Notes for Math 450
Lecture Notes 2

Renato Feres

1 Probability Spaces

We first explain the basic concept of a probability space, (Q, F, P). This may be
interpreted as an experiment with random outcomes. The set €2 is the collection
of all possible outcomes of the experiment; F is a family of subsets of €2 called
events; and P is a function that associates to an event its probability. These
objects must satisfy certain logical requirements, which are detailed below. A
random variable is a function X : 2 — S of the output of the random system.
We explore some of the general implications of these abstract concepts.

1.1 Events and the basic set operations on them

Any situation where the outcome is regarded as random will be referred to as
an experiment, and the set of all possible outcomes of the experiment comprises
its sample space, denoted by S or, at times, ). Each possible outcome of the
experiment corresponds to a single element of S. For example, rolling a die is
an experiment whose sample space is the finite set {1,2,3,4,5,6}. The sample
space for the experiment of tossing three (distinguishable) coins is

{HHH,HHT,HTH, HTT,THH, THT, TTH, TTT}

where HT H indicates the ordered triple (H, T, H) in the product set {H,T}3.
The delay in departure of a flight scheduled for 10:00 AM every day can be
regarded as the outcome of an experiment in this abstract sense, where the
sample space now may be taken to be the interval [0, 00) of the real line.
Sample spaces may be finite, countably infinite, or uncountable. By def-
inition, a set A is said to be countable if it is either finite or has the form
A ={ay,as,as3,--- }. For example, the set of natural numbers, N = {1,2,3,---}
and the integers, Z = {0,—1,1,—-2,2,--- }, are countable sets. So is the set of
rational numbers, Q = {m/n : m,n € Z,n # 0} . The latter can be enumerated
by listing the pairs (m,n) € Z? in some fashion, for example, as described in
figure 1. The set R of all real numbers is uncountable, i.e., it cannot be enumer-
ated in the form rq, 79,73, ... In fact, if a is any positive number, then the union
of all intervals (r,, —a/2",r, + a/2") is a set of total length no greater than 2a,
as you can check by adding a geometric series. Since a can be arbitrarily small,



{r1,m2,r3,...} cannot contain any set of non-zero length. Uncountable sample
spaces such as the interval [0, 1] will appear often.

A subset of the sample space is called an event. For example, E = {1, 3,5}
is the event that a die returns an odd number of pips, and [0, 7] is the event that
the ideal fortune wheel of the first lecture settles on a point of its upper-half
part. We say that an event occurs if the outcome z of the experiment belongs
to /. This is denoted x € E.
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Figure 1: Enumerating pairs of integers

We write £ C S if F is a subset of S. For reasons that will be further
explained later, we may not want to regard arbitrary subsets of the sample
space as events. The subsets to be regarded as events comprise the family F.
If S is finite or countably infinite, we often assume that F contains all the
subsets of S, but if S is uncountable it will generally be necessary and desirable
to restrict the sets that are included in F. (It turns out that any reasonable
definition of probability of events that assigns to intervals in [0, 1] a probability
equal to its length cannot be defined on all subsets of [0, 1], only on the so-called
measurable sets. We will see later an example of a non-measurable set.)

The events of F can be combined using the Boolean operations on sets:
unions, intersections, complementation. Recall that the complement of a set
E C S, written E°, is the subset of all points in S not contained in E. The
empty set 0 (also denoted {}) and the full set S are always assumed to be
elements of F. The former is the null (or impossible) event and the latter the
sure event. The following terms and notations will be used often:

1. The union of events Fy and FEs, written E; U Es, is the event that at least
one of F; and F5 occurs. In other words, the outcome of the experiment



lies in at least one of the two sets.

2. The intersection of the same two events, written E; N Fs is the event that
both Ey and E5 occur. That is, the outcome of the experiment lies in each
of the two sets.

3. The complement of an event E, denoted E€ or S\ E, or sometimes E,
is the event that E does not occur. In other words, the outcome of the
experiment does not lie in F.

4. Two events F; and Es are disjoint, or mutually exclusive, if they cannot
both occur, that is, if E1NEs = (). Note that ENE° =@ and FEUES = S.

5. A set F is said to be a countable union, or union of countably many sets,
if there are sets E4, Es, E3,--- such that
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6. A set F is said to be a countable intersection, or the intersection of count-
ably many sets, if there are sets E1, Fy, E3,--- such that

E=ENENE;N-- = ﬁEk.
k=1

7. A partition of a set S is a collection of disjoint subsets of S whose union
is equal to S. It is said to be a finite (resp., countable) partition if the
collection is finite (resp., countable). If these subsets belong to a family
of events F, we say that the partition forms a complete set of mutually
exclusive events.

The set of events is required to be closed under (countable) unions and
complementation. In other words, given a finite or countably infinite collection
of events (in F), their union, intersection and complements are also events (that
is, also lie in F). We will often refer to F as an algebra of events in the sample
space S. The more precise term o-algebra (sigma algebra), is often used. The
next definition captures this in an efficient set of axioms.

Definition 1.1 (Axioms for events) The family F of events must be a o-
algebra on S, that is,

1. SeF
2. if £ € F, then E¢ € F

3. if each member of the sequence Fi, Es, F3,... belongs to F, then the
union F7 U E5 U... also belongs to F.



When manipulating events abstractly, it is useful to keep in mind the ele-
mentary properties of set operations. We enumerate here some of them. The
proofs are easy and they can be visualized using the so-called Venn diagrams.

Proposition 1.1 (Basic operations on sets) Let A, B,C be arbitrary sub-
sets of a given set S. Then the following properties hold:

AUB=BUA commutativity
ANB=BNA
(AUB)UC =AU (BUC) associativity
(ANB)NC=ANn(BNC)
(AUB)NC=(AnC)u(Bn<QC) distributive law
(ANB)UC=(AuC)Nn(BUCQC)
(AUB) = A°NB° DeMorgan’s law
(AN B)° = A°U B°
AUB=(ANB°)U(A°NB)U(ANB) disjoint union

1.2 Probability measures

Abstractly (that is, independently of any interpretation given to the notion of
probability), probability is defined as an assignment of a number to each event,
satisfying the conditions of the next definition.

