Notes for Math 450
Lecture Notes 1

Renato Feres

1 Probability Models

We often have to deal with situations involving hidden or unpredictable factors.
Sometimes the unpredictability is an essential element of the phenomenon un-
der investigation. For example, physicists regard radioactive decay as a purely
random phenomenon caused by quantum fluctuations of the state of radioactive
atoms. More often, the unpredictability is due to our lack of information of all
the factors affecting the system, on account of its complexity or instability, as in
weather forecasting. Or because information is deliberately being kept hidden
from us, for example, when playing a game of poker. Even relatively simple,
deterministic systems can be very unstable and behave in a practically unpre-
dictable way. (See the discussion of the forced pendulum in a later lecture.)

In such cases it may be fruitful to formulate a probabilistic model that can
serve as the basis for forecasting or decision-making regarding the system. For
example, although it is not practically possible to predict whether a person will
enter or leave a public building at any given time, for most purposes we can
treat the arrival times as random, with a probability distribution depending on
a few parameters that can be estimated by statistical methods. Similarly, we
cannot predict what the exchange rate between the dollar and the euro will be
next week, but we may be able to probabilistically model its fluctuations well
enough to estimate the likelihood that this rate will be within a given range of
values.

Sometimes we may want to use a randomized procedure to find the solution
to a problem or to make a decision. There are many problems in mathematics
in which a random search in a large set of candidates for a solution can be much
more efficient than a systematic search. (This relates to the topic of Random
Algorithms and Monte Carlo Methods.) Even in ordinary life situations we may
want to contrive random procedures for deciding on a course of action, either
because randomness may be equated with fairness (e.g., when picking which
soccer team will give the initial kick) or because the situation at hand is so
complicated that any attempt to deliberate in more analytical ways could lead
to not making any decision at all (e.g., whether to marry Camilla or Sophia.)

Throughout this course we will consider probabilistic models of a variety of
phenomena in areas ranging from finance to molecular biology. We will learn



some of the most useful theoretical tools for studying random processes, such as
Markov chains and stochastic differential equations, and will implement them
by computer simulations.

1.1 Interpretations of probability

The mathematical theory of probability is very well developed and its founda-
tions, as laid by Kolmogorov and others by the first few decades of the 20th
century, are widely accepted as definitive. The axioms of probability theory
that will be reviewed later are sufficient to develop all the purely mathematical
results that we will encounter in the course. This axiomatization is centered
on the notion of a probability space, which captures abstractly the idea of an
experiment with a random outcome. A probability space consists of a triple
of entities (S,F, P), where S, called the sample space, is a set describing the
possible elementary outcomes of the experiment, F is a collection of subsets of
S called events, and P is the probability measure, which assigns a probability,
P(E), to each event E in F. Proper definitions of these terms will be given
later.

To compare a probability model to a concrete situation, however, we need
some interpretation that relates the mathematical concept of the probability
P(E) of an event E to our physical experience. There is some disagreement
about how probability should be interpreted, and this is a topic of much philo-
sophical discussion. The most common interpretations are the classical, the
frequentist, and the Bayesian. (I take this summary from [Wilk]):

Classical interpretation. The classical interpretation of probability is
based on the assumption that the events of interest are generated by a set
of equally likely elementary events. In other words, the sample space might
be decomposable (or partitioned, to use the standard term) into sets that, by
symmetry or some other consideration, are assumed to have equal likelihood.
If this is the case, one can then assign probabilities for the other events by
expressing them as unions of elementary events. Most of the basic theory of
probability for finite sample spaces is based on this idea.

For example, throwing two dice is an experiment with sample space consist-
ing of all pairs (4, j) in the product set

S=1{1,2,...,6} x {1,2,...,6}.

If the dice are not unbalanced, we have no reason to suppose that any pair
is more or less likely to occur than any other. As the total probability is 1
and there are 36 elementary events, the probability of each of them is 1/36.
For a composite event E C S we then have P(E) = n/36, where n is the
number of elementary events in F. For example, the probability that the total
number of pips is 4 is the probability of drawing one of the following pairs:
(1,3),(2,2),(3,1). Since there are 3 favorable outcomes in 36, the probability
is 1/12.

Frequentist interpretation. The frequentist interpretation is the one
adopted by traditional statistical methodology. It applies to experiments that



can in principle be repeated an arbitrary number of times under essentially iden-
tical conditions. The probability of an event E is then defined as the long-run
proportion that E occurs under many repetitions of the experiment. If a mathe-
matical model of the experiment is available in which it makes sense to consider
an infinite repetition and passage to a limit, then the frequentist definition of
probability takes the following form:

P(E): lim #{ke {172""7”}:Xk GE}7
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where X,, denotes the outcome of the nth repetition of the experiment.

