investigated for a quantum control

system in which the Hamiltonian operator components carry explicit time

dependence which is not under the control of an external agent. We

consider the general situation in which the state moves in an in�nite-

dimensional Hilbert space, a drift term is present, and the operators driv-

ing the state evolution may be unbounded. However, considerations are

restricted by the assumption that there exists an analytic domain, dense in

the state space, on which solutions of the controlled Schr�odinger equation

may be expressed globally in exponential form. The issue of controlla-

bility then naturally focuses on the ability to steer the quantum state

on a �nite-dimensional submanifold of the unit sphere in Hilbert space

{ and thus on analytic controllability. A relatively straightforward strat-

egy allows the extension of Lie-algebraic conditions for strong analytic

controllability derived earlier for the simpler, time-independent system

in which the drift Hamiltonian and the interaction Hamiltonia have no

intrinsic time dependence. Enlarging the state space by one dimension

corresponding to the time variable, we construct an augmented control

system that can be treated as time-independent. Methods developed by

Kunita can then be implemented to establish controllability conditions for

the one-dimension-reduced system de�ned by the original time-dependent

Schr�odinger control problem. The applicability of the resulting theorem

is illustrated with selected examples.

1 Introduction

Over the last two decades, quantum control has played an important part
in theoretical and experimental progress toward the realization of laser control
of chemical reactions and the development of quantum computers [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13]. Essential to this contribution has been the inte-
gration of concepts and mathematical results from control engineering with the
fundamental principles of quantum theory.

Geometric control, a treatment of di�erential equations rooted in di�erential
geometry, unitary groups, and Lie algebras, provides a natural mathematical ba-
sis for quantum control theory. Explicitly or implicitly, its elements [14] pervade
the manipulation of quantum states in both traditional and novel technologies.
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Indeed, the �eld of nuclear magnetic resonance (NMR) is largely concerned with
geometric control of collections of interacting nuclear spins [12, 15, 16, 17]. Ge-
ometric control is also a key ingredient in the theory of quantum computation,
�guring prominently in the works of Lloyd [18], Deutsch [19], and Akulin [20].

In particular, Lloyd [18] was among the �rst to establish that almost all
quantum logic gates are universal. More precisely, if one has available a gate
that can operate on two qubits, plus a single-qubit operation, then an arbitrary
unitary transformation on the variables of the system can be performed with
arbitrary precision by implementing a �nite sequence of local operations. Clark
[21] and Ramakrishna and Rabitz [22, 23] called attention to the close relation-
ship between open-loop geometric quantum control methods and the application
of quantum logic gates [19, 18].

Following Ref. [23], let us consider di�erential system

dX(t)

dt
= AX(t) +

mX
i=1

BiX(t)ui(t) ; X(0) = I ; (1)

which arises both in quantum computing and molecular control. Here, X is a
N�N unitary matrix (I being the corresponding identity matrix), the matrices
A and Bi, i = 1; : : : ;m are N �N skew-Hermitian, and the functions ui(t) are
controls. This equation is the law of motion of the evolution operators which
govern time development of the N -dimensional vector representing a pure state
of the system in its N -dimensional Hilbert space. A necessary and suÆcient
condition for (1) to be controllable is that the set of all matrices generated by
A;Bi; i = 1; : : : ;m, and their commutators (i.e., the Lie algebra generated by
A and Bi) equals the set of all N �N skew-Hermitian matrices. Additionally,
when this condition is met, any X can be attained through some choice among
the controls ui(t) restricted to piecewise constant functions of time. In fact, the
formulation adopted by Lloyd [18] in his universality proof corresponds to the
special case A = 0 and m = 2 of system (1). Already in the 1970s, Sussmann
and Jurdjevic [24, 25] applied Lie-group theory to obtain rigorous results on
controllability for �nite-dimensional control problems corresponding to (1).

Quantum computation has mostly concerned itself with the manipulation of
discrete systems with �nite-dimensional state spaces. However, the fundamen-
tal quantum observables representing position and momentum, and functions
thereof, are continuous in nature. In view of recent developments in quantum
error correction [26, 27, 28] and quantum teleportation [29, 30] of continuous
variables, the potential of quantum computation over continuous variables war-
rants serious investigation, thus reopening issues of controllability on in�nite-
dimensional Hilbert spaces. Continuous quantum computers may in fact be able
to perform some tasks more eÆciently than their discrete counterparts.

As early as 1983, Huang, Tarn, and Clark (HTC) [5, 31] proved a basic
theorem on strong analytic controllability of quantum systems. This theorem
explicitly embraces the case of quantum systems whose observables are contin-
uous quantum variables acting on an in�nite dimensional state space, but the
essential �nite-dimensional results may be extracted as special cases. Because
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of the diÆculties caused by in�nite-dimensionality and the unboundedness of
operators, an analytic domain in the sense of Nelson [32] was introduced to deal
with domain problems [5, 31] and maintain key features of the application of
Lie algebraic methods to �nite-dimensional problems.

In�nite-dimensional control systems have been widely if not systematically
studied outside the quantum context. Brockett [14] addressed the problem of
realization of in�nite-dimensional bilinear systems. Sakawa [33] introduced a
method for design of �nite-dimensionalH1 controllers for di�usion systems with
bounded input and output operators by using residual model �lters. Keulen [34]
designed in�nite-dimensional H1 controllers for in�nite-dimensional systems
with bounded input and output operators by using the solutions to two kinds of
Riccati equations in an in�nite-dimensional space. Based on gap topology, Mor-
ris [35] constructed �nite-dimensional H1 controllers for in�nite-dimensional
systems with bounded input and output operators. Morris [36] also showed
that approximations of Galerkin type can be used to design controllers for an
in�nite-dimensional system. Costa and Kubrusly [37] derived necessary and
suÆcient conditions for existence of a state feedback controller that stabilizes
a discrete-time in�nite-dimensional stochastic bilinear system and ensures that
the inuence of the additive disturbance on the output is smaller than some
prescribed bound. In Ref. [38], optimizability and estimatability for in�nite-
dimensional linear systems are investigated; also, a theorem on the equiva-
lence of input-output stability and exponential stability of well-posed in�nite-
dimensional linear systems is established. In Ref. [39], the Hilbert-space gen-
eralization of the circle criterion is used for �nite-dimensional controller design
of unstable in�nite-dimensional systems. There is also literature on absolute
stability problems and open-loop stability problems in in�nite-dimensional sys-
tems [40, 41, 42, 43, 44]. In addition, the spectral factorization problem plays
a central role in designing feedback control for the linear quadratic optimal
control problem in in�nite-dimensional state-space systems [45, 46, 47, 48]. In
contrast to this body of work, very little has been published on controllability
for time-dependent in�nite-dimensional quantum control systems.

In the microscopic world ruled by quantum mechanics, most interesting phe-
nomena involve change, and all real-world quantum systems are inuenced to
a greater or lesser extent by interactions with their environments. The envi-
ronment changes with time, so the Hamiltonians used to describe these open
quantum systems are explicitly time-dependent, as in Ref. [50, 51]. Tailored
time-dependent perturbations are used to improve system performance [51] in
high-resolution NMR spectroscopy, where versatile decoupling techniques are
available to manipulate the overall spin Hamiltonian [16]. Colegrave and Ab-
dalla studied quantum systems with a time-dependent mass to investigate the
�eld intensities in a Fabry-Perot cavity [52]. They suggested possible applica-
tions to solid-state physics and quantum �eld theory [53]. Remaud and Hernan-
dez [54] found that a time-dependent mass parameter o�ers a means of simulat-
ing input or removal of energy from the system. Implementation of controls on
these time-dependent quantum systems requires guidance from mathematical
studies of controllability for time-dependent Hamiltonian operators. Although
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the HTC theorem deals with controllability in in�nite-dimensional Hilbert space,
it is restricted to time-independent operators. This paper explores a more gen-
eral case. We seek an extension of the HTC theorem that is applicable both to
time-independent and time-dependent quantum systems, as well as to systems
with discrete or continuous operators acting on �nite- or in�nite-dimensional
state spaces.

