1) A particle is moving along the x-axis and its position for $x \ge 0$ is given by the formula $x = \frac{1}{3}t^3 - 2t^2 + 3t$. On what interval(s) is the **velocity** of the particle decreasing?

Solution: $v = dx/dt = t^2 - 4t + 3$, dv/dt = 2t - 4 = 2(t-2). The velocity v is decreasing where dv/dt < 0. That is, on the open interval (0, 2).

2) A rock is thrown vertically upward from the edge of a stand on the moon's surface, which is 10 feet above the surface. Its height in meters after t seconds is given by $h(t) = 24 t - 0.8 t^2 + 10$ (e.g. h(0) = 10).

Find the **total distance** traveled by the rock from the time it is thrown up until the time it passes the stand on its the way down.

Solution: v = 24 - 1.6 t = 0 when t = 24/1.6 = 15. That means that after 15 seconds the rock reaches its highest point. 15 seconds later it will pass the stand on the way down(you can check that h(30) = 10). Total distance traveled will then be s(15) - s(0) + |s(30) - s(15)| = 180 + 180 = 360 meters

3) Find an equation for the **normal line** to the curve $y = x \tan(x)$ at the point $(\pi, 0)$.

Solution: dy/dx = tan(x) + x sec²(x). For x = π we get dy/dx = π (tan(π) = 0 and sec(π) = -1). Then slope of normal line is $-\frac{1}{\pi}$ and equation of normal line is $y = -\frac{1}{\pi}(x - \pi) = -\frac{1}{\pi}x + 1$.

4) Eliminate the parameter to find a **Cartesian equation** for the curve $x = -1 + 3 \sec(t)$ $y = 2 + 3 \tan(t)$

Solution: $x + 1 = 3 \sec(t)$ and $y - 2 = 3 \tan(t)$. So $(x+1)^2 = 9 \sec^2(t)$ and $(y-2)^2 = 9 \tan^2(t)$. From the identity $1 + \tan^2(t) = \sec^2(t)$ we get that $9 + 9 \tan^2(t) = 9 \sec^2(t)$.

So we get the cartesian equation $9 + (y - 2)^2 = (x+1)^2$. This can also be written as $(x+1)^2 - (y - 2)^2 = 9$, which is a hyperbola.

5) From the parametric equations $x = t - \sin(t)$, $y = 1 - \cos(t)$, find the second derivative, $\frac{d^2y}{dx^2}$, at $t = \frac{\pi}{3}$.

Solution: $y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1+\sin(t)}{1-\cos(t)}$. Next we have $\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{dy'/dt}{dx/dt}$. Now $dy'/dt = \frac{\cos(t)(1-\cos(t))-(1+\sin(t))(\sin(t))}{(1-\cos(t))^2} = \frac{\cos(t)-\sin(t)-1}{(1-\cos(t))^2}$ and $dx/dt = (1-\cos(t))$.

Then $\frac{dy'/dt}{dx/dt} = \frac{\cos(t) - \sin(t) - 1}{(1 - \cos(t))^3} = \frac{\frac{1}{2} - \frac{\sqrt{3}}{2} - 1}{(1 - \frac{1}{2})^2} = -(2\sqrt{3} + 2)$ at $t = \frac{\pi}{3}$.

-

6) If $f(x) = x \cdot \ln(e^{\sqrt{x}})$, find f'(1).

Solution: $f(x) = x \cdot \sqrt{x}$ $\ln(e) = x^{\frac{3}{2}}$. Then $f'(x) = \frac{3}{2} \sqrt{x}$ and $f'(1) = \frac{3}{2}$.

7) Find an equation for the **tangent line** to the curve $x^3 + y^3 = 9xy$ at the point (2, 4).

Solution: $3 x^2 + 3 y^2 \frac{dy}{dx} = 9 y + 9 x \frac{dy}{dx}$. For x = 2 and y = 4 we get $12 + 48 \frac{dy}{dx} = 36 + 18 \frac{dy}{dx}$. So $30 \frac{dy}{dx} = 24$ and $\frac{dy}{dx} = \frac{4}{5}$. Equation for tangent line is $(y - 4) = \frac{4}{5} (x - 2)$.