Definition 1.2 (Axioms for probability) Given a set S and an algebra of
events F, a probability measure P is a function P(-) that associates to each event
E € F areal number P(F) having the following properties:

1. P(S)=1;
2. If E € F, then P(E) > 0;

3. If Fh,E5, FE3,... are a finite or countably infinite collection of disjoint
events in]:, then P(E1 UEQU) :P(E1)+P(E2)+P(E3)+

These axioms can be interpreted as: (1) some outcome in S must occur,
(2) probabilities are non-negative quantities, and (3) the probability that at
least one of a number of mutually exclusive events will occur is the sum of
the probabilities of the individual events. The following properties are easily
obtained from the axioms and the set operations of Proposition 1.1.

Proposition 1.2 Let A, B be events. Then
1. P(A%) =1- P(4);
2.0<P(E)<1, fordl E€F;
3. P(0) = 0;



4. P(AUB) = P(A)+ P(B)— P(AUB);
5. If AC B, then P(A) < P(B).

The sample space S, together with a choice of F and a probability measure
P, will often be referred to as a probability space. When it is necessary to be
explicit about all the entities involved, we indicate the probability space by the
triple (S, F, P). Here are a few simple examples.

Example 1.1 (Tossing a coin once) Take S = {0,1} and F the sets of all

subsets of S:
F={0.{0}, {1}, S}.

The associated probabilities can be set as P({0}) = p, P({1}) = 1 —p. The
probabilities of the other sets are fixed by the axioms: P(S) =1 and P(()) = 0.
For a fair coin p = 1/2.

Example 1.2 (Spinning a fair fortune wheel once) Let the state of the
idealized fortune wheel of Lecture Notes 1 be represented by the variable z =
0/27 € [0,1], keeping in mind that = 0 and z = 1 correspond to the same
outcome. In this case, we take S = [0, 1] and define F as the set of all subsets of
[0, 1] which are either intervals (of any type: [a, b], [a,b), (a,b], or (a,b) ), or can
be obtained from intervals by applying the operations of unions, intersections,
and complementation, at most countably many times. To define a probability
measure P on F it is enough to describe what values P assumes on intervals
since the other sets in F are generated by intervals using the set operations.
We define P([a,b]) = b — a. (This is the so-called Lebesgue measure on the o-
algebra of Borel subsets of the interval [0,1].) This is the most fundamental
example of probability space. Other examples can be derived from this one by
an appropriate choice of random variable X : [0,1] — S.

Example 1.3 (Three-dice game) A roll of three dice can be described by
the probability space (S, F, P) where S is the set of triples (i, j, k) where 4, j, k
belong to {1,2,...,6}, that is (i,j,k) € {1,2,...,6}3; F is the family of all
subsets of S, and P is the probability measure P(E) = #(F)/63, where #(E)
denotes the number of elements in E.

Example 1.4 (Random quadratic equations) If we pick a quadratic equa-
tion at random, what is the probability that it will have real roots? To make
sense of this question, we first need a model for a random equation. First, label
the equation az? + bz + ¢ = 0 by its coefficients (a, b, c). I will assume that the
coefficients are statistically independent and uniformly distributed on different
intervals. Say, a and ¢ are drawn from [0, 1] and b from [0, 2]. So to pick a poly-
nomial at random for this choice of probability measure amounts to choosing a
point in the parallelepiped S = [0,1] x [0,2] x [0, 1] with probability function
given by the normalized volume

1 /12t
P(E):i/o/O/OIE(a,b,c)dadbdc.



The function I is the indicator function of the set E, which takes value 1 if
(a,b,c) is a point in F and 0 otherwise. The equations with real roots are those
for which the discriminant b?> — 4ac is positive. The set whose probability we
wish to calculate is

E ={(a,b,c) € S:b<2Vac}

and P(E) = Vol(F)/2. This volume can be calculated analytically by a simple
iterated integral and the result can be confirmed by simulation. You will do both
things in a later exercise. In this example, F is generated by parallelepipeds.

1.3 Conditional probabilities and independence

Fix a probability space (S,F,P). We would like to compute the probability
that an event A occurs given the knowledge that event E occurs. We denote
this probability by P(A|E), the probability of A given E. Before stating the
definition, consider some of the properties that a conditional probability should
satisfy: (i) P(:|E) should behave like a probability function on the restricted
sample space FE, i.e., it is non-negative, additive, and P(E|E) = 1; (ii) if A
and E are mutually exclusive, then P(A|E) = 0; in particular, for a general A
we must have P(A|E) = P(AN E|E); (ili) the knowledge that E has occurred
should not affect the relative probabilities of events that are already contained
in E. In other words, if A C E, then P(A|E) = cP(A) for some constant c.

Under the classical interpretation of probability, assuming all outcomes equally
likely, (iii) implies that, by conditioning on E, individual outcomes in E are
equally likely while outcomes not in F have zero probability.

Granted these properties we immediately have: 1 = P(E|E) = ¢P(F) so
¢ =1/P(E). This leads to the following definition:

Definition 1.3 (Conditional probability) Let A, E € F be two events such
that P(E) # 0. The conditional probability of A given E is defined by

P(ANE)

PAIB) = =55

Conditional probabilities, given an event E C S, define a probability measure
on the new sample space F, so the following properties clearly hold:

P(EIE) =1
P(O|E) =0
P(AUB|E)=P(A|E)+ P(B|E), it AnB =1.
Example 1.5 (An urn problem) We have two urns, labeled 1 and 2. Urn 1
contains 2 black balls and 3 red balls. Urn 2 contains 1 black ball and 1 red

ball. An urn is chosen at random then a ball is chosen at random from it. Let
us represent the sample space by

S = {(1,B)’ (17R)7 (273)7 (QaR)}



The information given suggests the following conditional probabilities:
P(B|1) =2/5, P(R|1) =3/5, P(B|2) =1/2, P(R|2) =1/2.