It is not immediately clear that such a limit should even exist. (Consider,
for example, the possible outcome of an infinite sequence of coin tosses in which
0 represents “Head” and 1 represents “Tail”:

i00111000000111111111111---

where the single digit blocks have sizes 1,2,3,6,12,24,....) Under appropriate
mathematical conditions, the limit exits with probability 1, by the law of large
numbers (to be studied later), so exceptional sequences as the one just given
constitute a set of zero probability. The real problem, however, is that, as
the interpretation only applies to outcomes of repeatable experiments under
well-controlled conditions, statements such as “the probability that it will rain
tomorrow” are not meaningful under the frequentist interpretation.

Subjective interpretation. The final common interpretation of probabil-
ity is somewhat controversial, but it avoids the difficulties and limitations faced
by the other two. It is based on the idea of degree of belief in the likelihood
that the event will occur, subjectively estimated by an observer. It accepts that
different people will assign different probabilities to the same event. One op-
erational definition of subjective probability of an event E could be that P(E)
is the value (as a fraction of a dollar or any other measure of monetary value)
that you would consider a fair price for a gamble that pays 1 dollar if E occurs,
and nothing if F does not occur.

The subjective interpretation is sometimes known as the degree of belief
interpretation or the Bayesian interpretation, after Thomas Bayes, the 18-th
century Presbyterian minister who first proposed it. Despite its apparent vague-
ness, the Bayesian interpretation of probability underlies a powerful theory of
statistical inference known as Bayesian statistics, which is widely used in science
and engineering.

1.2 Sources of randomness

One useful way to specify a probability model, particularly when dealing with
simulations, is to regard all the unpredictability of the system as being gener-
ated by a single, fixed “source of randomness,” and define the experiment as a
mathematical function of the state of this source. To make this idea more pre-
cise, consider a system that can be at a number of different states represented



by elements of a state space S. (A more standard term is sample space.) Let
X denote the state of the system at the time it is observed. For example, X
might be the number of people in a public building at a given time, in which
case S is the set {0,1,2,3,...}. Or X might be the time between two blips of
a Geiger counter, and S the set of all positive real numbers. Our fixed “source
of randomness” is viewed as a separate system, independent of the one being
investigated, whose state space we denote by 2. The precise nature of €2 need
not always be specified, but for the sake of fixing ideas let us picture it as an
idealized fortune wheel, in which all angles between 0 and 27 are allowed out-
comes. Writing the angle in the form 6 = 27z, we can represent the state of
our fortune wheel by a number z in the interval = [0, 1]. Spinning the wheel
and waiting until it comes to a stop produces a number x € [0,1] in such a
way that all number between 0 and 1 are equally likely to occur. A probability
model is now defined as a function X : Q — S. As a simple example, consider
the decision whether to marry Camilla or Sophia. This can be modeled by the
following formal experiment: set S = {Camilla, Sophia} and define the function
X :[0,1] — S by
X(z) = {Cami.lla if o <1/2
Sophia  if x > 1/2.

In other words, we spin the wheel and wait until it settles down. If when it
does the pointer is on the upper-half of the wheel, choose Camilla. Otherwise,
choose Sophia. More generally, if we wish to model a random experiment with
outcomes 1, So, ..., Sk, and probabilities p1, pa, ..., pr, we similarly divide the
wheel into k sectors with the sector labeled by s; comprising an angle 27p;.

S

Set of states

Figure 1: Schematic representation of a probability model with an idealized fortune
wheel as our primary source of randomness. The number z lies in the interval [0, 1].
We can represent the position e2™® of the arrow by the parameter z, keeping in mind
that 0 and 1 describe the same position.

This idea is not limited to finite, or even countably infinite sets of possible
outcomes. We will see later how to simulate in this way much more compli-
cated random experiments. The function X : Q — S will be called at times a
probability model, a random experiment, or, more often, a random variable.

The source of randomness 2 is more properly defined as a triple (Q, F, P),
where () is the set of states of the source, F is a collection of subsets of €,
called events, and P is a function on events defining a probability measure. For



example, if @ = [0,1], then F consists of all subintervals [a,b] and all subsets
of [0, 1] that can be obtained from intervals by taking unions, intersections, and
complements a finite or countably infinite number of times. A standard choice
of probability measure here is the one that assigns [a, b] its length,

P([a,b]) =b—a.

The probability of other sets in F is then uniquely determined by the basic
properties of P regarding the set operations. (This will be made a bit clearer
later.) The probability space (£, F, P) just defined is meant to represent ab-
stractly the random experiment of picking a real number between 0 and 1 so
that the probability that the number falls in [a, b] is equal to b — a. We also call
P, in this case, the uniform probability measure on [0, 1].