.

8) If $f(x) = (\tan^{-1}(x))^2$ then f'(1) = :

Solution: $f'(x) = 2 (\tan^{-1}(x)) \cdot \frac{1}{1+x^2}$. Then $f'(1) = 2 \frac{\pi}{4} \cdot \frac{1}{2} = \frac{\pi}{4}$.

9) Find the **slope** of the tangent line to the curve $x \cdot \arctan(y) + x \cdot y = \frac{\pi + 4}{4}$ at the point (1, 1).

Solution: $\arctan(y) + \frac{x}{1+y^2} \frac{dy}{dx} + y + x \frac{dy}{dx} = 0$. For x = 1 and y = 1 we get $\frac{\pi}{4} + \frac{1}{2} \frac{dy}{dx} + 1 + \frac{dy}{dx} = 0$. $\frac{3}{2} \frac{dy}{dx} = -(\frac{\pi+4}{4})$. Then $\frac{dy}{dx} = -(\frac{\pi+4}{6})$.

10) If
$$f(x) = x \cdot \log_3(2^{\sqrt{x}})$$
, find $f'(1)$.

11) If $f(x) = x^{e^x}$ then find f'(1).

Solution: By logarithmic differentiation we have $\ln(y) = \ln(x^{e^x}) = e^x \ln(x)$. Then $\frac{1}{y} \frac{dy}{dx} = e^x \ln(x) + e^x \frac{1}{x}$ and $f'(x) = x^{e^x}$ ($e^x \ln(x) + e^x \frac{1}{x}$). Finally we get that f'(1) = e ($\ln(1) = 0$ and $1^e = 1$).

12) If
$$f(x) = \sin^{-1}(\tan(x))$$
 then find $f'(x)$.

Solution:
$$f'(x) = \frac{1}{\sqrt{1-\tan^2(x)}} \cdot \sec^2(x) = \frac{\sec^2(x)}{\sqrt{1-\tan^2(x)}}$$
.

13) If
$$f(x) = x \cdot 4^{-x^2}$$
 then find $f'(x)$.

Solution:
$$f'(x) = 4^{-x^2} + x \cdot \ln(4) 4^{-x^2} \cdot -2x = 4^{-x^2} (1 - 2 \ln(4) x^2).$$

14) Use logarithmic differentiation to find $\frac{dy}{dx}$ if $y = \sqrt[4]{\frac{x^3+1}{\tan(x) \cdot \sec(x)}}$

$$\begin{array}{ll} \textbf{Solution:} & \ln(y) = \frac{1}{4} \cdot \ln(\frac{x^3 + 1}{\tan(x) \cdot \sec(x)}) = \frac{1}{4} (\ln(x^3 + 1) - \ln(\tan(x)) - \ln(\sec(x))). \\ & \left(\text{We're using} & \ln\left((\frac{x^3 + 1}{\tan(x) \cdot \sec(x)})^{\frac{1}{4}}\right) = \frac{1}{4} \ln\left((\frac{x^3 + 1}{\tan(x) \cdot \sec(x)}).\right) \\ & \frac{1}{y} \frac{dy}{dx} = \frac{1}{4} \left(\frac{3x^2}{x^3 + 1} - \frac{\sec^2(x)}{\tan(x)} - \frac{\sec(x)\tan(x)}{\sec(x)}\right) \\ & \text{Then} & \frac{dy}{dx} = \frac{1}{4} \cdot \sqrt[4]{\frac{x^3 + 1}{\tan(x) \cdot \sec(x)}} \cdot \left(\frac{3x^2}{x^3 + 1} - \frac{\sec^2(x)}{\tan(x)} - \tan(x)\right). \end{array}$$

15) For
$$f(x) = 12 \log_{8}(\ln(x))$$
, find $f'(e)$.

Solution: $f'(x) = \frac{12}{\ln(8)} \frac{1}{\ln(x)} \frac{1}{x}$. Then $f'(e) = \frac{12}{\ln(8) \cdot e}$.

16) There are two points where the curve $x^2 + xy + y^2 = 9$ crosses the x-axis. At those two points the **tangent lines** are parallel. Find the common **slope**.