The conditional probabilities P(1|R), P(2|B), etc., can also be calculated. A
simple way to do it is by using Bayes formula given below. We return to this
point shortly.

Example 1.6 (Three candidates running for office) Let A, B, C be three
candidates running for office. As the election is still to happen the winner, X,
is a random variable. Current opinion assigns probabilities

P(X =A)=P(X =B)=2/5and P(X = C) = 1/5.

At some point candidate A drops out of the race. Let E be the event that
either B or C wins. Then, P(A|E) = 0, and under no further knowledge of the
political situation we have
P(B|E) = P(BNE) _ P(B) _ 2/5
P(E) P(B)+P(C) 2/5+1/5
Similarly, we calculate P(C|E) = 1/3. Notice that candidate B is still twice
as likely to win as C, even after we learned of A’s withdrawal. (Often in such
cases we do have more information than is reflected in the simple event E; for
example, candidate A could be drawing votes from C, so if A withdraws from
the race, the relative chances of C' increase.)

=2/3.

One often wants to calculate P(A N B) from knowledge of conditional prob-
abilities. It follows immediately from definition 1.3 that

P(A|B)P(B) = P(AN B) = P(B|A)P(A).
This implies the following simple but important result.

Theorem 1.1 (Bayes Theorem) For all events A, B such that P(A), P(B) #
0, we have
P(B|A)P(A)

PUAIB) = =55

Bayes theorem is often used in combination with the next theorem. First,
recall that a partition of a sample space S is a collection of mutually exclusive
events F1, Fy, E3,... whose union is S. We discard elements of zero probability,
so that P(E;) > 0 for each i and the union of the F; still has probability measure
equal to 1. Such “partitions up to a set of zero probability” will be called simply
partitions.

Theorem 1.2 (Total probability) Suppose that E1, Es, F3, ... is a partition
of a sample space S and let E be an event. Then

P(E) = ZP(E\Ei)P(Ei)-



Proof. Since E = (EN E;)U(EN Ey) U..., by the additivity axiom of a
probability measure it follows that

P(E)=P(ENE)U(ENE)U...)

P(EQE1)+P(EOE2)+...
— P(E|Ey)P(Ey) + P(E|Es)P(Es) + ..

which is what we wished to show. O

Example 1.7 (The biology of twins) There are two types of twins: monozy-
gotic (developed from a single egg), and dizygotic. Monozygotic twins (M)
often look very similar, but not always, while dizygotic twins (D) can some-
times show marked resemblance. Therefore, whether twins are monozygotic
or dizygotic cannot be settled simply by inspection. However, it is always
the case that monozygotic twins are of the same sex, whereas dizygotic twins
can have opposite sexes. Denote the sexes of twins by GG, BB, or GB (the
order is immaterial.) Then, P(GG|M) = P(BB|M) = P(GB|D) = 1/2,
P(GG|D) = P(BB|D) =1/4, and P(GB|M) = 0. Tt follows that

P(GG) = P(GG|M)P(M) + P(GG|D)P(D)

= LP(M) + (1~ P(M))

from which we conclude that
P(M)=4P(GG) — 1.

Although it is not easy to be certain whether a particular pair are monozygotic
or not, it is easy to discover the proportion of monozygotic twins in the whole
population of twins simply by observing the sex distribution among all twins.

Combining Bayes formula with the theorem on total probability, we obtain
the following.

Corollary 1.1 Let Ey, F3, Es, ... be a partition of a sample space S and E an
event such that P(E) > 0. Then for each Ej, the probability of E; given E is
given by

P(E|E;)P(E;)
(E|E1)P(E1) + P(E|E2)P(E2) + ...

In particular, given any event A,

P(E;|E) = -

P(EJA)P(A)
(E|A)P(A) + P(E|A?)P(A%)

P(AE) =

Example 1.8 (The urn problem, part IT) Consider the same situation de-
scribed in example 1.5. We wish to calculate the probability P(1|R) that urn 1



was selected given that a red ball was drawn at the end of the two stage process.
By Bayes theorem,

P(R|1)P(1)

P(R|1)P(1) + P(R|2)P(2)

RGO
(3/5)1/2) + (1/2)(1/2)

= 6/11.

P(1|R) =

Bayes theorem is usually applied to situations in which we want to obtain
the probability of some “hidden” (cause) event given the occurrence of some
“surface manifestation” or signal (effect) that is correlated with the event. Here
is a classical example.

Example 1.9 (Clinical test) Let A be the event that a given person has a
disease for which a clinical test is available. Let B be the event that the test
gives a positive reading. We may have prior information as to how reliable the
test is, so we may already know the conditional probability P(B|A) that if the
test is given to a person who is known to have the disease, the reading will be
positive, and similarly P(B|A¢), of a positive reading if the person is healthy.
We may also know how common or rare the disease is in the population at large,
so the “prior” probability, P(A), that a person has the disease may be known.
Bayes theorem then gives the probability of having the disease given a positive
test reading. You will compute a numerical example later in an exercise.

Definition 1.4 (Independence of events) Events F, Es,...,Ex € F, are
said to be independent if

P(EyN---NEy) = P(Ey) - P(Ey).

Events E1, Fs, ... in an infinite sequence are independent if E1, Fs, ..., Ej are
independent for each k. In particular, if P(B) # 0, A and B are independent
if and only if P(A|B) = P(A). This means that knowledge of occurrence of B
does not affect the probability of occurrence of A.