The notion of a probability model as a mathematical function X :  — S
is very natural from the point of view of computer simulation. Most computers
have a built-in function to produce pseudo-random numbers that approximates
the idea of picking a uniformly distributed random number between 0 and 1.
For example, in Matlab this is done by the function rand. We then use such a
random number generator to simulate more complicated random situations.

It should be noted that it is often not necessary to refer to the space
(Q, F, P) explicitly since the random variable X can be used to define a prob-
ability measure directly on S. In fact, the subset A of S can stand for the set
{zr € Q: X(z) € A} (also written {X € A}), and we can associate to A the
probability

Px(A)=P(X € A).

For example, the event that the above decision experiment yields “Camilla,”
which is formally represented by the interval [0, 1/2], has probability

Px (Camilla) = P(X = Camilla) = P([0,1/2]) =1/2—-0=1/2.

By this remark, the sets 2 and S are often not distinguished. We will often use
the letters S or 2 in similar situations.

A point that may not be obvious right now, but will become natural as we
consider more examples, is that our idealized fortune wheel (or, more prosaically,
a source of uniformly distributed numbers between 0 and 1) is all that we need
in order to produce even the most complicated probability distributions we will
encounter. The precise meaning and justification of this claim requires some
knowledge of measure theory and is outside the scope of our discussion. I only
mention a few remarks to dramatize the point.

First, I note that a same source {2 can take many different guises without
essentially changing its nature as a probability space. More precisely, two prob-
ability spaces (€1, F1, P1) and (g, F2, P») are said to be equivalent if, after
possibly discarding sets of zero probability in ; and )5, we can find a bijection
X : Q1 — Qg such that (i) X establishes a bijection between elements of F; and
F> (note that, if A is a set in Fa, then {w € Q1 : X(w) € A} belongs to Fa, and
vice-versa using X 1), and (ii) if A; and Ay are elements of F; and Fy that



correspond to each other under X, then P;(A;) = Py(A3). If the two proba-
bility spaces are related in this way by such a function X, then they should be
regarded as indistinguishable sources of randomness and each can be viewed as
a random experiment whose source is the other, via the functions X and X 1.

Now, it should not be obvious if you have not thought about this before, but
it is not a terribly difficult fact to establish that there exists an equivalence of
probability spaces

F:[0,1] —[0,1)%,

where K is any positive integer. (In fact, K can be taken to be oo, [0, 1]
being the set of all sequences (x1, 2, x3,...) of real numbers in [0, 1].) This can
be interpreted as follows: the experiment of picking K uniformly distributed,
independent random numbers between 0 and 1 can be modeled by a formal
experiment X : [0,1] — S, where S = [0,1]%. Here is a hint of how this
function can be obtained: expand a real number in base 2, say, and rearrange
the digits so as to produce K other numbers, also in base 2. If you do it right,
sets of numbers that are bijectively related by this map will have the same
probability.

The infinite nature of the interval [0, 1] makes it an idealized mathematical
notion that is only approximated in computer simulations. We will have more
to say about algorithms for generating (pseudo-) random numbers. For now, we
will simply trust that computer operations such as rand, in Matlab, are good
enough approximations in practice of what our idealized fortune wheel does in
theory.

1.3 Stochastic processes

We have so far considered experiments that are performed once. Much of our
course will be dedicated to the study of random (or stochastic) processes. A
stochastic process is a family, X;, of random variables indexed by a time pa-
rameter t. It describes the time evolution of a random quantity under study.
For example, X;, t = 0,1,2,..., could represent the daily average of the ex-
change rate between dollars and euros. The parameter ¢ can be discrete as in
this example, or continuous, as in the number, N;, of occupants of a public
building at any time ¢ during a day. It may involve a discrete set of states as in
these examples, or a continuous set of states as in Brownian motion and other
diffusion processes that will be studied later.

An example of a stochastic process is a random walk. Consider the motion
in the plane specified by the following probabilistic rule. Starting at the origin,
Xo = (0,0), choose at random (with equal probabilities) an angle 0 in the set
{27k/u : k = 1,2,... ,u} then jump to the point X; = Xy + r(cos(d),sin(6)),
where 7 is a fixed length covered by a single jump. By the same procedure,
find X,,41 from X, for n = 1,2,.... This describes a path on the plane that
can be interpreted as a particle moving uniformly for a unit time, then hitting
an obstacle that causes it to change direction randomly. After the collision,
the particle resumes its uniform motion until the next collision one unity of



time later. More realistic models of random motion involve random collision
times, which will be considered later. You will play with this example further
in the exercises below. The following figure shows a typical sample path for the
random walk.