Since this paper is aimed at an interdisciplinary readership that includes
pure quantum theorists as well as control engineers, it is well to draw a clear
distinction between time dependence of the system arising solely from inuences
that are directly under the control of an external, purposeful agent, and time
dependence that is intrinsic to the physical system either in isolation or as
embedded in a natural environment. In the accepted terminology of control
theory, which we adopt, the former case de�nes a time-independent control
system, and the latter, a time-dependent system. The issue of controllability has
received considerable attention in the time-independent situation so identi�ed
(e.g., in Refs. [5, 8, 22, 12]); whereas relevant results for the time-dependent
case are very limited.

The time-dependent quantum control problem that we shall address is stated
formally in Sec. 2. To cope with the unboundedness of operators involved in
the Schr�odinger equation, an analytic domain is introduced in Sec. 3, such that
solutions of the Schr�odinger equation can be expressed globally in exponential
form on this domain. In Sec. 4, we de�ne an augmented system in a space
enlarged by one dimension, enabling its description within the framework of
time-independent control systems. Following the pattern of Kunita's proof [55]
of strong controllability of a time-independent system, we then establish con-
ditions for controllability of this kind for the one-dimension-reduced system
de�ned by the original time-dependent Schr�odinger equation. Three illustra-
tive applications of the theorem are presented in Sec. 5, and our �ndings are
reviewed in Sec. 6.

2 Problem Formulation

The following quantum control system is derived by applying the geometric
quantization method [56] to a classical bilinear control system [57, 31]:

i~
@

@t
 (t) =

"
H 0
0(t) +

X
l

ul(t)H
0
l (t)

#
 (t);

 (t0) =  0 :

(2)

Here, H 0
0(t), and the H

0
l(t) with l = 1; 2; : : : ; r, are Hermitian operators on a unit

sphere SH of Hilbert space, the ul(t); l = 1; : : : ; r are restricted to piecewise-
constant real functions of time, and  (t) denotes a quantum state belonging to
SH. In physical language, H 0

0 is the unperturbed or autonomous Hamiltonian,
and the H 0

l are interaction Hamiltonians. It is the coeÆcients ul(t) that are
subject to purposeful control by an agent external to the system, within the
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speci�ed class of functions. Setting ~ = 1 and dividing H 0
0(t) and the H 0

l(t) by
i, we arrive at a more familiar control form,

@

@t
 (t) =

"
H0(t) +

X
l

ul(t)Hl(t)

#
 (t) ;

 (t0) =  0 2 SH ;
(3)

where the Hi(t), i = 0; 1; 2; : : : ; r, are skew-Hermitian operators on SH. From
the standpoint of systems engineering, H0(t) is called the drift term in Eq. (3)
because no control function directly modi�es its action. Importantly, we depart
from previous studies of quantum controllability in allowing the Hamiltonian
operators Hi(t) to their own carry explicit time dependence, which is assumed
to be inherent in the physical structure of the system and therefore beyond the
control of any external agent. The operators Hi(t) are the counterparts of the
structural matrices involved in standard formulations of linear control theory.

For the system (3), we know from arguments presented in Ref. [5] that the
transitivity of states on SH requires an in�nite sequence of control manipulations
within the control set ful(t)g of piecewise-constant real functions. Clearly, such
a process is strictly meaningless in practice, although under certain conditions
it may be possible to �nd a �nite series of control operations that approach the
desired target state arbitrarily closely. Even so, we are naturally directed to
consider the issue of controllability on a �nite-dimensional submanifold of the
unit sphere SH, for which in turn a �nite-dimensional tangent space is generated
by H0(t) (t); : : : ; Hr(t) (t).

Accordingly, our attention focuses on a �nite-dimensional submanifold M �
SH, on which the following dynamics prevail

@

@t
 (t) =

"
H0(t) +

X
l

ul(t)Hl(t)

#
 (t) ;

 (t0) =  0;  (t) 2M; 8t � t0 ; (4)

Thus, instead of studying controllability on SH, we consider controllability on
M � SH. On the submanifold M , the inherited topology of SH still applies;
hence it is paracompact and connected.

For system (4), we have available a set of vector �elds O(M) composed of
skew-Hermitian operators onM with Lie algebra de�ned byO(M) = LfH0; : : : ; Hrg.
Let V be a subset of O(M). The Lie algebra generated by V is denoted by L(V ).
The restriction of L(V ) to a point  onM , which is a tangent subspace of TM 

at  , is written as

L(V )( ) = fY  jY 2 L(V )g � TM ; (5)

while
~L(V ) = fL(V ) j 2Mg (6)

de�nes an involutive di�erential system. A vector �eld X is said to belong to
~L(V ) if X( ) 2 ~L(V )( ) holds for all  2M .
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3 Selecting the Domain

Recognizing that operators in quantum mechanics are in general unbounded,
we need to �nd a domain on which exponentiations of the operators entering
the system (4) converge. To this end, we introduce the so-called analytic do-
main conceived by Nelson [32], a dense domain invariant under the action of
the operators in system (3). The solution of the Schr�odinger equation can be
expressed globally in exponential form on this domain, which is also invariant
under the action of the exponentiations of the operators Hi.

De�nition 3.1 If H is an operator on the state space H, we call an element !
of H an analytic vector for H in case the series expansion of exp(Ht)! has a
positive radius of absolute convergence, that is, provided

1X
n=0

jjHn!jj
n!

sn <1 (7)

for some s > 0.

If H is a bounded operator, then every vector in H is trivially an analytic vector
for H .

The corresponding de�nition of analytic vectors for a Lie algebra of operators
runs as follows [32, 58]:

De�nition 3.2 A vector ! 2 H is said to be an analytic vector for the whole
Lie algebra L if for some s > 0 and some linear basis fH1; : : : ; Hdg of the Lie
algebra, the series

1X
n=0

1

n!

X
1�i1;:::;in�d

jjHi1 : : :Hin!jjsn (8)

is absolutely convergent.

The concept of analytic vectors is especially useful for our purposes, since
for certain types of unbounded operators they form a dense set in the Hilbert
space. In fact, the set of all analytic vectors for a Lie algebra L forms an analytic
domain in the following sense [32, 58].

De�nition 3.3 Let L be the Lie algebra generated by the skew-Hermitian op-
erators H0; : : : ; Hr on a unit sphere SH of Hilbert space. An analytic domain
DA is said to exist for the Hi, i = 0; 1; : : : r, if (i) there exists a common dense
invariant subspace DA � H on which the corresponding unitary Lie group G can
be expressed locally in exponential form with Lie algebra L, (ii) DA is invariant
under G and L, and (iii) on DA, elements of G can be extended globally to all
t 2 R

+ .

We now state Nelson's fundamental theorem, which provides conditions un-
der which a Lie algebra L de�ned by a set of skew-Hermitian operators can be
associated with a unitary group G having L as its Lie algebra.
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Theorem 3.1 (Nelson) Let L be a Lie algebra of skew-Hermitian operators
in a Hilbert space H which have a common invariant dense domain DA. Let
X1; : : : ; Xd be an operator basis for L. If T = X2

1 + : : : + X2
d is essentially

self-adjoint, then there is a unique unitary group G in H with Lie algebra L.
Let T denote the unique self-adjoint extension of T . Then the analytic vectors
of T are analytic vectors for the whole Lie algebra L and form a set invariant
under G and dense in H.