Example 1.10 (Coin tossing) A coin is tossed twice. Let F' be the event that
the first toss is a head and E the event that the two outcomes are the same.
Taking S = {HH,HT,TH,TT}, then F = {HH,HT} and F = {HH,TT}.
The probability of F' given F is

P(F|E) = 1% = 1721 =1/2 = P(E).

Therefore, F' and E are independent events.
The proof of the following proposition is left as exercise. It uses the notations

P(Ey,...,E,)=PE1N---NE,)
P(A|Ey,...,E,) =P(AlE1N---NE,).



Proposition 1.3 (Bayes’ sequential formula) Let Ey, Es, ..., E, be events
such that P(Ey N EsN---NE,) #0. Then

P(Ey, Es, ..., E,) = P(Ey)P(E2|E1)P(E3|E1, Es) ... P(Ey|Er, ..., Enet).

Note that the sequential formula reduces to definition 1.4 when the events
are independent.

2 Random variables

A random variable is a quantity (typically in R, or R¥) that depends on some
random factor. That is, a random variable is a function X from a probability
space S to some set of possible values that X can attain. We also require that
subsets of S defined in terms of X be events in F. The precise definition is
given next.

Definition 2.1 (Random variables) Let (S,F,P) be a probability space.
We say that a function X : S — R is a random variable if it is measurable
relative to F (or, simply, F-measurable). This means that for all @ € R,

{s€S:X(s)<a} eF.

In other words, the condition X < a defines an event. The probability of this
event is usually written P(X <a) = P({s € 5: X(s) < a}).

The probability of other events, such as a < X < b, are obtained from the
values of P(X < ¢), ¢ € R, by taking intersections, unions, complements, and
employing the axioms of probability measures. For example,

Pla< X <b)=P(X <b)— Pz < a).
Also note that if an increasing sequence a,, converges to a, then

P(X <a)= lim P(X <ay).

n—oo

This follows from the countable additivity of the probability measure (see def-
inition 1.2) and the fact that the union of the sets {X < a,} equals {X < a}.
The probability of other events defined by conditions on X can be obtained
in a similar way. This is an indication that the function F(z) = P(X < x)
determines the probability measure P on events defined in terms of X.

Definition 2.2 (Cumulative distribution function) The function
Fx(z):=P(X <)

is called the cumulative distribution function of the random variable X.

10



The random variable X : S — R gives rise to a probability space (R, B, Px),
where B is the o-algebra of subsets of R generated by the intervals (—oo,al,
called the Borel o-algebra, and Py is defined as follows: for any A € B,

Px(A)=P(X € A).
In particular, the probability Px of an interval such as (a,b] is
Px ((a,b]) = Fx(b) — Fx(a).

Px is sometimes called the probability law of X. Because of this remark, we
often do not need to make explicit the probability space (S, F, P); we only use
the set of values of X in R and the probability law Px (on Borel sets).

Definition 2.3 (Independent random variables) Two random variables X
and Y are independent if any two events, A and B, defined in terms of X and
Y, respectively, are independent.

Notice that we have not given a formal definition of “being defined in terms
of.” We will do it shortly. The intuitive meaning of the term suffices for the
moment.

Example 2.1 (Three-dice game) To illustrate these ideas let us return to
the game of rolling three dice. Set S = {1,2,...,6}3, F the collection of all
subsets of S, and for A C S define

_#A
= %,

where #A denotes the number of elements of A. (Note: #S = 216.) Thus an
elementary outcome is a triple w = (i, j, k), where 1, j, k are integers from 1 to
6. For example, (1,4, 3) represents the outcome shown in the next figure.

P(A)

Figure 2: Roll of three dice

Define random variables X7, X5, X35 by
Xl(iajv k) = i7 XQ(iaja k) = ja and X3(7;vj7 k) = k.

An event A € F is defined in terms of Xs if and only if it is the union of sets of
the form X5 = j. Note that P(X; =u) =1/6for 1 =1,2,3,and u = 1,2,...,6.

11



For example: if A is the event X; = i and B is the event X5 = j, then A and
B are independent since

P(ANB) = #{(i,j,1),..., (,4,6)}/6°
=6/6
= (1/6)(1/6)
= P(A)P(B).

A very convenient way to express the idea of events defined in terms of a
random variable X is through the o-algebra Fx of the next definition.

Example 2.2 (Buffon’s needle problem) Buffon was a French naturalist
who proposed the famous problem of computing the probability that a nee-
dle intersects a regular grid of parallel lines. We suppose that the needle has
length [ and the lines are separated by a distance a, where a > [.

Figure 3: Buffon’s needle problem.

To solve the problem we first need a mathematical model of it as a function
X from some appropriate probability space into {0,1}, where 1 represents ‘in-
tersect’ and 0 represents ‘not intersect.” We regard the grid as perfectly periodic
and infinite. The position of the needle in it can be specified by the vertical
distance, z, of the end closest to the needle’s eye to the first line below it, and
the angle, 6, between 0 and 27 that the needle makes with a line parallel to
the grid. It seems reasonable to regard these two parameters as independent
and to assume that 6 is uniformly distributed over [0,27] and z is uniformly
distributed over [0,a]. So our mathematical definition of throwing the needle
over the grid is to pick a pair (x,0) from the rectangle S = [0, a] x [0, 27| with
the uniform distribution, i.e., so that the probability of an event ¥ C S is

P(E) = — /0 /OQWIE(x,H)dde

" 21a

where Ig is the indicator function of E.

12



In an exercise you will show how to express the outcome of a throw of the
needle by a function X and will calculate the probability of X = 1. This turns
out to be

PX=1)= 2!
Ta
If a = 2] we have the probability 1/7 of intersection, providing an interesting

(if not very efficient) way to compute approximations to .