Figure 2: Random walk on the plane. The random angles are multiplies of
27 /19 and there are 1000 steps. The initial position is marked with a circle.

1.4 Markov Chains

An important class of stochastic processes are Markov chains. A large part of
our study will be dedicated to Markov chains in discrete and continuous time.
A discrete time Markov chain is a system defined by the following properties.

1. The system can be at any of a finite or countably infinite number of states,
comprising set of states S = {s1, $2,... }.

2. Starting in some initial state at time ¢ = 0, the system changes its state
randomly at times ¢t = 1,2,.... Representing the state at time k£ by the
random variable X, the evolution of the system is described by the chain

of random variables
X0—>X1—>X2—>'--

3. At time t = 0, the system occupies the state s, with initial probability
WO(Sk) = P(XO = sk)v k= 1a27' o



4. Suppose that at any time n the system has the following history:
Xi = Ty, i:O,l,Q,...,n

where z, = s; for some i. Then the probability that the system goes
into the state x,+1 = s; € S at the next time step only depends on the
state at the present time n and not on the system’s past. The transition
probability from state s; to s; is written

pij(n) = P(Xny1 = 55| X0 = 85).

In other words, given the present state of the system, X, = s;, the future
of the system is independent of the past. The numbers p;;(n) are called the
transition probabilities of the system. If the Markov property holds and
the transition probabilities do not depend on n, we say that the process
is a (time) homogeneous Markov chain.

A useful way to represent the transition probabilities for a Markov chain is
by a graph, such as in figure 3

® . O

N

Figure 3: Markov chains correspond to random walks on graphs. The numbers
pi; are the probabilities that the state will change along the direction specified
by the corresponding arrow.

For example, consider the following simple model of random web surfing.
Let S = {s1,s2,...,5,} denote the set of all web pages on the internet. A page,
s; € 8, is linked to a number d; of other pages. A random surfing corresponds
to a chain, X, X1, X5,... such that

1. at timet =0, Xy = http://www.myhomepage.edu with probability 1; and

2. if at time ¢ = k the surfer is at the web page s;, then at time ¢t = k + 1
he/she will have jumped to one of the d; pages linked from s; with equal



probability, 1/d;. If a page s; has no links from it we define p;; = 0 for
all j # i, and p; = 1. This is an example of a random walk on a graph.
(More realistic models of web browsing have been proposed and studied.)

Here is a crude Markov chain model of weather forecasting. The town of
Markoville has only two possible weather conditions:

s1 = “fair” and sy = “rainy.”

Empirical observation has shown that the best predictor of Markoville’s weather
tomorrow is today’s weather, with the following transition probabilities:

tomorrow

rain fair

0.25
\_/
0.25

Figure 4: Two representations of the transition probabilities of a Markov chain:
as a transition probability matrix and as a graph whose vertices are the possible
states and the edges are the available transitions between states.

The information required to specify a Markov chain model is an initial prob-
ability distribution of states, w, and a transition probability matrix P. In the
weather example, this matrix is given by

0.75 0.25
P= < 0.25 0.75 )

We will consider many more examples later. Markov chains become espe-
cially powerful probabilistic models after we introduce the idea of a random
time step between state transitions. This will be studied later in the course.

1.5 Stochastic Differential Equations

Stochastic differential equations generalize ordinary differential equations by
adding a noisy driving term. For example, a first order differential equation of
the classical type has the form ¢y’ = f(¢,y). In a typical stochastic ODEs, one
wishes to include an additional term

y' = f(t,;y) + g(t, y)noise(t).

It takes a certain amount of work to make proper sense of the random driving
term added to the classical equation and to figure out how to interpret the
solution as a stochastic process. Roughly speaking, this can be understood



as follows. Recall that the classical equation y' = f(¢,y) can be solved by
taking limits of approximate solutions constructed using Euler’s scheme: given
an approximation y,, of y(t,), obtain y,+1 = yn + f(tn, yn)h, where h is a small
time step. For the stochastic equation we add a random term to y(¢,):

Yntl = Yn + f(tnvyn)h + g<tn’yn)Nn

where N, is a (normally distributed) random variable with expected value 0 and
variance proportional to h. Thus the process consists of a slow acting term, f,
called the drift, and a random term that adds relatively big jumps (proportional
to v/h, which is the order of magnitude of the standard deviation of the noise
term) at a random direction. We will spend a fair amount of time later making
sense of these ideas.

2 Exercises and Computer Experiments

In this section we give a quick overview of some of the basic Matlab functions
dealing with probability and random numbers and use them to perform some
simple numerical experiments.

