
Simulated Annealing and the Knapsack Problem

Benjamin Misch

December 19, 2012

1 The Knapsack Problem

The knapsack problem is a classic and widely studied computational problem in combinatorial optimization.
We are given n objects denoted by xi (i = 1, 2, . . . , n) each with corresponding weight wi. We can imagine
a person carrying a backpack who has access to each of these objects. Unfortunately, this person can only
hold some maximum weight W in his backpack. The problem follows: what is the optimal assortment of
objects such that the person maximizes the value of objects in his pack with the constraint of weight W?

The applications of this simple problem can be found in many fields. In economics, the knapsack problem
is analogous to a simple consumption model given a budget constraint. In other words, we choose from a
list of objects to buy, each with a certain utility, subject to the budget constraint. Because the knapsack
problem is a very general problem in combinatorial optimization, it has applications in almost every field.
One of the most interesting applications is in solving the so-called Oregon Trail problem.

2 Oregon Trail Problem

The Oregon Trail game, a staple of elementary school education in the 1990s, involves a player as a pioneer
attempting to travel from Missouri to the West coast in the 1848 while keeping his family safe and alive. The
game takes place in two stages. First, the player chooses his load out before heading out onto the Oregon
Trail, and second, the player then goes on the trail. The knapsack problem applies to the first part. Given
several thousand dollars, the player first chooses a size of wagon. Each wagon can carry a certain amount
of weight. From here, in addition the budget constraint, we have a weight constraint. Next, we pick two
traveling companions from a large assortment (including a banker, a chef, a fisherman, etc.); each choice is
unique with a certain amount of weight, money, and utility value. Then we choose which supplies to take.
This process includes food, weapons, medicine, comforts, and more. The problem is to choose from all of
these combinations in order to maximize your chance of surviving to the West coast. This is a combinatorial
optimization problem subject to multiple constraints and many specific utility functions with regard to each
item. Clearly this problem is a very advanced and complicated version of the knapsack problem, but I think
it paints a good picture as to how the simple knapsack problem can be extended to something of very high
complexity.

1

3 The 0-1 Knapsack Problem

We will focus on the most basic and common version of the knapsack problem. This version limits each
object to a number of copies of 0 or 1. We can mathematically formulate the problem as follows:

Let there be n items, x1 to xn where each xi has a value vi and weight wi. The maximum weight that we can
carry in the bag is W. It is common to assume that all values and weights are greater than zero. Maximize:

n�

i=1

vixi xi =

�
1 if the item is in the bag
0 otherwise

(1)

subject to the constraint
n�

i=1

wixi ≤ W, xi ∈ 0, 1 (2)

Maximize the sum of the values of the items in the knapsack so that the sum of the weights must be less
than the knapsack’s capacity. We can approach this problem in two ways: a simple deterministic model and
a simulated annealing model.

4 Algorithm

The algorithm solving the Knapsack Problem is as follows. Imagine you are a thief looting a house. You
see several items around the house that you would like to steal, but you can only carry a certain amount of
weight or you will be caught running away. You start with zero weight in your bag.

0. Record your current assortment of objects. We will call this ξ1. ξ = {x1, x2, . . . , xn}, xi ∈ 0, 1

1. You pick an item at random with equal probability.

2. Holding it in your hand, you assess whether to add it to your backpack.

• If adding this new object into your bag pushes you over the weight limit, you select an item at random
with equal probability from those in your bag and the one from your hand. You drop that item. You
repeat this process until the objects in your bag are below the weight limit.

• Otherwise, add the item to your bag.

• Record the outcome as a trial assortment. We will call this ξ�1.

3. Compare the value of the trial assortment with the original. These values are V �
1 and V1, respectively.

V (ξ) =
n�

i=1

vixi, i = 1, 2, . . . , n.

• With some probability P, we accept the new trial assortment as the new assortment (We will analyze
two methods for determining this probability). In other words, ξ2 = ξ�1.

• Otherwise, we discard the trial assortment and set the original assortment as the new assortment.
ξ2 = ξ1.