Example 2.3 (A sequence of dice rolls) We show here how to represent
the experiment of rolling a die infinitely many times as a random variable X
from [0, 1] into the space S of all sequences of integers from 1 to 6. (If you find
the discussion a bit confusing, simply skip it. It won’t be needed later.) We
first make a few remarks about representing numbers between 0 and 1 in base
6. Let K = {0,1,2,3,4,5} and I, = (k/6, (k+1)/6], if k # 0, and I, = [0,1/6].
These are the six intervals on the top of Figure 4.

A number z € [0, 1] has expansion in base 6 of the form 0.wjwows ..., where
w; € K, if we can write

_ WL w2 W
T = 6 +62+63+....

The representation is in general not unique; for example, 0.1000 - - - = 0.0555. . .,
since

6 6 62 63 6+ 7

o) R4 4 s s ¥ 11
TR N N N [N |
C s ¥ A ¥ -]

N N i UL N |
[ s ' s ' ¥ |
C EN N N N EN |

20/216  21/216

Figure 4: Six-adic interval associated to the dice roll event (1,4, 3).

To make the choice of w; for a given z unique, we can proceed as follows.
First, for any « > 0 (not necessarily less than 1) define n(x) as the non-negative
integer (possibly 0) such that n(z) < x < n(z)+1. Now, define a transformation
T:00,1] — [0,1] by

T(z) = 6z — n(6x) ?f:v>0
0 ifz=0.

13



A function from [0, 1] to the set of sequences (w1, ws,...) can now be defined as
follows. For each n = 1,2, ..., write:

wp=Xp(x)=k+1& T 2) € I

In other words, the value of, say, wg is 4, if and only if the 8th iterate of T’
applied to z, T8(z) falls into the fifth interval, I, = (4/6,5/6]. It is easy to see
why this works. Observe that:

z=T%z) = 0.wiwows . ... € l,,
7! (.Z') = 0.wows3wy . .. S Iwz
T?(x) = 0.w3waws . . . € I,

We can now define our mathematical model of infinitely many dice rollings
as follows. Choose a point x € [0, 1] at random with uniform probability distri-
bution. Write its six-adic expansion, x = 0.wjwsws . .., where w,, is chosen by
the rule: T"~1(z) € I,,,. Then the infinite vector

X(z)=(w1+Lw+1lLws+1,...)

can be regarded as the outcome of rolling a die infinitely many times. One still
needs to justify that the random variables X7, X5,... are all independent and
that P(X,, = j) = 1/6 for each j = 1,2,...,6. This will be checked in one of
the exercises.

Definition 2.4 (Events defined in terms of a random variable) If X is
a random variable on a probability space (S,F,P), let Fx be the smallest
subset of F that contains the events X < a, a € R, and satisfies the axioms for
a o-algebra of events, namely: (i) S € Fx, (ii) the complement of any event in
Fx is also in Fx, and (iii) the union of countably many events in Fx is also
in Fx. We call Fx the o-algebra generated by X. An event in F is said to be
defined in terms of X if it belongs to Fx.

More generally, we say that random variables X, X5, ... are independent if
sets A1, As, ... defined in terms of the respective X; are independent.

Definition 2.5 (I.i.d.) Random variables X7, X5, X3,--- are said to be i.i.d.
(independent, identically distributed) if they are independent and, for each a €
R, the probabilities P(X; < a) are the same for all 4, that is, they have the same
cumulative distribution functions Fx, (z).

As indicated above, the X7, Xo, ..., in the sequence of die-rollings example
are i.i.d., random variables.
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3 Continuous random variables

The previous discussion about probability spaces, conditional probability, in-
dependence, etc., are completely general, although we have for the most part
applied the concepts to discrete random variables and finite sample spaces. A
random variable X on a probability space (£2, F, P) is said to be discrete if with
probability one it can take only a finite or countably infinite number of values.
For discrete random variables the probability measure Px is concentrated on
a set {ai,as,...} in the following sense: if A is a subset of R that does not
contain any of the a;, then Px(A) = 0. The cumulative distribution function
Fx(x) is then a step-wise increasing, discontinuous function:

F(z) = Z Px(ay).

n<z

We consider now, more specifically, the continuous case. The term “contin-
uous” is not used here in the strict sense of calculus. It is meant in the sense
that the probability of single outcomes is zero. For example, the probability of
the event {a} in [0, 1] with the uniform probability measure is zero.

A more restrictive definition will actually be used. We call X : § — R
a continuous random variable if the probability Px is derived from a density
function: this is a function fx : R — [0,00) (not required to be continuous) for
which

Fx(x) = /f fx(s)ds,

where Fx is the cumulative distribution function of X. (Our continuous random
variables should more properly be called absolutely continuous, in the language
of measure theory.)

Example 3.1 (Normal random variables) An important class of a continu-
ous random variables are the normal (or Gaussian) random variables. A random
variable X is normal if there are constants ¢ and p such that

We will have much to say about normal random variables later. The same
is true about the next example.

Example 3.2 (Exponential random variables) A random variable X is said
to have an exponential distribution with parameter X if its probability density
function fx(x) has the form

Ix(x) =

de ™ ifz >0
0 if £ <0.

It is also possible to have mixed-type random variables with both continuous
and discrete parts. The abstract definitions given above apply to all cases.
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3.1 Two or more continuous random variables

We may also consider random variables taking values in R¥, for &k > 1. We
discuss the case k = 2 to be concrete, but higher dimensions can be studied in
essentially the same way.

A random variable X = (X1, X5) : § — R2, on a probability space (S, F, P),
is a continuous random variable if there is a function p(x1,z2) such that the
probability of the event X € FE, where E is a subset of R?, is given by the
double integral of p over E:

Px(E) = //Ep(xl,mg)dxldxg.

Strictly speaking, E should be a measurable element in the o-algebra B of Borel
sets generated by parallelepipeds, which are the higher dimensional counterpart
to intervals. We will not worry about such details since the sets we are likely
to encounter in this course or elsewhere are of this type. Also, the continuous
random variables we will often encounter have differentiable density function
p(x1, 22).