2.1 Uniform random numbers

The command, rand, is based on a popular deterministic algorithm called mul-
tiplicative congruential method. 1t uses the equation

tit1 = Ku;(mod M), i=1,2,3,...

where K and M are usually integers and mod M is the operation that gives
the remainder of division by M. (The remainder is a number between 0 and
M.) In Matlab this operation is written rem(K*u, M). Therefore, r; = u;/M is
a number in [0,1). To apply this method, one chooses suitable constants K and
M and an initial value u;, called the seed. Matlab seems to use K = 7° and
M = 231 — 1. These are, in any event, appropriate values for the constants.

r = rand %returns a single random number uniformly
%distributed over (0,1). Its value changes
%each time the command is invoked.

r = rand(n) %returns an n-by-n matrix of independent
%uniformly distributed random entries.

r = rand(m,n) freturns an m-by-n matrix of independent
f%uniformly distributed random entries.

r = rand([m n]) Ysame
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rand(m,n,p,...)

r = rand([m n p...])

rand(’seed’, 57)

s = rand(’state’)

rand(’state’,0)

rand (’state’, j)

%generates a random array of dimensions
#%m-by-n-by-p-. ..

Y%same

%sets the ’seed’ of the pseudo-random
%number generator to 57. Once the seed
%is set to a given value, the algorithm
%always produces the same sequence of
f%random numbers. This is useful if we
%need to use the same random numbers
%more than once, or to produce identical
%runs of the same simulation.

f%returns a 35-element vector containing the
%current state of the uniform generator.

%Resets the generator to its initial state.

%For integer j, resets the generator
%to its j-th state.

rand(’state’,sum(100*clock))

%Resets it to a different state each time.

We can use a histogram to visualize a distribution of numbers. This is done
by the Matlab command hist.

n = hist(Y)

n = hist(Y,x)

%bins the elements in vector Y into

%10 equally spaced containers and returns
%the number of elements in each container
%as a row vector. If Y is an m-by-p matrix,
%hist treats the columns of Y as vectors
%and returns a 10-by-p matrix n. Each
%column of n contains the results for the
%corresponding column of Y.

%where x is a vector, returns the distribution
%of Y among length(x) bins with centers
%specified by x. For example, if x is a
%5-element vector, hist distributes the
%elements of Y into five bins centered on

%the x-axis at the elements in x. Note:

%use histc if it is more natural to specify

11



%bin edges instead of centers.

n = hist(Y,nbins) %where nbins is a scalar, uses
%nbins number of bins.

[n,xout] = hist(...) %returns vectors n and xout containing
%the frequency counts and the bin locatiomns.
%You can use bar(xout,n) to plot the histogram.

hist(...) %without output arguments produces a histogram
%plot of the output described above. hist
%distributes the bins along the x-axis between
%the minimum and maximum values of Y.

For example, Y=rand (10000,1); hist(Y,20) produces the plot of figure 5.

600

Figure 5: Histogram plot of a set of 10000 uniformly distributed random num-
bers in (0, 1) divided into 20 bins.

Exercise 2.1 The experiment of tossing a coin once can be simulated by
if rand < 0.5
a=0;
else
a=1;

12



end

Modify this program to simulate the following experiment: toss 10 coins each
time and count how many come up tail. Repeat the experiment 1000 times and
plot a histogram of the outcome. (The outcome is a vector Y of size 1000 whose
entries are integers between 1 and 10. Use hist (Y) to produce a histogram plot
with 10 bins.)

Exercise 2.2 Repeat exercise 2.1, but instead of Matlab’s rand, use the mul-
tiplicative congruential algorithm

wip1 = Ku;(mod M), i=1,2,3,...

described at the beginning of the section as the source of pseudo-random num-
bers.

Exercise 2.3 Plot a histogram with 50 bins of the determinants of 5000 ma-
trices of size 3-by-3 whose entries are independent uniformly distributed over
(0,1) random numbers. Do the same for the trace instead of determinant.

2.2 Random integers

The Matlab functions ceil, floor, round, and fix, combined with rand, are
useful for generating random integers.

ceil (x) %Smallest integer greater than or equal to x

floor(x)  JLargest integer less than or equal to x

round(x)  %x rounded to the nearest integer

fix(x) Jrounds x towards O to the nearest integer. If
%x is positive, fix(x) equals floor(x) if x is

%positive and ceil(x) if x is negative

These functions also act on vectors and arrays. For example, to get a 3-by-

3 matrix A with independent random entries drawn from {1,2,3,...,k} with
equal probabilities, we can use x=rand ; A=ceil(k*x). If we want to draw
from {0,1,2,...,k — 1} we can use floor instead of ceil.