(Hint: Point on the x-axis has coordinates (a, 0)).

Solution: For y=0 we get $x^2=9$. The points are then (-3,0), (3,0). By implicit differentiation we have $2x+y+x\frac{dy}{dx}+2y\frac{dy}{dx}=0$. For y=0, $2x+x\frac{dy}{dx}=0$. For $x=\pm 3$ we have $\frac{dy}{dx}=-2$. Same slope.

17) Find
$$\lim_{\theta \to 0} \cos(\frac{\pi \theta}{\sin(\theta)})$$
 . (Recall that $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$)

Solution: By limit laws for composites we have that $\lim_{\theta \to 0} \cos\left(\frac{\pi \, \theta}{\sin(\theta)}\right) = \cos\left(\lim_{\theta \to 0} \left(\frac{\pi \, \theta}{\sin(\theta)}\right)\right) = \cos\left(\pi \cdot \lim_{\theta \to 0} \left(\frac{\theta}{\sin(\theta)}\right)\right).$ Finally $\lim_{\theta \to 0} \left(\frac{\theta}{\sin(\theta)}\right) = \frac{1}{\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta}} = \frac{1}{1} = 1 \text{ and we get that}$ $\lim_{\theta \to 0} \cos\left(\frac{\pi \, \theta}{\sin(\theta)}\right) = \cos\left(\pi\right) = -1.$

18) At 2:00 PM sailboat **B** is 4 km south of sailboat **A**. After that **A** starts moving east at 4 km/hr and **B** starts moving east at 1 km/hr. Find the **rate of change** of the distance between the two boats at 3:00 PM.

Solution: In this case t = 0 is 2:00 PM and we want the result at t = 1, 3:00 PM.

In the upper diagram the letters on the left represent the positions of the two boats at t=0, boat A above and boat B below. The two letters on the right represent the positions at a later time . The arrows are the directions that boats travel. x is distance A traveled and y is the distance B traveled. (x and y vary in time). We are given that always, $\frac{dx}{dt}=4$ km/hr $and \frac{dy}{dt}=1$ km/hr. The problem is to find $\frac{ds}{dt}$ when t=1. The distance between them, s, is the hypotenuse of a right triangle with the other sides being 4 and (x-y). So $s^2=4^2+(x-y)^2$. When t=1 we have x=4, y=1 giving us s=5. By implicit differentiation $2s\frac{ds}{dt}=2(x-y)(\frac{dx}{dt}-\frac{dy}{dt})$. For t=1 we have that $10\frac{ds}{dt}=6(4-1)$. So $\frac{ds}{dt}=\frac{9}{5}$ km/hr at 3:00 PM.

- 19) When a circular plate of metal is heated in an oven, its radius increases at the rate of 0.01 cm/min. At what rate is the plate's **area** increasing when the radius is 50 cm? **Solution:** We have a circle of radius r and are given $\frac{dr}{dt} = 0.01$. The area $A = \pi r^2$, so we have $\frac{dA}{dt} = 2 \pi r \frac{dr}{dt}$. When r = 50 cm $\frac{dA}{dt} = 100 \pi (0.01) = \pi$ cm²/min.
- 20) The length of a rectangle is decreasing at the rate of 5 cm/sec while the width is increasing at the rate of 3 cm/ses. Find the rate of change of the **diagonal** when the length is 10 cm and the width is 15 cm. Is it increasing or decreasing?

Solution: If x = length and y = width then we are given $\frac{dx}{dt} = -5$, $\frac{dy}{dt} = 3$, both represent cm/sec. If s is the diagonal it is the hypotenuse of a right triangle with the other sides x and y. So $x^2 + y^2 = s^2$ and by implicit differentiation $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2s\frac{ds}{dt}$. If x = 10 and y = 15 then $s = \sqrt{325} = 5\sqrt{13}$. For those values we get $-100 + 90 = 10\sqrt{13}\frac{ds}{dt}$ and $\frac{ds}{dt} = -\frac{1}{\sqrt{13}}$ cm/sec (e.g. it is decreasing).