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Abstract. It was established by X. Mo and the author that the dimension of each irre-
ducible component of the moduli space Λd^^giX) of branched superminimal immersions of
degree d from a Riemann surface X of genus g into C P 3 lay between 2d—4g+4 and 2d — g+4

for d sufficiently large, where the upper bound was always assumed by the irreducible compo-
nent of totally geodesic branched superminimal immersions and the lower bound was assumed
by all nontotally geodesic irreducible components of M.^^\{T) for any torus T. It is shown,
via deformation theory, in this note that for d = Sg + 1 + 3k, k > 0, and any Riemann sur-
face X of g > 1, the above lower bound is assumed by at least one irreducible component of

0. The dimension and irreducibility are two fundamental questions when dealing with

moduli spaces. In [2] Calabi studied minimal 2-spheres in an ambient round sphere, where he

showed that the ambient sphere must be of even dimension if the minimal 2-sphere is linearly

full in the ambient sphere. Moreover, all the minimal 2-spheres are obtained by projecting

horizontal holomorphic rational curves from the twistor space of the ambient sphere S2n into

S2n. Here, the twistor space of S2n is the Hermitian symmetric space of pointwise orthogonal

complex structures of S2n, and horizontally refers to the horizontal distribution of the twistor

space naturally induced by the Riemannian connection of S2n. In general, the projection of

any horizontal holomorphic curve from the twistor space into S2n is a minimal surface called

a (branched) superminimal surface.

The twistor space of S4 happens to be the pleasant CP3, where a horizontal holomorphic

curve satisfies the differential equation

(1) zodzi — z\dzo + zidz3 — z^dzi = 0

with the homogeneous coordinates [zo z\ : zi : Z3] of C P 3 , with respect to which Bryant

[1] proved the existence of branched superminimal surfaces of arbitrary genus and conformal

structure in S4. Loo [10] and Verdier [12] later studied the moduli space of the branched

superminimal spheres of a fixed area (equal to a constant multiple of the degree d of the

corresponding horizontal holomorphic curves). Subsequently Mo and I [3] investigated the

moduli space Md,g(X) of branched superminimal surfaces of a fixed degree d from any

Riemann surface X of genus g into the four-sphere. By definition Md,g(X) is the variety

of all horizontal holomorphic maps from X into CP3 satisfying (1). From this equation one
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sees that Md,g(X) is, roughly, a double cover of the variety λίd,g(X) consisting of pairs of

meromorphic functions (/, g) over X such that / and g have equivalent polar divisors and

identical ramification divisors (see [3] for more details). For the Riemann sphere, the non-

diagonal part of Λfd,g(X), i.e., the set of elements not of the form (Λ o / , 5 o / ) with A and

B being Mobius transformations, which corresponds geometrically to the set of nontotally

geodesic branched superminimal immersions, is always irreducible by a result of Einsenbud

and Harris [4], as Loo and Verdier pointed out. However, Mo and I exhibited a certain torus

T of degree 6 for which the non-diagonal part of λίβ, l (T) is not irreducible [3].

As for the dimension of the moduli space, or equivalently of λίd,g(X), we showed in

[3] that although for a small degree the conformal structure of such a nontotally geodesic

branched superminimal surface is very restricted, for any sufficiently large degree nontotally

geodesic branched superminimal surfaces do exist for any conformal structure and the dimen-

sion of each irreducible component of the moduli space is between 2d — 4g+4 and 2d — g+4.

Setting g = 0, one sees that the moduli space for the Riemann sphere is therefore of pure di-

mension Id + 4 proved by Loo and Verdier. The upper bound 2d — g + 4 is always achieved

by the branched totally geodesic superminimal surfaces, or equivalently by the diagonal part

of λίd,g(X), and the lower bound 2d — Ag + 4 is achieved by all non-diagonal irreducible

components of λίβ, l (T) for any torus T.

In is tempting to suspect that the non-diagonal part of λίd,g(X) is of pure dimension

2d — Ag + 4 for all X as long as d is sufficiently large.