Accordingly, on the analytic domain DA, the Lie algebra and its unitary Lie
group are related through the familiar exponential formula. The Lie algebra
is composed of skew-Hermitian operators which are vector �elds de�ned on
DA \ SH. By property (iii) of the de�nition 3.3 of the analytic domain, these
vector �elds on DA\SH are complete. Moreover, owing to the skew-Hermiticity
of the operators Hi of system (3), the corresponding transformation groups,
taking a given state on SH to another state on SH, are unitary. This feature
guarantees preservation of the norm of quantum states, as required for the
statistical interpretation of quantum mechanics.

In fact, Nelson's theorem only provides suÆcient conditions for the impor-
tant properties it yields. With this in mind, we shall assume an analytic domain
DA exists without explicitly imposing the conditions stated in this theorem, a
stance also adopted in Ref. [5] This strategy clearly implies that the existence
of such a domain must be established explicitly prior to application of the con-
trollability results to be derived in the following sections.

We are now prepared to adapt the concept of controllability to problems
involving unbounded operators.

De�nition 3.4 For system (3), if DA exists for L, and if for any  0 and  f 2
DA \ SH there exist control functions u1(t); : : : ; ur(t), and a time tf [resp. 8tf ]
such that the solution of control system (3) satis�es  (t0) =  0,  (tf ) =  f ,
and  (t) 2 DA \ SH, where t0 � t � tf , then the system is called analytically
controllable [resp. strongly analytically controllable] on SH; moreover we then
say that the corresponding unitary Lie group is analytically transitive on SH.

As has been argued, the more pertinent concept is controllability on the sub-
manifold M of SH. By assumption, M \ DA is dense in M , while dim(M \
DA) = dimM = m. Denoting the tangent space of M \ DA at  by TM =
LfH0; : : : ; Hrg , the tangent bundle of the system (4) is given by T (M \DA) =
[ 2M\DA

TM .
Let Rt( ) denote the set of all points that are reachable from  at time

t. The set R( ) =
S
t>t0

Rt( ) is then reachable from  at some time greater
than t0. We say that system (4) is analytically controllable on M if R( ) =
M \DA; 8 2M \DA, and that the system is strongly analytically controllable
on M if Rt( ) =M \ DA;8t > t0; 8 2M \ DA.
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4 Controllability of Time-dependent Quantum

Control Systems

4.1 Reformulation as a Time-independent Augmented Sys-

tem

Most of the methods developed for determining controllability of time-independent
bilinear or nonlinear systems [59, 60, 5, 31, 61, 62] cannot be applied directly
to the time-dependent bilinear control problem studied here, since these ap-
proaches rely upon the following property. Let Yt(') be an integral curve of the
time-independent tangent vector Y starting from point ' and t 2 [t0; t0 + tf ],
and let cYt(') be an integral curve of the tangent vector cY starting from ' and
t 2 [t0; t0 + tf=jjcjj]; then the integral curves Yt(') and cYt(') coincide. This
property holds for all time-independent tangent vectors, but it generally fails
for time-dependent tangent vectors.

However, recognizing that this feature has been instrumental to controllabil-
ity proofs for nonlinear systems, we recast the system (4) as a time-independent
problem so that it can once again be exploited. Reformulation of the original
problem is accomplished by regarding the time variable t as an additional pa-
rameter in the speci�cation of the system state, supplementing the state vector
 . Thus the state of the extended system is expressed as

� =

�
t+ t0
 

�
: (9)

Making the corresponding extension of the manifold M , we form an augmented
(m+ 1)-dimensional manifold de�ned by

N =

�
R

M \ DA
�
; (10)

where R is the real line. Next we de�ne augmented vector �elds Wl by

W0(�) =

�
1

H0(t+ t0) (t+ t0)

�
;

Wl(�) =

�
0

Hl(t+ t0) (t+ t0)

�
;

(11)

with l = 1; 2; : : : ; r. Obviously, the Wl, with l = 0; 1; : : : ; r, depend on both t
and  , i.e., the Wl now depend on the state � de�ned by Eq. (9).

The time-dependent control system (4) has thereby been reformulated as an
augmented system of time-independent form. Explicitly,

@�(t)

@t
=

"
W0(�) +

X
l

ul(t)Wl(�)

#
; (12)

�(0) = � =

�
t0

 (t0)

�
=

�
t0
 0

�
;

8t � 0;  0 2M \ DA; � 2 N ;
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where N is the n = (m + 1)-dimensional manifold constructed in Eq. (10)
and M is now viewed as a one-dimension-reduced manifold of the augmented
system. As always, the controls ul(t), with l = 1; : : : ; r, are piecewise-constant
real functions of time t.

It is convenient to employ t + t0 instead of t in de�nitions (9) and (11),
thereby setting the starting time at zero for the augmented system (12). Since
the latter system is time-independent by construction, this can be done without
a�ecting its trajectory. Thus, if the time for the augmented system is t, then
the time for the original system (4) is t + t0. Standard di�erential equation
techniques can evidently be employed to analyze the behavior of the augmented
system on the manifoldN , and the results will reect the behavior of the original
system on manifold M .

We note peripherally that system (12) is in a decomposed form in the sense of
Ref. [60], where several theorems were developed for decomposition of nonlinear
control systems. However, these theorems do not specify reachable sets, so they
cannot be applied here to obtain controllability results.

Reachable sets R̂t(�) and R̂(�) are de�ned for the augmented system (12)
in just the same manner as for system (4). From the work of Huang, Tarn, and
Clark [5] based on the results of Chow [63], Sussmann and Jurdjevic [24], and
Kunita [55, 59], it is to be expected that the issue of analytic controllability will
hinge on the relationships among certain Lie algebras generated by the vector
�elds involved in the control system (4) or its augmented counterpart (12). For
the latter problem, these Lie algebras are speci�ed by Â = LfW0; : : : ;Wrg,
B̂ = LfW1; : : : ;Wrg, and Ĉ = LfadmW0

Wl; l = 1; : : : ; r; m = 0; : : : ;1g. By

de�nition, admW0
Wl is built from repeated commutators of W0, present in Â but

not B̂, with any and all of the Wl present in Â or B̂; clearly,
B̂ � Ĉ � Â : (13)

For future reference we note (in particular) that the restriction of B̂ to a point
 on N , which is a tangent subspace of TN at  , is written as

B̂( ) = fY ( )jY 2 B̂g � TN ; (14)

and in turn that êB = fB̂( )j 2 Ng (15)

is an involutive di�erential system.

4.2 Controllability of the Augmented System

We must still face the situation that standard controllability results [59, 60,
5, 31, 61, 62], derived for time-independent systems, cannot be carried over di-
rectly to our problem as reformulated in the preceding subsection, since deriva-
tion of these results employs the vector-space property of the tangent space.
Speci�cally, it is required that if Y is an acceptable tangent vector, then so is
cY , where c is an arbitrary constant. But in our case, once the �rst component
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of a tangent vector of the augmented manifold is �xed at unity, it is not possible
for both Y and cY , with c 6= 1, to be available tangent vectors. However, with
the aid of a result of Kunita [55], we may nevertheless establish one-dimension-
reduced controllability of the augmented system; that is, we may prove strong
analytic controllability of the original system since it is not necessary to control
the time dimension.