The function p(x1,x2) is called the (joint) probability density function, ab-
breviated p.d.f., of the vector-valued random variable X. The p.d.f. must satisfy
the conditions p(z1,z2) > 0 and

// p(xhl'z)dl‘ldJCg =1.
R2

The components X; and X5 of X will also be continuous random variables,
if X is. Their probability density functions will be written p;(z1) and pa(z2).
Given a subset E on the real line, the event X; € F has probability

PXI(E> = P((XlaXQ) € Ex R) = /_OO ‘/Ep(l'l,l'g)dl'ldl’g.

Therefore,

pl(irl) :/ p(il,xg)dl'g.
Similarly,
pa(z2) =/ p(x1, x2)dxy.

— 00

Definition 3.1 (Conditional density) The conditional density function of
Zo given xp is defined as

p(xalw1) = p(21,22) /p1(21)-

The conditional probability of X5 € E, where E is a subset of R, given X7 = a
is defined by the limit:

_ v PU(X1,Xo) € fa,a+ h] x E)
PR e B =0 = I =P e laath)
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Proposition 3.1 Using the same notation as in definition 3.1, we have
P(X2 € E[X1 =) = [ plola)dy
E

A similar formula holds for conditioning X1 on an outcome of Xs.

Proof. Using the fundamental theorem of calculus at the second step and the
above definitions we obtain:

lim e f;+hp($1, xo)dr1dTy

R0 [ () dan

— lim Je % faa+h p(w1, z2)dr1drs
ho % f(:H_h p1(zq)day

_ Jgpla,z2)de,

pi(a)

- / p(a, 72) /p1 (a)dzs
E

- /E p(ws]a)dzs,

P(X2 S E|X1 = CL) =

The next proposition is a simple consequence of the definitions.

Proposition 3.2 (Independence) Two continuous random variables X1, X
are independent if and only if the probability density of X = (X1, X2) decom-
poses into a product:

p(z1,22) = p1(z1)p2(z2).

3.2 Transformations of continuous random variables

It is useful to know how the probability density functions transform if the ran-
dom variables change in simple ways. Let X = (Xi,...,X,) be a random
vector with the probability density function fx(x), z € R™. Define the random
variable Y = g(X), where g : R™ — R"™. More explicitly,

}/1 = gl(Xla e aX’n)

Yo =g2(X1,..., Xy)

Y, = gn(Xla s 7Xn)

Assume that g is a differentiable coordinate change: it is invertible, and its
Jacobian determinant Jg(z) = det Dg(z) of ¢ is non-zero at all points z € R".
Here Dg(x) denotes the matrix

_ 9gi
= o, ().

Dg(x)i;
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Theorem 3.1 (Coordinate change) Let X be a continuous random variable
with probability density function fx(x). Let g : R™ — R™ be a coordinate change,
then Y = g(X) has probability density function

fy () = fx (g7 (v) det(Dg(g~ ()"

The theorem can be proved by multivariable calculus methods. We omit the
proof. An important special case is when g is an invertible affine transformation.
This means that for some invertible matrix A and constant vector b € R™,

Y = AX +b,

assuming here that X, b, and Y are column vectors and AX denotes matrix
multiplication. In this case, Dg(x) = A.

Corollary 3.1 (Invertible affine transformations) Suppose that
Y = AX +0,

where A is an invertible matriz. If fx(x) is the probability density function of
X, and fy(y) is the probability density function of Y = g(X), then

fy(y) = fx (A7 (y —b))/| det Al

If n =1, then the random variable Y = aX + b has probability density function

fr(y) = ifX (y;b) :

~ al

Example 3.3 We say that Z is a standard normal random variable if its prob-
ability density function is

1 1,
z) = e" 2%,
fZ( ) \/ﬂ
If X =07+ p, then X is a normal random variable with probability density
function

fx(z) = L),
ovV2m
A different kind of transformation is a coordinate projection, IT : R™ — R™,
such that T(zy,...,2,) = (21,...,%m), where m < n. We have already con-
sidered this earlier when deriving the probability density p;(z1) from p(xq,z2).
The same argument applies here to show the following.

Proposition 3.3 (Projection transformation) Let m < n and Y = II(X)
where X is a random variable in R™ with probability density function fx(x) and
IT: R™ — R™ is the coordinate projection onto the first m dimensions. If fy (y)
is the probability density function of Y, then

oo oo
fy(yl,...,ym):/ / Fx Wiy s Ums Tma1y - v Tn)dTimg - - - ATy,
— 00 — 00
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Example 3.4 (Linear combinations of random variables) Consider inde-
pendent random variables X7, X5 : S — R with probability density functions
fi(z) and fo(z). Given constants a; and ag, we wish to find the probability
density function of the linear combination

Y =a1 X1 + axXs.

We may as well assume that a; is different from 0 since, otherwise, this problem
would be a special case of corollary 3.1, which shows what to do when we
multiply a random variable by a nonzero number. By the same token, we
may take a; = 1. So suppose that Y = X; + aXs, where a is arbitrary. Let
A : R? — R? be the invertible linear transformation with matrix

=l 1)

and IT : R? — R the linear projection to the first coordinate. Also introduce
the column vector X = (X1, X5)?, where the upper-script indicates ‘transpose.’
Then Y is the image of X under the linear map II1A:

Y =1IAX.

We can thus solve the problem in two steps using corollary 3.1 and proposition
3.3. The joint density function for X is

fx(x1,29) = fi(w1) fo(2)

since we are assuming that the random variables are independent. Then

fy(y) = fuax(y)
= /_Oo fax(y,s)ds
= /°° fx(y—as,s)ds
= [ - asntis
Therefore, the probability density function of ¥ = X3 + aXs is
fy(y) = /_Z fi(y — as) fo(s)ds.