From a different angle, the above equation defines the canonical contact structure of

C P 3 . Recall that by a complex contact 3-fold W we mean there endows onWa holomorphic

line bundle L* of 1-forms such that if θ is a local section of L* (called a local contact form),

then θ A dθ is a nondegenerate 3-form. The dual of L* in TW is the 2-dimensional contact

distribution V, with respect to which L, the dual of L* called the contact line bundle of W, is

isomorphic to TW/Ί). A transition function computation [7] gives that

(2) L~2 = JC,

where /C is the canonical bundle of W. By Darboux's theorem, there is a local coordinate

system (p,q, r) relative to which the local contact form can be written as

(3) θ =dr + pdq - qdp .

In fact, (1) comes down to (3) in affine coordinates of C P 3 when one sets one of the homoge-

neous coordinates equal to 1. Note that by (2)

L = O(2)

forCP 3 .

Hence, the moduli space Md,g(X) intuitively may be thought of as a "family" of contact

maps from X into CP3 (i.e., maps whose images are curves tangent to the contact distribution

V). Utilizing this second approach, we will prove in this note the following.
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THEOREM 1. Let d = Sg + 1 + 3k, k > 0, for any Riemann surface X of genus

g > 1. Then the dimension of at least one irreducible component of each M.d,g(X) achieves

the above lower bound 2d — 4g + 4.

We first make precise in the next section the notion of a family of contact maps from Rie-

mann surfaces into a contact 3-fold W (whose images may be highly singular contact curves

with varying conformal structures), and find conditions for the existence and completeness of

such a family. We then specialize to CP3 for the conclusion of the theorem.

1. Recall that by a family {T, Φ, p, M) of holomorphic maps into a complex manifold

W we mean complex manifolds T and M and two holomorphic maps p : T -> M and

Φ : T —> W x Λ4 such that (1) p is a holomorphic submersion such that p~ι (t) is connected

for all t in M, and (2) Π o Φ = p, where Π : W x M-+ Misthe projection [6], [9], [11].

We call T the total space, M the base space and Φ the total deformation map. Intuitively, we

think of M as the parameter space locally parametrized by

For notational ease, we will not distinguish the Euclidean coordinates of a manifold from its

corresponding manifold neighborhood henceforth. Sitting over each t is a complex manifold

Xt = p~ι(t) which is mapped to W by the map ft = Φ\χt followed by the projection onto

the first factor oϊW x M.

For us W will be a contact 3-manifold, Xt will be Riemann surfaces of genus <?, whose

conformal structures may vary, and ft : Xt -* W will be nontrivial contact maps in the sense

that f*(TXt) is tangent to the contact distribution of W. Although the image of Xt may be

highly singular curves, the sigularities occur only at finitely many points. Hence we always

have the exact sequence

(4) 0 -• TXt -* f*(TW) -• Nt -> 0,

where Nt is the cokernel, for all t.

Let £> be the contact distribution of W and let L := TW/V be the contact line bundle.

We have the exact sequence

(5) 0 -• / f*(P) -• ft*(TW) -+ ft*L -• 0.

We wish to understand the tangent spaces of the deformation family. Recall that M is

locally parametrized by (t\,... , ta,... , tn), which we may assume contains 0. Let us cover

T with coordinates £/,- = {fo, ί)} over a neighborhood of 0 € .M such that (z, ) cover Xo and
Φi := Φ|t/f : £// ι-> W/, where W = {(pi,qi,n)} form a contact coordinate cover of W in

the sense that over W, the contact form may be chosen to be

(6) dn + Pidqi - qtdpi,

so that we have

Φi : (z, , 0 H> (/7/fo, 0, ?/(*/, 0, r/fo, 0)
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with

We choose the coordinates Zi so small that a singular point of /o, that is, a point of Xo where

dfo = 0, is placed at the origin of only one such a coordinate.

In view of (4) and (5), for each a the collection

dta dta dta t==Q

defines a holomorphic section sa of /0*L. Differentiating SiiU with (7) in mind, we obtain

(9) dsifCe _ dqj dpi dpi

dzi dta dzi dta

At a point x covered by coordinate Zi on XQ, we denote by o(x) the minimum of the

vanishing order of the three functions dpi/dzi, dqt/dzi, drt/dzi, which is an analytic invariant

and is not zero only at singular points of the map /o. (In fact it suffices to consider only pi

and qι in view of (7).) We define the singular divisor of the map /o to be

S =

For a section s = (s;(z, )) of /0*L, we denote by (ds)o the divisor of the vanishing order of

dsi/dzi at the singular points of fy. Then (9) says that the correspondence

a

maps TQM to

To = {s G H (fβL) : (ds)o > S].