First, let us identify certain properties of the reachable set R̂t(�) that will
be useful in proving strong analytic controllability.

Theorem 4.1 [24, 55] Assume that the Lie algebra Ĉ is locally �nitely gener-
ated, and let I(�) be the maximal connected integral manifold of Ĉ containing
the point �. Then R̂t(�) � �0t (I(�)), where �

0
t is the integral curve whose vector

�eld is W0. Furthermore, the interior of R̂t(�) with respect to the topology of
�0t (I(�)) is dense in R̂t(�).

A key relationship between the interior of the reachable set R̂t(�) of the
augmented system at time t and the interior of its closure is provided by the
following lemma.

Lemma 4.2

int(cl R̂t(�)) = int R̂t(�) : (16)

Proof: Let � 2 int(cl R̂t(�)) and let S�(�) be the set of all �
0 such that � is

reachable from �0 within time � > 0. Then S�(�) is the reachable set within
time � > 0 for the dual control system

@�

@t
= �

"
W0(�) +

X
l

ul(t)Wl(�)

#
: (17)

Theorem 4.1 implies that intS�(�) is dense in clS�(�), and int R̂t(�) is dense in
cl R̂t(�). Since � 2 clS�(�), we know that

clS�(�) \ int(cl R̂t(�)) 6= ; (18)

and hence that
intS�(�) \ int(cl R̂t(�)) \ R̂t(�) 6= ; : (19)

If � belongs to the latter intersection, then � is reachable from � using time t,
and � is reachable from � in elapsed time less than or equal to �. Therefore, �
is reachable from � in elapsed time between t and t + �. This argument holds
for any t > 0 and any � > 0. Letting � ! 0, we conclude that � is reachable
from � in time t, so � 2 R̂t(�). Thus,

int(cl R̂t(�)) � R̂t(�) =) int(cl R̂t(�)) � int R̂t(�) :

But clearly int R̂t(�) � int(cl R̂t(�)) and the statement (16) follows.
From the control-theoretic perspective, the drift term is undesirable because

no control is present to inuence or remove its e�ect. It is therefore of strate-
gic value to consider a suitably modi�ed control system, called the auxiliary
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system, that will serve as a bridge to an e�ective controllability analysis of the
augmented system. Let e0; e1; : : : ; er be unit vectors in R

r+1 ; in particular, let
ei = (0; : : : ; 0; 1; 0; : : : ; 0), in which only the (i + 1)th element is unity and the
others are zero. Denote by U0 the set of controls u(t) = (u0(t); : : : ; ur(t)) com-
posed of piecewise-constant functions ui(t) taking the values e0;�e1; : : : ;�er
only. Consider then the control system expressed in the form

@�

@t
= u0(t)W0(�) +

X
l

ul(t)Wl(�) ; �(t0) = � ; (20)

where u(t) 2 U0. The solution of this system may be written as

�t = �iktk � � ��
ij
tj � � ��i1t1 ; (21)

where k is a positive integer and where �
ij
tj is the integral curve of Wij with

ij = 0; 1; : : : ; r, j = 1; : : : ; k, and k a positive integer. The times tj satisfy tj � 0

if ij = 0, tj 2 R if ij = l 6= 0. We denote by R̂0
t (�) the reachable set of the

auxiliary system corresponding to the total time t since time zero, over which
the control function u0(�) is nonzero; the reachable set of the auxiliary system
is then R̂0(�) =

S
t>0 R̂

0
t (�). Theorem 4.1 is valid for this control system [24].

The following notations are convenient:

Exp L̂ = the group of di�eomorphisms generated by the �it; t 2 R; i = 0; : : : ; r;

where �it is an integral curve of Wi ;

(Exp L̂)+ = the semigroup of di�eomorphisms generated by �0t ; t � 0; and the �lt;

with t 2 R and l = 1; : : : ; r ;

(Exp L̂)t = the subset of (Exp L̂)+ generated by �iktk � : : : � �i1t1 ; with
kX
j=1

tj � 1fij=0g = t :

To clarify the meaning of the last line, we note that when the index j is such
that ij = 0, we have u0 = 1 (and all the other ui = 0), so W0 is \turned on"
and does play a role as an active vector �eld or tangent vector. Conversely, for
indices j such that ij 6= 0, the factor u0 multiplyingW0 in system (20) vanishes,

and W0 plays no role. The sum appearing in the de�nition of (Exp L̂)t gives
the total time over which W0 is active in the system dynamics.

From Chow's theorem [63, 24], it is known that the group Exp L̂ acts transi-
tively on the manifold N when dim L̂fW0;W1; : : : ;Wrg = dimN , i.e., we know
that f�(�)j� 2 Exp L̂g = N for any � 2 N . On the other hand, the reachable
set at time t for the auxiliary system (20) is R̂0

t (�) = f�(�)j� 2 (Exp L̂)tg. (It
is to be noted that in the present context t is the total time over which W0 has
been active since time zero, which is generally not equal to the actual elapsed
time, since W0 may be turned o� over certain intervals.)

Lemma 4.3

cl R̂t(�) = cl R̂0
t (�) : (22)

11



We may gain intuitive understanding of this lemma by analyzing a simple ex-
ample.
Example. Let us compare the control system

d

dt

�
x
y

�
=

�
1
0

�
+ u

�
0
1

�
; (23)

wherein u 2 R, with the system

d

dt

�
x
y

�
= u0

�
1
0

�
+ u1

�
0
1

�
; (24)

wherein (u0; u1) 2 f(0;�1); (1; 0)g. Clearly, the �rst of these corresponds to the
augmented system, and the second to the auxiliary system. Let R̂t(�) and R̂

0
t (�)

denote respectively the reachable sets of systems (23) and (24), staring from the
state �. While stopping short of rigorous argument, explicit computation will
be used to reveal the pertinent relationship between cl R̂t(�) and cl R̂0

t (�).
First consider the integral curve

�t(�) =

�
0
1

�
t1

�
�

0
�1

�
t2

�
�

1
0

�
t

2 R̂0
t (�) ; (25)

and for n = 1; 2; 3; : : : form a series of integral curves �nt (�) 2 R̂t(�) de�ned by

�nt (�) =

��
1
0

�
+ n

�
0
1

��
t1
n

�
��

1
0

�
+ n

�
0
�1

��
t2
n

�
�

1
0

�
t�

t1
n
�

t2
n

:

(26)

As n goes to 1, we �nd

�nt (�)!
�

0
1

�
t1

�
�

0
�1

�
t2

�
�

1
0

�
t

; (27)

that is, �nt (�)! �t(�). Hence �t(�) 2 cl R̂t(�).
On the other hand, consider

�t(�) =

��
1
0

�
+m1

�
0
1

��
t1

�
�

1
0

�
t2

�
��

1
0

�
+m2

�
0
�1

��
t3

2 R̂t(�) ;
(28)

where m1;m2 2 R and t = t1 + t2 + t3, and construct

�n1 =

"�
1
0

�
t1
n

�m1

�
0
1

�
t1
n

#n
; (29)

12



again for n = 1; 2; 3; : : :. Applying the Baker-Campbell-Hausdor� formula, it
straightforward to show that

lim
n!1

�n1 = lim
n!1

(��
1
0

�
+m1

�
0
1

��
t1

+
t21
2n
m1

��
1
0

�
;

�
0
1

��
+O(

1

n2
)

)

=

��
1
0

�
+m1

�
0
1

��
t1

:

(30)

Similarly, let

�n3 =

"�
1
0

�
t3
n

�m2

�
0
�1

�
t3
n

#n
(31)

and employ the Baker-Campbell-Hausdor� formula to obtain

lim
n!1

�n3 = lim
n!1

(��
1
0

�
+m2

�
0
�1

��
t3

+
t23
2n
m2

��
1
0

�
;

�
0
�1

��
+O(

1

n2
)

)

=

��
1
0

�
+m2

�
0
�1

��
t3

:

(32)

Obviously

�n1 �
�

1
0

�
t2

� �n3 2 R̂0
t (�) ; (33)

and we �nd that

lim
n!1

�n1

�
1
0

�
t2

�n3 =

��
1
0

�
+m1

�
0
1

��
t1

�
�

1
0

�
t2

�
��

1
0

�
+m2

�
0
�1

��
t3

= �t(�) :

(34)

Therefore �t(�) 2 cl R̂0
t (�).