Exercise 2.4 Explain why the following statements are true:

1. The Matlab command a=floor (2*rand) picks a number from {0, 1} with
equal probability 1/2.

2. The Matlab command a=round(2*rand) picks a number from {0,1,2}
with different probabilities. What are those probabilities?

13



The Matlab relational operators <, <=, >, >=, ==, ~= are often needed
to indicate whether a number belongs to a set or not. Relational operators
perform element-by-element comparisons between two arrays. They return a
logical array of the same size, with elements set to 1 (true) where the relation is
true, and 0 (false) where it is not. For example, if we define x=[1 3 2 5 1] and
y=[0 3 1 6 2], then (x>=y) returns the array [1 1 1 0 0]. If all the entries
in an array X are being compared to the same number a, then we can apply the
relational operators to a directly. For example, set rand(’seed’,121). Then
(2*rand(1,8) <= 1) produces the sequencel 0 1 0 1 0 1 1.

We can combine the relational operators with the logical operations & (logical
AND), | (logical OR), ~ (logical complement, NOT) and xor (exclusive OR) to
represent sets. For example, the command (x>=2 & x<5) returns 1 if a number
x belongs to the interval [2,5) and 0 if not. It represents the indicator function
of the interval.

Consider the experiment of drawing (sampling) numbers from {1,2,... k}
with probabilities pi, po, ..., px. The following script defines a function

x=samplefromp(p,n)

of p=[p1,p2,-..,px] (Where p; +p2+---+ pr = 1) and positive integer n that
returns a row vector x of length n of numbers drawn from {1,2,...,k} with the
probabilities specified by p.

TololoTo 1o ToToTo o oo o o o o o o o o oo oo oo oo o o o o o o o oo oo oo o o o o o o oo oo To o o o o o o o oo oo oo
function x=samplefromp(p,n)
%#Inputs - p is the probability vector of length k

" - n is the number of random

% integers from 1,2, ...,k returned
%0utput - a row vector of length n with entries
% from the set {1, 2, ..., k} with

yA probabilities specified by p.

k=size(p,2);
u=rand(1,n);
x=zeros(1,n);
for i=1:k
x=x+i*(sum(p(1:1))-p(i) <=u & u<sum(p(1:i)));
end

Tl ToTotoo o ot ToToToo o o oo ToToTo o o o o o To ToTo o fo o o o To ToFo o fo o o o T To o fo oo o o To oo o o o Jo Fo oo oo o o

Exercise 2.5 Perform the following simulated experiment. Roll 3 dice and add
the number of pips on them. Do this 1000 times and plot a histogram with 18
bins showing the frequencies of numbers from 1 to 18.
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Suppose that x is a row or column vector regarded as a data set with n
entries. Recall that the mean of x is

1 n
i=1
There are two textbook definitions of standard deviation of x. They are:

1 n 1/2 . . "
S1 = n—1 (Z(% - x)2> and s9 = - (Z(xl _ x)2> .

i=1 i=1

The first will be our preferred definition for data sampled from a population or
simulation. We will justify this choice later. We now summarize some of the
Matlab functions for basic data analysis.

mean (x) %gives the arithmetic mean, or average, of x.

median(x) %gives the middle value or the arithmetic mean
%of the two middle values of the data.

std(x) %gives the standard deviation of x according
%to the first definition, s1, above.

std(x,1) %gives the standard deviation of x according
%#to the second definition.

max (x) %finds the largest value in the data set x.
min(x) %finds the smallest value in the data set x.
sum (x) %computes the sum of the data.

prod(x) %computes the product of all data values.

These functions also apply to matrices. If A is an m-by-n matrix, the oper-
ations act on the columns of A, returning a row vector. For example mean (A)
returns a row vector of size n whose jth entry is the means of the jth column
of A. The following are also useful:

cumsum (x) %computes the cummulative sum. For example,
%if x=[1 2 3 4], cumsum(x)=[1 3 6 10].

cumprod(x)  ‘computes the cummulative product. For example,
%if x=[1 2 3 4], cumprod(x)=[1 2 3 24].
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sort (x) %sorts data in ascending order.
%An optional argument, [y,k]=sort(x), gives the
%indices of the sorted values. For example,
%if x=[23 4 7 3 5 12 3], then [y,k]l=sort(x) returns
%y=[3 3457 12 23] and k=[4 7 2 5 3 6 1].

2.3 Random walks

The following Matlab script can be used to generate a sample random walk like
the one of figure 2.