Now let Si(zi) be any local section of /0*L such that (dst)o > S. Let a(zi) and b(zi) be

two (local) holomorphic functions such that

Set c = £,• + g;<z — Pib. Then define in /0*(ΓW) the local contact vector field

a a a
dpi dqt dn

LEMMA 1. Any other choice of a (zi) andb(zi) results in a difference in V, by a change

in Θ(TXo). Hence the projection of V, into λίo via (4) gives rise to a well-defined map

PROOF. Let a\ (zi) and b\ (zι) be another choice giving rise to the vector field V{. Then

(* - * i ) ^ t o , 0) = (a - flO^-fe, 0).
dZ όZ
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We may assume that q\ := dqi/dzi(zi,O) is nowhere zero if Zi parametrizes smooth points,

whereas if zι = 0 is a singular point, we assume that the vanishing order of q[ is no greater

than that of p\ := dpi/dzi (Zi, 0). A calculation derives

, b-bx\ , ( d a\ ,/ a a χ\

-v< - — V U Ϊ + q ^)+*• U - " 5 Ϊ ) J •
The conclusion follows when we observe that

in view of (7). D

THEOREM 2. Let /o : Xo —> W be α holomorphic contact map from a Riemann

surface of genus g into a contact 3-fold with contact line bundle L. Let S be the singular

divisor of /o and [S] the line bundle determined by it. Suppose

(1) Hl(f£L)=0,and

(2) π : H°(f*L) -* # ° ( [ S ] | 5 ) given by

dsk
s = (si(zi)) ^ ®—- (modS)

dZk

is surjective, where Zk is the coordinate around a singular point and (mod S) indicates that

the Taylor series is truncated modulo the appropriate singular order in S at the point. Then

there is a family of holomorphic contact maps from Riemann surfaces of genus g into W such

that /o is the initial map and the dimension of the family is

l + d e g ( / 0 * L ) - # - d e g ( < S ) ,

as long as deg(/0*L) > 2g — 1.

PROOF. (Sketch). Let # ; , where

be the transition function of the contact coordinates of W. Let bij be the transition function

of the initial Riemann surface Xo and f\ be the restriction of the initial map /o : Xo |-> W to

the coordinate zι. Following [6], where the deformation of an arbitrary map is considered, we

want to construct formal power series φij (ZJ , t) and Φ, (zi, t) such that

(10) Φij(Φjk(zk, t), t) = φikdk, t),

φ.ta.o) = /;•&•),
Φi(Φij(zj, t),t) = 9ij(Φj(zj, 0 )

Our case involves one more condition than these four. Namely, Φ, (z, , t) must satisfy (7) as

well.
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We also adopt Kodaira's convention that for a power series P(t\,... , tn), we denote by

Pm the finite sum of the series up to the ra-th degree, by P\m the term of ra-th degree, and by

P =m 2 to indicate that the two polynomials P and Q agree up to degree m.

In [6] one solves the polynomial version of the second and the fourth item of (10):

The difference between our case and that in [6], however, is that our deformation must always

be contact. To achieve this goal, observe that there is a map

p:T0^ Hι(X0,O(TX0))

obtained, from the above lemma, by sending TQ into H°(Xo, λίo) followed by the connecting

homomorphism

Ho(Xo,ΛΓo) -> H\X0,0(TXO))

of (4). Now p(d/dta) is a 1-cocycle (Θ^(ZJ)). We set

φjjizj, t) := bij(zj)

and, in view of (8),

Φ/fc, 0 := fiizi) + Y^si,a{zi)toi.
a

Suppose Φ^~1(ZJ, t) and Φ™~ι(zi, t), m > 2, have been determined. Then it is shown in [6]

that the collection

Γij\m(Zi, t) = [Φ?-l(φ?rHzj, 0, 0 - 9ij(Φj~l(Z

defines a 1-cocycle in /o*Λ/*o, which projects via (5) to a 1-cocycle (sij\m) in /0*L. Since