Now let us proceed with the proof of Lemma 4.3, showing �rst that cl R̂0
t (�) �

cl R̂t(�). Consider that �t(�) 2 R̂0
t (�) is expressible in the form of �iktk � � ��i1t1(�),

where t =
Pk
j=1 tj �1fij=0g. With the guidance of the example above, a sequence

of controls u(n)(�) associated with the di�eomorphism of this form is constructed
as follows. For an arbitrary positive integer n such that ntm �Pij 6=0

jtj j, where
m is the last subscript j such that ij = 0, let

t(n)m = tm �
P
ij 6=0

jtj j
n

: (35)

De�ne real numbers s
(n)
1 ; : : : ; s

(n)
k , ordered so that 0 � s

(n)
1 � s

(n)
2 � : : : � s

(n)
k ,

13



by

s
(n)
1 = jt1j if i1 = 0 ;

= 1
n jt1j if i1 6= 0 ;

s
(n)
j�2 = s

(n)
j�1 + jt(n)j j if last j with ij = 0 ;

= s
(n)
j�1 + jtj j if other j with ij = 0 ;

= s
(n)
j�1 +

1
n jtj j if ij 6= 0 :

(36)

Further, let

u(n)(�) = n � sgn(tj)eij if s
(n)
j�1 � � � s

(n)
j and ij 6= 0 ;

= 0 if s
(n)
j�1 � � � s

(n)
j and ij = 0 ;

= 0 if � � s
(n)
k ;

(37)

where e1; : : : ; er are unit vectors in R
r . The solution �

(n)
t of the system (12)

associated with the control u(n)(�) may be written

�
(n)

s
(n)
k

= �n;ikjtkj
� � ��n;i1jt1j

2 R̂t(�) ; (38)

where �
n;ij
j� j is the integral curve of W0 if ij = 0, or the integral curve of W0 +

n � sgn(�)Wij if ij 6= 0, i.e.,

�
n;ij
j� j = (W0)� if ij = 0 ;

= (W0 + n � sgn(�)Wij ) j�j
n

if ij 6= 0 :
(39)

We note that (W0 + n � sgn(�)Wij ) j�j
n

and ( 1nW0 + sgn(�)Wij )j� j describe the

same integral curve on N , by virtue of the time-invariance property of system
(12). Obviously, �

n;ij
jtpj

! �
ij
tp as n!1. On the other hand,

s
(n)
k =

X
j

tj � 1fij=0g �
P
l jtlj � 1fil 6=0g

n
+

P
l jtlj � 1fil 6=0g

n
= t : (40)

Thus, as n!1 we obtain

�
(n)

s
(n)
k

(�)! �iktk � � ��i1t1(�) = �t(�) ; (41)

and hence �t(�) 2 cl R̂t(�). Because �t(�) is an arbitrary element in R̂0
t (�), it

follows that R̂0
t (�) � cl R̂t(�), and since cl R̂t(�) is closed, it follows in turn that

cl R̂0
t (�) � cl R̂t(�).
Next we show cl R̂t(�) � cl R̂0

t (�). Consider �(�) 2 R̂t(�) of the form of
�ckuk �: : :��c1u1(�), with �

cj
uj = expuj(W0+c

1
jW1+: : :+c

r
jWr) and cj = (c1j ; : : : ; c

r
j ).

Here, clj is the control applied to Wl during time period uj , so cj is the control
set applied toW1; :::Wr during the corresponding time interval uj , with uj 2 R

+

and clj 2 R. For each �
cj
uj ; j = 1; : : : ; k, take �nj in the form

�nj =
h
exp

uj
n
(c1jW1) � � � exp uj

n
(crjWr) exp

uj
n
W0

in
: (42)

14



Invoking the Baker-Campbell-Hausdor� formula [64], we write

lim
n!1

�nj = lim
n!1

h
exp

uj
n
(c1jW1) � � � exp uj

n
(crjWr) � exp uj

n
W0

in
= lim
n!1

exp

24uj(W0 + c1jW1 + � � �+ crjWr) +
X

0�p;q�r

u2j
2n
cpj c

q
j [Wp;Wq ] +O

�
1

n2

�35
= expuj(W0 + c1jW1 + : : :+ crjWr) = �cjuj : (43)

Constructing �n1 : : : �
n
k 2 R̂0

t (�) we then obtain

lim
n!1

�nk � � ��n1 (�) = �ckuk � � ��c1r1 (�) = �(�) ; (44)

so that �(�) 2 cl R̂0
t (�). Since �(�) is an arbitrary element of R̂t(�), we arrive

at R̂t(�) � cl R̂0
t (�) and hence cl R̂t(�) � cl R̂0

t (�). We conclude that cl R̂t(�) =
cl R̂0

t (�).
The time t labeling these reachable sets is to be interpreted as the time inter-

val over which the control operation represented by W0 is in e�ect, or \turned
on." In fact, W0 is necessarily always \on" in the augmented system, so the to-
tal time elapsing in the augmented system is the same as the time interval over
which W0 is turned on; hence the reachable sets R̂t corresponding to these two
times are identical. Of course, the same coincidence does not hold for the aux-
iliary system. However, this is immaterial, since the auxiliary system was only
introduced to exploit the key relationship (22). Further, we may observe that the
reachable set R̂0

t (�) of system (20), with the control u(t) = (u0(t); : : : ; ur(t)) as-
suming values (e0;�e1; : : : ;�er), is the same as the corresponding set for which
the control u(t) assumes the values e0;�ce1; : : : ;�cer, with c 2 R

+ .
Since we can take advantage of the result (22) in this manner, it is clearly

preferable to study the properties of R̂0
t (�). The auxiliary system is easier to

control, and the state at time t can be expressed as a composition of integral
curves of Wi in the same style as Eq. (21). To do so, let the set of subscripts
j with ij = 0 be written as fp; : : : ; q; sg in increasing order, of course with
tp + : : :+ tq + ts = t. Then we have

�t = (�iktk � � ��
is+1

ts+1
) � (�0ts � �

is�1

ts�1
� �0�ts) � (�0ts � �

is�2

ts�2
� �0�ts) � � � (�0ts+tq � �

iq�1

tq�1
� �0�(ts+tq))

�(�0ts+tq � �
iq�2

tq�2
� �0�(ts+tq)) � � � (�0ts+tq+���+tp � �

ip�1

tp�1
� �0�(ts+tq+���+tp))

� � � (�0ts+tq+:::+tp � �i1t1 � �0�(ts+tq+:::+tp)) � �0t
= �0(�

ik
tk ) � � ��0(�

is+1

ts+1
) � �ts(�is�1

ts�1
) � �ts(�is�2

ts�2
) � � ��ts+tq (�iq�1

tq�1
) � �ts+tq (�iq�2

tq�2
)

� � ��t(�ip�1

tp�1
) � � ��t(�i1t1) � �0t ; (45)

where �t() = �0t �  � �0�t. This analysis stimulates us to de�ne the following
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three sets of di�eomorphisms:

Exp B̂ = the group generated by �lt; t 2 R ; l = 1; : : : ; r; where �lt is the integral curve

whose vector �eld is Wl ;

Ft = [1k=1 f�tk(k) � : : : � �t1(1)j j 2 Exp B̂; 0 � tk � : : : � t1 = tg ;
Gt = [1k=1 f�tk(k) � : : : � �t1(1)j j 2 Exp B̂; min

j
tj � 0; max

j
tj = tg:

By construction,
R̂0
t (�) = Ft�

0
t (�) : (46)

We observe that Ft is a semi-group of di�eomorphisms included in the the group
Gt, whose properties are established in the following lemma.