Tototototo To o Toto oo o oo Foto To o o o o fo o Fo o Fo o Fo oo fo o Fo o Fo o o oo Fo o Fo o Fo oo fo o Yoo o o o oo Fo o Voo o oo fo o o
K=1000;
r=1;
u=19;
X=[0 0];
for n=1:K
s=ceil(u*rand) ;
Z=X(n,:)+r*[cos(2*pi*s/u) sin(2*pi*s/u)];
X=[X;Z];
end
plot(X(:,1), X(:,2))
hold on
plot(0,0,’07)
hold off
axis equal

Tl ToTototo o oo ToToToo o o oo ToToTo oo o o o o ToTo o fo o o o o ToFo o fo o o o o To oo fo oo o o To oo o o o o oo oo oo o o

Exercise 2.6 Modify the above program to find the moment of time when a
particle undergoing random walk starting from (0, 0) will first be at a distance at
least a from the origin. For eacha = 1,1.5,2,2.5,3, ..., 10 repeat the experiment
100 times and find the mean time T'(a). (This took about half a minute to run on
my laptop. ) Plot the mean time T as a function of a. On the same coordinate
system, plot the quadratic best fit of T. (Matlab’s graph window has commands
for curve fitting.) You will note that the best quadratic fit looks like a fairly
good fit. This is an indication that the random walk first reaches a distance a
at time proportional to a?. We will provide a mathematical justification later.

Tt o ToTo e To o o To o o To o o To o o Fo o o Fo o o Fo o o oo o Fo o o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo
r=1;
u=19;
t=[1;
k=20;
for a=1:0.5:k
s=[1;

16



for j=1:100
Z=[0 0];
for n=1:1000000000000
s=ceil (uxrand) ;
Z=Z+r*[cos(2*pi*s/u) sin(2*pi*s/u)]l;
if Z(1)72+Z(2)"2>=a"2
S=[S n];
break
end
end
end
t=[t sum(8)/100];
end
a=1:0.5:k;
plot(a,t)
Tototototo ToTo Toto oo To oo FoTo To o oo o fo o Fo o To o Fo oo fo o Todo Fo o o oo Fo o Foito To oo fo o Foto o o o oo Fo o Fo o o oo fo o o

Exercise 2.7 Let Ay, A, A3 denote three points on the coordinate plane. For
concreteness, we take A; = (0,0), Ay = (2,0), and A3 = (1,v/3). Choose
an initial point, Xy € R? and define a random point X,,, for each positive
integer, by the following procedure. Suppose X,,_; is the position at present.
To determine the position X,,, choose one of the three points at random with
equal probabilities, say B,, € {41, A2, A3}, then set X, as the middle point
between B,, and X,,_;. Plot the first one thousand points X1, ..., X1000. (This
time, do not connect the points with lines as in the first random walk.)

T Tt ToTots o To Toto o To 1o o ToToto o o Too o o To o 1o o T To 1o o o To o o o To o 1o o T To o o o To o o o Jo o o o o To o oo Jo o o
%A random walk on the plane.

)

%Starting from a point X1, define

%a sequence of random points X(1), X(2), ... by
%the recursive relation: X(n) = (X(n-1) + A)/2,
%where A is a random point chosen from among three
%points Al, A2, A3 with equal probabilities.

%N is the number of iteratiomns.

A1=[0 0];

A2=[2 0];

A3=[1 sqrt(3)]1;

X1=[1 1];

N=1000;

X=X1;

for i=1:N-1
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Figure 6: The first one thousand points of a sample trajectory of a random walk
starting at (1,1) such that each X,, is the middle point between X,,_; and one
of Ay, A, A3 chosen at random with equal probabilities.

x=rand;
A=A1%(x<=1/3)+A2* (x>1/3 & x<=2/3)+A3*(x>2/3);
B=(X(i,:)+A)/2;
X=[X;B];
end
plot(X(:,1),X(:,2),’.7)
axis equal

Tl ToTototo o oo ToToToo o o oo ToToTo oo o o o o ToTo o fo o o o o ToFo o fo o o o o To o fo o o o o To oo o o o o o Fo oo o o o o

2.4 Simulating a discrete time Markov chain

Consider a Markov chain with finite state space S = {s1,...,s,}, initial proba-
bility vector w9 = (p1, P2, ..., Pn), and transition probabilities matrix P = (p;;).
We wish to do a computer simulation of the process Xy, X1, Xa,.... Each run
of the program should produce a sequence

o —> L1 —> T2 — ...

in such a way that x is chosen from S according to the probability vector mg
and each new x,1 is chosen according to the transition probability matrix and
the just obtained value of x,,.
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We can use our program samplefromp. Denote by 7; the ith row of P.
Then r; is the probability vector that gives the transition probabilities from
state ¢ to each of the other states. To simulate a sample trajectory of the
Markov chain, first set the probability vector to p = my, and draw a state
i=samplefromp(p,1). Then, at each future step, set p = r; where i is the
last state drawn, and apply again i=samplefromp(p,1). The following Matlab
script implements this procedure.