A case of special interest is when a = 1. In this case fy (y) is the so-called con-
volution of f1(x) and fa(x). We state this special case as a separate proposition.

Definition 3.2 (Convolution) The convolution of two functions f(z) and
g(z) is the function f * g given by

(f *g)() = [ Y b $)g(s)ds.
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It is not difficult to show that if fi(z) and fo(x) are probability density
functions, then the convolution integral exists (as an improper integral) and the
result is a non-negative function with total integral equal to 1. Therefore, it is
also a probability density function.

Proposition 3.4 (Sum of two independent random variables) The sum
of independent random variables X1 and X5 having probability density functions
fi(x), fa(x) is a random variable with probability function f(x) = (f1 * f2)(x).

Example 3.5 Define for a positive number § the function

1
96(x) = 5Tj0,61(x),

where Ijg 5)(x) is the indicator function of the interval [0,0]. Le., gs(x) is 1/4 if
x lies in the interval and 0 if not. Then gs(x) is a non-negative function with
total integral 1, so we can think of it as the probability density function of a con-
tinuous random variable X (a random point in [0, ] with uniform probability
distribution). Suppose we pick two random points, X, X, in [0, d] indepen-
dently with the same distribution gs(x). We wish to compute the probability
distribution of the difference Y = X; — X,. Note that Y has probability 0 of
falling outside the interval [—¢,4], so fy (y) must be 0 outside this symmetric
interval. Explicitly,

Frn) = | " ooy + )95 (5)ds

—0Q0

1 oo
:5*2/ It 5)(y + 5)110,5)(s)ds

1 oo
= 57/ Iy, —y+6)(8)L0,5)(5)ds

— 00

1 o0
= 57/ Iy, —yto)nfo.a) (8)ds

1

52 length of the interval [—y, —y 4+ 6] N [0, J].

A little thought gives the following expression for the length of the intersection:

o i y] > 5
frlw) = {(6 /e iyl <.

The graph of this function is given below.

3.3 Bayes theorem for continuous random variables

Bayes theorem 1.1 holds in full generality. In the continuous case it can be
expressed in terms of the density functions:

20



18— 1/

8 -3 3

Figure 5: The graph on the left-hand side represents gs(z). On the right is the
graph of the probability density function fy (z).

Theorem 3.2 (Bayes theorem for continuous random variables) Using
the same motations as above in this section, we have

p(x2|z1) = p(@1|z2)p2(72) /P1(21).

As in the discrete random variable examples, Bayes theorem is often used in
combination with the total probability formula 1.2. In terms of the densities of
continuous random variables, this formula is expressed as an integral:

Proposition 3.5 (Total probability) The following equality, and a similar
one for pa(x2), hold:

pr(x1) = /_C>O p(x1|@2)p2(r2)des.

Note that p(y|x) is proportional to p(z|y)p2(y) as we vary y for a fixed
2. This means that, to find the most likely y given the knowledge of x, we
need only maximize the expression p(x|y)p2(y) without taking into account the
denominator in Bayes formula.

Example 3.6 An experimental set-up emits a sequence of blips at random
times. The experimenter registers the occurrence of each blip by pressing a
button. Suppose that the time T between two consecutive blips is an exponen-
tially distributed random variable with parameter A. This means that it has
probability density function

pr(t) = Ae M.

(We will study exponentially distributed random variables at great length later
in the course. For now, it is useful to keep in mind that the mean value of T is
1/, so A is the overall “frequency” at which the blips are emitted.) The time
it takes the experimenter to respond to the emission of a blip is also random.
A crude model of the experimenter’s delayed reaction is this: if a blip occurs at
time s, then the time it is registered is s 4+ 7, where 7 is a random variable with
probability density function:

a5(u) = {1/5 if u € [0, 8]

0 otherwise.
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We also assume independent delay times. Let S, S3 be the times of two consec-
utive blips, 71, 7o the respective response delays, T'= Sy — S1, and 7 = 75 — 71.
Then the registered time difference between the two events is

R:SQ+T2*(51 +T1):T+T.

Notice that, if we knew that the time between two consecutive blips was ¢, then
the registered time difference, R = ¢ + 7, would have probability density

p(rlt) = fr(r =)

according to corollary 3.1, where f, is obtained from g5 as in example 3.5. The
problem is to learn about the inter-emission intervals, T, given the times the
blips are actually registered. A reasonable estimate of T' is the value ¢ that
maximizes p(t|r). Using the result of example 3.5 and Bayes theorem in the
form p(t|r) o« p(r|t)p(t) we obtain:

(t]r) 0 if |r—t] >4
b Ae (S — | —t])/82 if |r— ] < 6.

(a o b means that a is proportional to B.) The maximum depends on the
relative sizes of the parameters. For concreteness assume that ¢ is less than 7.
(The measurement error is small compared to the measured value.) Then

L if1/A>46
" |r—=8+1/X otherwise.

I leave the details of the calculation as an exercise for you.

4 Exercises and Computer Experiments

Familiarize yourself with the Matlab programs of Lecture Notes 1. They may
be useful in some of the problems below. All simulations for now will be limited
to discrete random variables. We will deal with simulating continuous random
variables in the next set of notes.

4.1 General properties of probability spaces

Whenever solving a problem about finite probability spaces, be explicit about
the sample space S and the subsets of S corresponding to each event. “Plausi-
ble” chatty arguments can be misleading. Solving a problem in finite probability
often reduces to counting the number of elements in a set.