Lemma 4.4 First, the set Gt is a group. Furthermore, if dim Ĉ(�) = n�1 = m
holds for all � 2 N , then f�(�)j� 2 Gtg = �0t (I(�

0
�t(�))) is true for all �,

where I(�) is the maximal connected integral manifold containing � 2 N , whose
associated Lie algebra is Ĉ.
Proof: For �1; �2 2 Gt, it is easily seen that �1 � �2 2 Gt. Writing � 2 Gt
as � = �tk(k) � : : : � �t1(1), we also see that ��1 = �t1(

�1
1 ) � : : : � �tk (�1k ).

Therefore Gt is a group.
Now, denote the set f�(�)j� 2 Gtg by Bt(�). It is straightforward to show

that (i) Bt(�) = Bt(�) if � 2 Bt(�) and (ii) Bt(�) \ Bt(�) = ; if � 62 Bt(�) [55].
We can demonstrate that (iii) � 2 intBt(�) under the topology of �

0
t (I(�

0
�t(�)))

as follows. By de�nition, R̂0
t (�) is the reachable set for the system (20). By

the same reasoning that leads to Eq. (46), we have R̂0
t (�

0
�t(�)) � Bt(�) because

R̂0
t (�

0
�t(�)) = Ft � �0t � �0�t(�). Since R̂0

t (�
0
�t(�)) has a nonempty interior with

respect to the topology of �0t (I(�
0
�t(�))) by Theorem 4.1, we see that Bt(�)

contains a non-null open set U . Given � 2 U , choose � 2 Gt such that �(�) = �.
Since � is a continuous map, ��1(U) is an open set containing �.

In fact, ��1(U) is included in Bt(�). We know that Gt is a group, so
��1 2 Gt if � 2 Gt. Letting � 2 ��1(U), we can �nd � 2 U , such that
� = �(�) 2 U � Bt(�) and also � 2 Bt(�). By properties (i) and (ii), we obtain
� 2 Bt(�) \ Bt(�) 6= ;. Hence Bt(�) = Bt(�) and � 2 Bt(�). Accordingly,
��1(U) � Bt(�) and � 2 intBt(�) under the topology of �0t (I(�

0
�t(�))).

The properties (i)-(iii) imply that Bt(�) is maximally connected and open
under the topology of �0t (I(�

0
�t(�))). Thus we have Bt(�) = �0t (I(�

0
�t(�))) for

all t > 0 and � 2 N . In addition, it is seen that Bt(�) = �0t (I(�
0
�t(�))) =�

t0
M \ DA

�
. The proof of Lemma 4.4 is now complete.

Based on Lemmas 4.3 and 4.4, we could conclude that cl R̂t(�
0
�t(�)) =

�0t (I(�
0
�t(�))) if we could establish that Ft = Gt. The following proof takes

a slightly di�erent path. Let Exp
êB denote the group of di�eomorphisms gen-

erated by all one parameter groups of transformations with respect to vector
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�elds belonging to
êB. The sets eFt and fGt are de�ned in the same way as Ft and

Gt, i.e. via Eq. (17), but with Exp
êB entering in place of Exp B̂.

Obviously, Ft � eFt and Gt � fGt hold. We shall now establish that eFt = fGt.
Lemma 4.5 Let X be a complete vector �eld belonging to

êB, and let t be the
one-parameter group of transformations generated by X. Assume [B̂; Ĉ](�) �
B̂(�) is satis�ed for all �. Then d�s(t) is an isomorphism between B̂(�) and

B̂(�s(t)(�)) for each �, and eFt = fGt is true for all t > 0.

Proof: Since �s(t1) � �s(t2) = �s(t1+t2) holds, we have d�s(t1+t2) =
d�s(t1) � d�s(t2). Hence it is enough to prove the lemma's assertion for suÆ-

ciently small jtj. Let Yt;s = d�s(t)Z, where Z 2 ~̂B. For each value of s, �s(t)
with t 2 R is the one parameter group of transformations generated by d�0sX ,
while

@Yt;s
@t

= �d�s(t)[d�0sX;Z] = d�s(t)[Z; d�
0
sX ] : (47)

Therefore [Z; d�0sX ] 2 êB by assumption, because d�0sX belongs to
êC = fĈ(�)j� 2

Ng [65, 66].
Now we �x a point � of N and a value of s 2 R. Let Z1; : : : ; Zn provide a

basis of B̂ in an open neighborhood U of �. Then there exist C1 functions fij
on U such that [Zi; d�0sX ] =

Pn
j=1 fijZ

j holds in U . Let � be a positive number
such that �s(t)(�) 2 U for jtj < �, noting that �s(t) is a continuous map of
t and �s(0)(�) = �. Then d�s(t)[Z

i; d�0sX ] =
Pn
j=1 fijd�s(t)Z

j for jtj < �.

Set V j(t) = d�s(t)Z
j . Then V j(t), with jtj < �, satis�es the linear di�erential

equation

dV j(t)

dt
=

nX
j=1

fjkV
k(t) j = 1; : : : ; n : (48)

The solution V j(t) can be written as V j(t) =
Pn
k=1 gjk(t)V

k(0), where (gjk) is

a regular matrix. Also, we have V k(0) 2 B̂(�) and V k(t) 2 B̂(�s(t))(�). The
map d�s(t) : B̂(�)! B̂(�s(t))(�) is bijective because (gjk) is a regular matrix.
Moreover, d�s(t) retains the structure of the Lie bracket with respect to d�0sX .
This establishes that d�s(t) is an isomorphism between B̂(�) and B̂(�s(t))(�)
for jtj < �. Since 0t � �s(�) �t ��s(�)�1 (with s �xed) is a one-parameter group

of transformations generated by d�s(�)X and d�s(�)X belongs to
êB, we know

0t (with t 2 R) belongs to Exp
êB. But Exp êB is generated by all such t, so we

arrive at the relationship

�t(�)(Exp
êB)�t(�)�1 � Exp

êB; for � 2 êB : (49)

Let � be any element of fGt, written as

� = �tk (k) � : : : � �t1(1); tl � 0; max
l
tl = t : (50)

17



By induction we can prove that there exist ~k; : : : ; ~1 of Exp
êB and 0 � sk �

: : : � s1 = t such that

�tk(k) � : : : � �t1(1) = �sk (~k) � : : : � �s1(~1): (51)

Here we only consider the case k = 2. If t2 � t1, there is no need for proof.
Suppose t2 > t1, and set t3 = t2 � t1. Then we may write �t2(2) � �t1(1) =
�t1(�t3(2) �1). By relationship (49), there exists ~1 of Exp eB such that �t3(2) �
1 � �t3(2)�1 = ~1, i.e., �t3(2) � 1 = ~1 � �t3(2). This implies

�t2(2) � �t1(1) = �t1(�t3(2) � 1) = �t1 (~1 � �t3(2)) = �t1(~1) � �t2(2) :
(52)

More detailed proofs may be found in Refs. [55, 67].