T I Tototo T o Toto oo To o to o ToToto o To o o o To o 1o o T To o o o To o o o To o 1o o T Fo o o o To o o o To o o o o To o oo Jo o o
function X=samplefrommarkov(p,P,n)
%Inputs - p probability distribution of initial state
% - P transition probability matrix
% - n number of iterates.
%0utput - X sample chain of length n.
)
%Note: need function samplefromp.m
q=P;
i=samplefromp(q,1);
X=[il;
for j=1:n-1
q=P(i,:);
i=samplefromp(q,1);
X=[X il;
end

Tl ToToto o o ot ToToToo o o o ToToTo o o o o o To ToTo o fo oo o To ToFo o fo o o o T To o o oo o T To oo o o o o Jo Fo oo oo o o

As an example we implement this method for the Markov chain with initial
probability vector
7o = (0.2,0.5,0.3)

and transition probability matrix

0.8 0.1 0.1
P=1] 03 04 03
04 01 0.5

Set
p=[0.2 0.5 0.3]; P=[0.8 0.1 0.1;0.3 0.4 0.3;0.4 0.1 0.5]; n=5000;

then
X=samplefrommarkov(p,P,n);

We can get a sense of how the frequencies of the various states stabilize by
calculating the frequencies at each moment of time:
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Tototototo ToTo ToTo oo o oo Foto To o o oo fo o Fo o oo Fo oo fo o Fo o Fo o o oo Fo o Foita Fo oo fo o Yoo o o o oo Fo o Voo o oo o o o
j=1; %choose a state for which to obtain running frequency
n=5000; %this is the value used in X=samplefrommarkov(p,P,n)
£=01;
for i=1:n

f=[f sum(X(1:1)==j)/il;
end
plot(l:n,f)
Tototo o to foTo To Vo To o To Voo FoFo To o o oo foTo Fo o Fo o o oo fo o Fodto o o o fo o Foto oo To fo o FoFo Foto o o o oo Foto oo o oo o Fo o
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Figure 7: Frequency of occurrence of state 1 as function of time. The frequency
at n = 5000 observed for this sample path is 0.6358. The exact value can be
found by calculating the eigenvector of P for eigenvalue 1 (normalized, so that
the entries add up to 1). Then the entries of the eigenvector are the relative
frequencies of the Markov chain states. In this case, we obtain 0.643 for state
1.

Exercise 2.8 Simulate the weather forecasting Markov chain of section 1.4
and find the long term frequencies of fair and rainy weather. Compare the
frequencies you obtain with the eigenvalues of the transition probability matrix.

2.5 Random permutations and shuffling

Suppose m books are piled up on your desk. The books are labeled by the
integers 1,2,...,m. The order of the books from the top of the pile down to

20



the bottom is described by a permutation s = (i1, 42, ...,%y,), where i1 is the
number of the book on top of the pile, i the second from the top, and so
forth. Therefore, the set of possible states the book pile can be in is described
by the set of all permutations of m elements. This is a set (in fact, group in
the algebraic sense) of m! elements. To each book is associated a probability
pi,i = 1,...,m of being picked at any particular moment. After being picked,
the book is returned to the top of the pile.

Let us look at the special case of three books: m = 3. We enumerate the
states as follows: s1 = (1,2,3), so = (1,3,2), s3 = (2,1,3), s4 = (2,3,1),
s5 = (3,1,2), sg = (3,2,1). Having ordered the states of the pile, the transition
probability matrix can now be written as follows:

pr 0 p2 0 p3 O
0 p1r p2 0 p3 O
p_| M 0 p2 0 0 p3
pt 0 0 p2 0O p3
0 pr 0 p2 p3 O
0 pr 0 p2 0O ps3

The transition probabilities can also be represented in graphical form as
shown in Figure 8.

3 _ > 1

1 3

2 2
P,

P; P,
1 —>p2 2
ARt T
P,

P, P;
2 —,p3 3
3 2

1| —

Figure 8: Transition probabilities for the “pile of books” example.
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Exercise 2.9 Suppose that the books have probabilities of being picked equal
to p1 = 0.5, p2 = 0.3, p3 = 0.2. Obtain a sample of the book-shuffling Markov
chain of length 5000 and use it to estimate the frequencies of each being on top
to the pile.

Exercise 2.10 Find by hand the eigenvalues of the general three-book shuffling
transition matrix P. How are the eigenvalues of P related to pi, p2, p3?
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