//1(/0*L) = 0 by assumption (1), we have

Sij\m =~ Sj\m Si\m

The ramification order (dsi\m)o at a singular point of /o smaller than the order of the singular

divisor at the point can be eliminated by assumption (2), i.e., there is a global section s\m of

/0*(L) such that the local sections s > := Si\m — s\m satisfies

(Π) ( ^ ; | m ) o > 5 ,

and

Sij\m = Sj\m — si\m '

From (11) and the above lemma, we can find a contact vector field Φi\m, unique up to 0(TXo),

such that Φi\m projects to s , . Now we define

Φm = Φm~λ + Φi\m ,

which completes the induction. One then goes through Kodaira's argument [8], [9] verbatim

to show the convergence of the series Σm ®\m f°Γ sufficiently small t.
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Since the dimension of the deformation family is that of To, which is the kernel of π, the

dimension count follows from Riemann-Roch. D

In particular, S = 0 when /o is an immersion. The deformation family is then of dimen-

sion equal to dim H°(f*L) = 1 + deg(/0*L) - g as long as deg(/0*L) >2g-l.

We denote by S + 1 the divisor supported at the singular points whose order at a singular

point is one more than the singular order there, by [S + 1] the line bundle generated by the

divisor, and by |<S| the number of singular points. A sufficient condition for the surjectivity of

7Γ, i.e., for assumption (2) in Theorem 2 to hold, is to consider the exact sequence

0 -> /0*L - [S + 1] -> /0*L -> [S + l]Ls+i -> 0.

The surjectivity of π will be ensured if H1(/QL — [S + 1]) = 0, which is the case if

(12) deg(/0*L) > 2g - 2 + deg(<S) + | 5 | .

Hence π is surjective as long as the degree of /0*L is much larger than the singular divisor.

For instance, when W = CP3, f0 is of degree d and so deg(/0*L) = 2d since L = O{2). The

Plucker formula asserts that (12) is equivalent to

dx > 4 0 - 4 + | 5 | ,

where d\ is the degree of the first associated curve of /o

Recall [6] that given a family {T, Φ, p,M), abbreviated ft : Xt -> W, and a holo-

morphic map h from a manifold M! to ΛΊ, there is an induced family (T XM Mf, Φ x

id, p', Mf), where pr is the natural projection from T XM M! to M!. The induced family

is nothing but the family of maps fh(t).

We say that a family (J7, Φ, p,M) with the initial map /o over to e M is complete at to

if given any other family (T\ Φf, p', Mf) with the initial map #o over t^ e M! equivalent to

/o, there is a holomorphic map h from a neighborhood of t^ e M! to that of to £ Λ4 mapping

t'Q to to such that the latter family is equivalent to the family induced from the former one.

Here two families are said to be equivalent if there exist biholomorphisms between the total

and the base spaces, respectively, that commute with the two total deformation maps.

THEOREM 3. Notation being as above, if% = //°(/0*L), then the family is complete

atOe M.

PROOF. (Sketch). Following [6], it suffices to construct a local holomorphic function

h(tf) from a neighborhood around 0 € M! to M and holomorphic functions <#(z,-, t') such
that

λ(0) = 0,

9i(zi,0) = Zi,

QiiΦ'ijiZj, tf), tr) = φijigjizj, t\ h(tf)),
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Of course, the deformation in our case must always be contact. Again one considers the

polynomial version of the system

Φ, (fl5",hm) =m Φi.

Suppose that we have constructed hm~ι and gf ~'. As in [6], the quantities

defines a global section of Λ/"o, when d/dwi denotes (9/9/?/, d/dqt, d/dn), and F/

denotes Σa F?d/dw?. In fact one has the identity [6]

(13) γi\m = t{gi\m) + Σjh<χ\™—" '
a α

where i : TXQ -> /QTW appears in (4) and h\m = (h\\m,... , ha\m9...). The projection of

Yi\m defines a section t := (ί, | m ) in //°(/0*L) such that

(14) ί/|m =

with s/,α defined by (8). So (14) determines h\m. To find # | m , observe that since now

H°(/0*L) = To, we can, by the above lemma, find local contact vector fields, unique up

to O(TXQ), which correspond to ί/|m and s/,α; the injectivity of i then finishes the work. The

same arguments as in [6] will prove the convergence of the power series Σm 9\m a n d Σm h\m

for sufficiently small ί. •

In particular, if /o is an immersed contact map such that deg(/0*L) > 2g— 1, then there is

a complete deformation family of holomorphic contact maps of dimension 1 + deg(/0*L) — g

around /o.