Theorem 4.6 Suppose that dim Ĉ(�) = n � 1 = m holds for all � 2 N , and
suppose that [B̂; Ĉ](�) � B̂(�) holds for all �. Let I(�) be the maximally con-
nected integral manifold containing � whose corresponding Lie algebra is Ĉ. Then
�0t (I(�)) = R̂t(�).

Proof: Clearly we have f��0t (�)j� 2 Ftg � f��0t (�)j� 2 eFtg. In fact, the

closures of these two sets coincide. Since eFt = fGt � Gt, it is seen that

cl R̂0
t (�) = cl f��0t (�)j� 2 Ftg

= cl f��0t (�)j� 2 eFtg
= cl f��0t (�)j� 2 fGtg (by Lemma 4.5)
= cl�0t (I(�

0
�t(�

0
t (�)))) (by Lemma 4.4)

= cl�0t (I(�)) :

(53)

But Lemma 4.3 tells us that cl R̂0
t (�) = cl R̂t(�), so we obtain cl R̂t(�) =

cl�0t (I(�)). And from Lemma 16 we know that int R̂t(�) = int(cl R̂t(�)), which
implies int R̂t(�) = �0t (I(�)) under the topology of �0t (I(�)). Finally, R̂t(�) �
�0t (I(�)) by Theorem 4.1, and we arrive at R̂t(�) = �0t (I(�)).

4.3 Strong Analytic Controllability of the Actual System

In subsection 4.2, we investigated the reachable set at time t of the time-
independent augmented system formed by enlarging the state space to include
an extra dimension corresponding to the variable t. Now we return to the
original quantum control system (4) to discover conditions under which it is
strongly analytically controllable.
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Theorem 4.7 For the control system de�ned by Eq. (4), let

B(t) = L(H1(t); : : : ; Hr(t))

B1 = �[H0;B] + @
@tB

...
Bn = �[H0; Bn�1] +

@
@tBn�1

...
C = LfB; B1; : : : ; Bn; : : :g :

(54)

Suppose dim C(t) (t) = m holds for all  2M \DA, and [B; C](t) � B(t) is the
case for all t. Then the time-dependent quantum control system (4) is strongly
analytically controllable.

Proof: We apply Theorem 4.6 to the augmented control system (12). To do
so, we need to examine the Lie algebras B and C for this problem. For B we
readily �nd

B =LfW1; : : : ;Wrg

=L
��

0
H1(t)

�
; : : : ;

�
0

Hr(t)

��
 (t) =

�
0

LfH1(t); : : : ; Hr(t)g
�
 (t) =

�
0

B(t) (t)
�
:

(55)

Next let us construct C. For any

W (�) =W (t;  ) =

�
0

H(t) (t)

�
2 B ; (56)

where � 2 N , we have

adW0W = [W0;W ] =

��
1

H0(t) (t)

�
;

�
0

H(t) (t)

��

=

@

�
0

H(t) (t)

�
@(t;  )

�
1

H0(t) (t)

�
�
@

�
1

H0(t) (t)

�
@(t;  )

�
0

H(t) (t)

�
=

�
0

�[H0; H ] + @H=@t

�
 (t) :

(57)

Similarly,

adW0B =

�
0

�[H0;B] + @B=@t
�
 (t) : (58)

Setting B1 = �[H0;B] + @B=@t, we may then derive

ad2W0
B = adW0adW0B = adW0

�
0

B1 (t)

�
=

�
0

�[H0; B1] + @B1=@t

�
 (t) :

(59)
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Continuing in this fashion with

Bn = �[H0; Bn�1] + @Bn�1=@t (60)

for n = 2; 3; : : :, we �nd

adnW0
B =

�
0

�[H0; Bn�1] +
@Bn�1

@t

�
 (t) =

�
0

Bn (t)

�
: (61)

Thus

C = LfB; adW0B; : : : ; adnW0
B; : : :g

= L
��

0
B(t) (t)

�
;

�
0

B1(t) (t)

�
; : : : ;

�
0

Bn(t) (t)

�
; : : :

�
=

�
0

LfB(t); B1(t); : : : ; Bn(t); : : :g (t)
�
=

�
0

C(t) (t)
�
:

(62)

From the assumption that [B; C](t) � B(t), 8(t), we have

[B; C](t) (t) � B(t) (t); 8(t) : (63)

Hence ��
0
B 

�
;

�
0
C 

��
�
�

0
B 

�
; (64)

so that [B; C](�) � B(�), 8� 2 N .
By assumption, dim C(t) (t) = m; 8 2 M \ DA, which implies that

dim C(�) = m = n � 1 holds for all � 2 N . According to Theorem 4.6,

�0t (I(�)) = R̂t(�); 8t > 0, and since �0t (I(�
0
�t(�))) =

�
t0

M \ DA
�
, we ob-

tain �0t (I(�)) =

�
t+ t0
M \ DA

�
.

Let � : N ! M \ DA be the projection map that in e�ect annihilates
the time-dimension of the augmented problem corresponding to the variable
t, and brings us back to the original control system. In fact, the extension
and projection maps mediate a one-to-one correspondence between the states of
the augmented system and those of the original system. The simplicity of this
relationship stems from the fact that t is a strictly increasing variable.

To reiterate our strategy: We have dealt with the explicit time-dependence
of the original control problem by adding an extra dimension to its state space,
such that, as viewed in the augmented space, the augmented control problem
is time-independent. After analyzing controllability within this extension, the
results are projected to the original space by removing the extra time dimension,
recovering the exact states of the original system.

Accordingly, �(�0t (I(�))) = M \ DA, while �R̂t(�) = Rt+t0( ); 8 2 M \
DA. Hence Rt( ) =M\DA;8t > t0, and the system (4) is strongly analytically
controllable on M .
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Wemay note that upon introducing the Lie algebraA(t) = LfH0(t); H1(t); : : : ;
Hr(t)g, it is readily established from property (13) that B � C � A for all t.

To complete the formal analysis, we state two corollaries that devolve im-
mediately from Theorem 4.7:

Corollary 4.8 From the operators Hi entering control system (4), form the
Lie algebras B = LfH1; : : : ; Hrg and C = LfB; adH0B; : : : ; adnH0

B; : : :g. Suppose
that the Hi do not possess explicit dependence on the time t, that dim C (t) = m
holds for all  2 M \ DA, and that [B; C] � B is satis�ed. Then the time-
invariant system (4) is strongly analytically controllable.

Corollary 4.9 For the control system (4), form the Lie algebra B(t) = L(H1(t); : : : ; Hr(t)),
and suppose that dim B(t) (t) = m holds for all  2 M \ DA. Then system 4
is strongly analytically controllable.

The latter corollary follows because [B; C](t) � B(t) must hold, once dim B(t) (t) =
m.