2

Method 1: The Deterministic Model. If the difference between the trial and the original is greater
than zero, set the trial assortment as the new assortment. In other words, if V �

1 − V1 > 0, set P(Accept)=1,
else set P(Accept)=0. This model does not converge to any single optimum; rather it alternates between
several local optima.

Method 2: Simulated Annealing Model. For the theory behind Simulated Annealing, I refer the reader
to Homework 10 and 11. In quick review, simulated annealing involves a cooling schedule determined by β
and a stationary probability πβ(ξ) =

1
Z(β)e

−βV (ξ) . If we cool slowly enough, we can avoid getting trapped

in local optima. We determine the probability P by min{1, e(β∆)} where ∆ = V �
1 −V1. β is determined more

or less by trial and error.

5 MATLAB Simulation

Now that we have the theory, we can test it on an example. Let’s assume that you have the following objects.
Our backpack can only carry a total weight of 20 kg.





v w

x1 $50 5 kg
x2 $40 4 kg
x3 $30 6 kg
x4 $50 3 kg
x5 $30 2 kg
x6 $24 6 kg
x7 $36 7 kg





The code for simulated annealing is as follows. This code can be reappropriated easily for the deterministic
model.

value=[50 40 30 50 30 24 36];

weight=[5 4 6 3 2 6 7];

TotalWeight=20;

beta=0:.01:1;

n=1000;

Knapsack(value, weight, TotalWeight, beta, n)

function X = Knapsack(value, weight, TotalWeight, beta, n)

% Input: value = array of values associated with object i.

% weight = array of weights associated with object i.

% TotalWeight = the total weight one can carry in the knapsack.

% beta = vector of beta values for simulated annealing.

% n = number of simulations per beta value.

% Output: FinalValue = maximum value of objects in the knapsack.

% FinalItems = list of objects carried in the knapsack.

% Entries in the vector correspond to object i

% being present in the knapsack.

3

v=length(value);

W=zeros(1,v);

Value=0;

VW=0;

a=length(beta);

nn=n*ones(1,a);

for i=1:a

b=beta(i);

for j=2:nn(i)

m=0;

while m==0

c=ceil(rand*v);

if W(c)==0

m=1;

end

end

TrialW=W;

TrialW(c)=1;

while sum(TrialW.*weight)>TotalWeight

e=0;

while e==0

d=ceil(rand*v);

if TrialW(d)==1

e=1;

end

end

TrialW(d)=0;

end

f=sum(TrialW.*value)-sum(W.*value);

g=min([1 exp(b*f)]);

accept=(rand<=g);

%Deterministic Model

%if f>=0

if accept

W=TrialW;

VW(j)=sum(W.*value);

else

VW(j)=VW(j-1);

end

end

Value=[Value VW(2:length(VW))];

end

FinalValue=Value(length(Value))

x=0;

for k=1:length(W)

if W(k)==1

x=[x k];

end

end

FinalItems=x(2:length(x))

end

4

It is a good exercise to try and solve this problem by hand first. The final solution is $200 with objects 1, 2,
3, 4, 5. The simulated annealing code solved this correctly in every one of my trials, but the deterministic
model would sometimes get stuck at $176 with objects 1, 2, 4, 7.

6 Comparison of Models

In theory the simulated annealing model should give us the correct optimum far more often than the de-
terministic model. To test this hypothesis, we can compare the two with a paired t-test. In this case, the
null hypothesis is that the difference between the two models is zero. In order to gather the data for the
test, we can run each simulation many times and compare the two. I modified my code slightly to run each
simulation 100 times. I then catalogued the FinalValue for each model. I then used MATLAB to run the
paired t-test.

[h,p,ci,stats]=ttest(FVSA,FVDet,left)

FVSA corresponds to the final values of the simulated annealing, and FVDet to those of the deterministic
model. I received the following output:

h =

1

p =

1.4834e-09

ci =

5.2265

9.6535

stats =

tstat: 6.6692

df: 99

sd: 11.1558

This shows that there is a significant difference between the two models. Because this is a one-tailed test, we
see that the simulated annealing model is significantly greater than the deterministic model, meaning that
the simulated annealing model provides us with a higher value on average.

5