2. We now prove Theorem 1. It is well-known [11] that the family of Riemann surfaces

of genus g parametrized by the Teichmϋller space Tg can be simultaneously embedded into

Qp\+τ-g a s c u r v e s of degree τ for τ > 2g + 1. We will identify the Riemann surfaces with

the image curves. Let Xt be a 1-parameter family of such curves with Xo the initial Riemann

surface. Choose a generic projection from CPλ+τ~g onto CP2 so that Xt are projected onto

plane curves c(t) (of the same degree τ) with only nodes as singularities. In CP2 pick three

independent points Λ, B, C and set up the projective coordinates with A = [1 : 0 : 0],

B = [0 : 1 : 0], C = [0 : 0 : 1] in such a way that for any t in a small neighborhood of t = 0

the line BC intersects the curve c(t) transversally, c(t) does not pass through B, C, and all

tangent lines of c(t) passing through C have contact order 2 with c(t). The projection with

center C (B, respectively) onto the line AB (line AC, respectively) gives rise to meromorphic

functions xt and yt on Xt. These two meromorphic functions generate immersed holomorphic

contact maps ft : Xt -> CP3 of degree

d:=2g+3τ -2
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([3, Corollary 1]).

Now the connecting homomorphism

Δ0:H°(λί0)^ Hι(TX0)

arising from (4) sends the infinitesimal normal deformation of the 1-parameter contact family

ft exactly to the infinitesimal deformation of the complex structure of Xt at t = 0 ([6]),

which is a tangent vector of the tangent space of the TeichmuΊler space at Xo identified with

Hι(TXo). Thus because the choice of the 1-parameter family is arbitrary, Δo sends the

infinitesimal normal deformation of the family T of immersed contact maps containing /o,

which is a subspace of //°(Λ/"o) of dimension 2ά — g + 1, onto Hι(TXo) of dimension 3g— 3

if g > 2 and 1 if g = 1. Thus there is a neighborhood U of 0 in the parameter space M of the

family T such that for any t € U the connecting homomorphism Δt : H°(J\ft) —• Hι(TXt)

maps the infinitesimal normal deformation of T at t onto Hι(TXt), so that the kernel Kt is

of dimension Id - g + 1 - 3g + 3 = Id - Ag + 4 if g > 2 and Id - 4g + 3 if g = 1.

Consider the moduli space Md,g(Xo) Let V C Md,g(Xo) be the irreducible component

containing /o, and let γ : \z\ < ε -» V be a parametrized curve with y(0) = /o such that

y (ε) is a smooth point of V. We may choose ε so small that all γ(z) are immersed maps, so

that γ (z) is in fact a family of immersed contact maps. By the completeness of T, the family

γ (z) is induced from T so that γ (ε) lies in T and we may assume it is parametrized by some

t° e U by choosing ε small enough. A sufficiently small neighborhood of γ (ε) in V consists

of a family of immersed contact maps whose conformal structures remain fixed, and hence

whose infinitesimal normal deformation, which is nothing but the tangent space to V at /,o,

lies in the kernel /C,o. Therefore for g > 2, we have dim V < Id — Ag + 4. However, we have

proved in [3] that dim V > Id — 4g + 4 as mentioned in Section 0. So the equality is attained.

For g = 1, the same argument would at first glance show dim V < 2d — Ag + 3, which seems

to contradict dim V > 2d — Ag + 4. However, there is a 1-dimensional worth of translations

on the torus that do not appear in the deformation, and any contact map composed with a

translation on the underlying torus is again a contact map. Hence adding this extra dimension

we still get the right dimension 2d — Ag + 4 for a torus. Now that τ > 2g + 1, the beginning

degree of d is 8<? -f 1 and any two consecutive such d differ by 3. We are done. D
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