5 Examples of Strong Analytic Controllability

In this section, we present three examples that meet the criteria for analytic
controllability enunciated in Theorem 4.7. The examples selected are relevant
to problems of interest in mathematical physics or engineering applications of
quantum mechanics.
Example 1 The strong analytic controllability theorem can be applied to
the simple degenerate parametric oscillator, a problem of importance in physics
and engineering. Introducing an appropriate e�ective Hamiltonian allows the
corresponding control system to be written in the form [68]

i
@

@t
 =

�
!(t)aya+

1

2
�(t)

�
e�2i!t(ay)2 + e2i!ta2

��
 : (65)

Here ay and a represent, in turn, the creation and annihilation operators of the
pump mode of frequency !(t), while �(t) is the time-dependent coupling func-
tion related to the second-order nonlinear susceptibility of the pumped medium.
We may consider !(t) and �(t) as control functions playing the role of the ul in
Eq. (4), since they are real and can be adjusted to piecewise-constant functions
of time t, outside the system itself.

Following precedent [69, 70, 71, 72], we de�ne the operators

K+ =
1

2
(ay)2 ; K� =

1

2
a2 ; K0 =

1

2
(aya+ aay) ; (66)

which satisfy the commutation relations of SU(1; 1), thus

[K0;K�] = �K� ; [K+;K�] = �2K0 : (67)
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Setting

H0 = �iK0 ; (68)

H1 = � i
2
[e�2i!tK+ + e2i!tK�] ; (69)

H2 =
1

2
[e�2i!tK+ � e2i!tK�]=2 ; (70)

the control system (65) may be written in the more familiar form

@

@t
 = [!(t)H0 + �(t)H1(t)] : (71)

The skew-Hermitian operators H0, H1, and H2 satisfy the commutation rela-
tions

[H0; H1] = �H2 ; [H0; H2] = H1 ; [H1; H2] = H0 : (72)

We observe that the system (71) does not have a drift term in the usual sense,
because the factor !(t) can be manipulated externally. We also see immediately
that A = B = C = LfH0; H1; H2g, and the second condition of Theorem 4.7
is obviated. In addition, H0 has eigenvectors jmki, with m = 0; 1; : : : and
k = 1=4; 3=4, which span an analytic domain DA [70, 72]. Consequently, we
can choose a manifold M such that dim C = dimM 8 2 DA \ M . All
conditions of Theorem 4.7 being met, the system (65) is strongly analytically
controllable on M .
Example 2 De�ning Q = i@t + @x1x1 + @x2x2 , the Schr�odinger equation for
a free particle moving in two spatial dimensions may be expressed simply as
Qu = 0. Determination of the maximal symmetry algebra of this equation leads
to the following set of nine operators, which form the basis of a nine-dimensional
complex Lie algebra: [73]

K2 = �t2@t � t(x1@x1 + x2@x2)� t+ (i=4)(x21 + x22) ;K�2 = @t ; Pj = @xj ;

Bj = �t@xj + ixj=2 ; J = x1@x2 � x2@x1 ; E = i ;D = x1@x1 + x2@x2 + 2t@t + 1 ;

(73)

with j = 1; 2. Of immediate concern is the real Lie algebra spanned by this basis,
i.e., the Schr�odinger algebra, which has, as alternative basis, the operators Bj ,
Pj , and E (yielding the �ve-dimensional Weyl algebra), plus the operator J and
the three operators de�ned by L1 = D, L2 = K2 +K�2, and L3 = K�2 �K2.
The pertinent nonvanishing commutators are speci�ed by [73]:

[L1; L2] = �2L3 ; [L3; L1] = 2L2 ; [L2; L3] = 2L1 ; [L1; Bj ] = Bj ; [L1; Pj ] = �Pj ;
[Pj ; J ] = (�1)j+1Pl ; [Bj ; J ] = (�1)j+1Bl ; [L2; Bj ] = �Pj ; [L3; Bj ] = �Pj ; [L2; Pj ] = Bj ;

[L3; Pj ] = �Bj ; [Pj ; Bj ] = E=2 ;

(74)

where j; l = 1; 2; j 6= l.
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Now we consider the controllability of the system

@

@t
 = [L2 + u1(t)L1 + u2(t)L3 + u3(t)P1 + u4(t)J ] : (75)

In this case there is a time-dependent drift term in the vector �eld driving  . The
relations (74) imply the equalities B = C = LfL1; L2; L3; P1; P2; B1; B2; J; Eg,
while the required analytic domain DA is furnished by the span of the eigen-
functions  n;m of L3. These take the explicit, time-dependent form [73]

 n;m = (2m+n+1�n!m!)�1=2 exp[i�(m+ n� 1)=2]

� exp

�
(v21 + v22)(1� iv3)

4

��
v3 + i

v3 � i

�(m+n)=2

� Hm(v1=
p
2)Hn(v2=

p
2)

v3 � i
;

(76)

where x1 = v1(1 + v23)
1=2, x2 = v2(1 + v23)

1=2, and t = v3. It follows as before
that the system (75) is strongly analytically controllable.
Example 3 A quantum control system with position-dependent e�ective mass
m = (2Ax)�1 has been described by the time-dependent Schr�odinger equation
[74]

i
@

@t
 = [iBI0 + u1(t)A(t)I0I� + iu2(t)C] ; (77)

where B; C 2 R and A(t) is a real function of time t but in general not piecewise-
constant. The operators I0 and I�, which are independent of time, provide a
basis for an su(1; 1) algebra, and have the concrete realization

I� = �@x ; I0 = x@x + 1 ; I+ = x2@x + 2x ; (78)

which satis�es the commutative relations

[I0; I�] = �I�; [I�; I+] = �2I0 : (79)

This e�ective-mass problem arises in the study of semiconductor heterostruc-
tures and, more generally, of inhomogeneous crystals [75]. In the semiconductor
application, the e�ective mass of a carrier depends spatially on the graded com-
position of the semiconductor alloys used in the barrier and well regions of the
microstructures [76].

The wave functions of the stationary states of Eq. (77) can be written as

 E(t; x) =
1p
2�

exp

�
�iE

Z t

0

B(�)d� +

Z t

0

[�C(�) � 1

2
B(�)]d�

�
� exp f�a1(t) (x@xx + @x)gx�iE�1=2

=
1p
2�

exp

�
�iE

Z t

0

B(�)d� +

Z t

0

[�C(�) � 1

2
B(�)]d�

�
1X
n=0

nY
l=0

(iB(t)E +
1

2
+ l)2[�a1(t)]n � x�iE�n�1=2

n!
:

(80)
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These eigenfunctions span the analytic domain relevant to Theorem 4.7.
Let us de�ne

H0 = BI0 + u2(t)C; ; H1 = �iA(t)I0I�; (81)

where we take u2(t) = �B=2C. Eq. (77) can be recast as the control system

@

@t
 = [H0 + u1(t)H1] : (82)

Here the drift term is time-independent. Using the commutation relations (79),
we obtain [H0; H1] = �BH1. Obviously, B = C � A, so [B; C] = B. Choosing
a manifold M such that dimM = dim C for all  2 M , we are assured that
system (77) is strongly analytically controllable.

6 Conclusions

In this paper, we have formulated the time-dependent quantum control prob-
lem and studied its controllability. Acknowledging the unbounded nature of op-
erators commonly involved in quantum control systems, our analysis has been
predicated on the existence of an analytic domain [32] on which exponentia-
tions of such operators are guaranteed to converge. Within this framework, we
have extended the established treatment of time-independent quantum control
problems by introducing an augmented system described in a state space that
is enlarged by one dimension, yet embodies the true dynamics of the original
system. With the aid of techniques and results developed by Kunita [55, 59], we
are able to explicate the one-dimension-reduced controllability of the augmented
system. Projection onto the original state space then yields a proof of the an-
alytic controllability of the original time-dependent quantum control system,
under conditions similar to those required in the time-independent case. The
theorem so established has been illustrated with examples drawn from mathe-
matical physics and systems engineering.
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