Proofs of Basic Theorems on Differentiable Functions

1.CHAIN RULE: Whenf : R® — R™ is differentiable at
a € R"and g : R™ — RPis differentiable at b = f{a), then
the composite function h = gof is differentiable at ¢ with

(dh)a = (dg)b O(df)a
PROOF. By the definition of differentiability, for
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Defining (dh), to be (dg), o(df),, we need to show that

— 0 as r—a.
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Because linear transformations on finite dimensional vector
spaces are continuous, there are positive constants Cy and

C, for which 1(df)e(z —a)|] < Cf||33 — CLH\?’:C and
1(dg)s(y — D) < Cylly — bl Yy

Since f(z) — f(a) = (df)s(z —a) + ||z — al|Ef(z),



we deduce that

1f(z) = fla)ll < (Cr + [Ef ()l — al[ V2.

Using h(z) = g(f(z)and h(a) = g(f(a) = g(b), we can
use these inequalities and the triangle inequality to obtain
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Then, as z—a, |[Ex(z) [0 since |[E¢(z)|[=0, f(z)-b

by continuity of f at a, and thus [|[E,(f(z)|l-=0 in view of
the fact that [|[E,(y)||-0 as y—=b. This completes the proof.
2. GENERALIZATION OF ROLLE'S THEOREM. Let
I = (a,b) be a possibly infinite interval and suppose

f I — Ris a function which is differentiable on / and
for which lim f(z) = 0 = lin’é f(x). Then there is at least
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one point ¢ € [ for which f'(¢) = 0.

PROOF. If f(z) =0vVz e I, f'(z) =0Vz € I.
Otherwise, replacing f by — f if need be, we can assume



there is a point z; in [ for which f(z;) > 0. By the
assumptions on f, we can choose ay and b;in [ for which
a1<z1<by and |f(z)| < f(z1)when eithera < = < ¢

or by <z < b. Then, on the compact set [as, b1], f
achieves a maximum value M at a point c. Since

M > f(z1) > max{f(a1), f(b1)}, c € (a1, b1). Then
f'(c) = 0 from the elementary calculus observation that f’
vanishes at any local maximum or minimum point.

NOTE: Aside from the mild extension to possibly infinite
intervals, this proof appears in most elementary calculus
texts with "handwaving" over the existence of M since
elementary calculus texts don't want to get into sups and
infs, much less the properties of continuous functions on
compact sets.

3. CAUCHY MEAN VALUE THEOREM. Let 7 be as in
Rolle's Theorem with f{z) and g(z) two R-valued
differentiable functions on I having finite limits f(a), g(a)
as z—a and f(b), g(b) as z—b. Then there exists a point

¢ € I for which (f(8) - £(a))g(c) = (g(b) — g(a)) f'(c)

PROOF. Let
hz) = (f(b) — f(a))(g{z) — g(a))
— (f(z) = fla))(g(b) = g(a)).
Then A satisfies the hypotheses of Rolle's Theorem so there
1s a point ¢ € [ for which

0=h"(c) = (f(b) = f(a))g'(c) — (g(b) — g(a)) f'(c).



4. MEAN VALUE THEOREM. Let [a, b] be a closed,
bounded interval and f:|a, b] — R a function which is

differentiable on the open interval (a, b) and continuous at
both aand b. Then f(b) — f(a) = (b — a)f'(c) for some
c € (a,b).

PROOF. Apply the Cauchy Mean Value Theorem with
g(z) =z, hence g'(c) = 1.