Exercise 4.1 (Galileo’s problem) A game consists of rolling three dice and
counting the total number of pips. A gambler famously asked Galileo to solve
the following problem: Is it more likely to obtain a 9 or a 10?7 Solve this problem
by direct counting. Confirm your answer by carrying out this experiment 50000
times and counting the relative frequencies of 9 and 10. (Suggestion: use our
samplefromp function.)
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Exercise 4.2 A coin is tossed three times. What is the probability that exactly
two heads occur, given that :

1. The first outcome was a head.

2. The first outcome was a tail.

3. The first two outcomes were heads.

4. The first two outcomes were tails.

5. The first outcome was a head and the third outcome was a head.

In each case, be explicit about the subsets of the sample space S involved in the
problem.

Exercise 4.3 What is the probability that a family of two children has
1. Two boys given that it has at least one boy.
2. Two boys given that the first child was a boy.

As always, be explicit about the sample space and the sets involved.

Exercise 4.4 Check that the random variables X7, X5, X3,... defined in the
three-dice example are i.i.d.

The following program simulates the experiment of tossing a coin k times
using the main idea behind example 2.3. A similar program could be written
for the die-rolling experiment.

ool To o To oo oo To o ToToToToTo oo oo oo oo o o o o o o o o o o o o o o T o To T To T To T oo oo oo oo o
function y=kcoins(k)

%Input - positive integer k

b

%0utput - vector of Os and 1s of legnth k

% This simulates flipping k unbiased coins
% independently by using the binary digits
% of a single U(0,1) random number.

y=[1;

x=rand;

for i=1:k

y=[y (i*x - floor(i*x)<0.5)];
end

TololoToToToTo o o oo o o o o o o o o o oo oo oo o o o o o o oo oo oo o o o o o o o o oo o oo o o o o o o oo oo

Exercise 4.5 (Random quadratic equations) We will say that a quadratic
equation axz? + bx + ¢ = 0 is a random equation if the real coefficients a, b, c
are random variables. Suppose that the coefficients are independent, that a,c
are uniformly distributed in [0, 1] and b is uniformly distributed in [0, 2]. What
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is the probability that a random quadratic equation has real roots? Confirm
your answer by simulation. (Pick a sample of 50000 random polynomials and
determine the relative sample frequency of polynomials with non-negative dis-
criminant.) Show your program.

Exercise 4.6 (Crossing the street) Suppose that, on a certain street, with
probability p = 1/3 a car will pass at each second k = 0,1,2,.... (That is, the
probability that a car will pass at second k is 1/3, for all k.) A pedestrian who
starts waiting at time 0, will need 5 seconds without a car passing in order to
cross the street. Write a Matlab program to simulate this process 10000 times,
calculating the proportion of times a pedestrian will have to wait before being
able to cross. Can you guess the exact value?

Exercise 4.7 Prove proposition 1.2
Exercise 4.8 Let F,, n=1,2,..., be a sequence of events. Prove:
1. P(E1UE2U...) §P(E1)+P(E2)+
2. it E,, C E, 4, for all n, then
P (U E) = lim P(E,).
i=1
Exercise 4.9 Let (2, F, P) be a probability space. Show that:
1. P(0) =0;
2. Given A, A, Ag,--- in F, then (), Ay is also in F;
3. If A, B € F satisfy A C B, then P(4) < P(B);

4. If Ay, As, As,--- are elements of F (not necessarily disjoint), then
P <U Ak> <> P(Ay).
k k

A hint: for part 3 of the exercise, write B as a disjoint union: B = AU(B\A).
For part 4, note that A; U A3 U - -+ equals the union A} U A, U-- -, where
A=Ay, Ay =Ax\ Ay, AL = A3\ (A1 UA,), ...

Exercise 4.10 Prove that the set of all rational numbers in [0,1] is an event
in the o-algebra of Borel sets B and that it has probability is 0.
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4.2 Bayes theorem

Exercise 4.11 (Clinical test) In a large city, a certain disease is present in
about one out of 10000 persons. A program of testing is to be carried out using
a clinical test which gives a positive reading with probability 98% for a diseased
person, and with probability 1% for a healthy person. What is the probability
that a person who has a positive reading actually has the disease?

Exercise 4.12 (The biology of twins) Example 1.7 was based on the as-
sumption that births of boys and girls occur equally frequently, and yet it is
known that fewer girls are born than boys. Suppose that the probability of a
girl is p, so that

P(GGIM)=p P(BBM)=1-p  P(GB|M)=0
P(GG|D) =p* P(BBID) = (1-p)* P(GB|D) =2p(1 -p).

Find the proportion of monozygotic twins in the whole population of twins in
terms of p and the sex distribution among all twins.

For the next problem, consider the following situation. John claims that he
can predict whether the stock market will end the day up or down with 80%
accuracy. Gary is skeptical of John’s claim and wants to put his powers of
prediction to a test. Denote by H, the hypothesis that John can determine the
daily up and down movement of the stock market with ¢ x 100% accuracy. For
simplicity, we consider a finite set of values ¢ = k/10, k = 0,1,2,...,10. For
example, Hy 5 is the hypothesis that John is making entirely random guesses,
and Hy g is the hypothesis that John is correct in his claim. Gary’s skepticism is
quantified by his assigning a high likelihood to hypothesis Hy 5. Let P(q) denote
the probability, in Gary’s estimation, of hypothesis H,. This is a probability
measure on the set of hypotheses, so

P(0.0) + P(0.1) + - - + P(0.9) + P(1.0) = 1.

Now suppose that John is asked to make a forecast. Call X = C' the event that
he makes a correct one-day forecast, and X = C that he gets it wrong. The
problem is to know how Gary should modify his initial estimation P(q) of the
likelihood of each H, given the outcome of the random variable X. Let P(q|C)
be Gary’s modified estimation of the likelihood of H,, given that John gets the
one-day prediction right, and P(q|C) the corresponding probability if he gets it
wrong. By definition, the probability that C' will occur given that hypothesis
H, is true is P(C|q) = g. Then by Bayes theorem (and denoting ¢ = k/10),

qP(q) A-a)Pl@
S0 akP(ar) Sl (1 —ai)P(ar)

(Notice that P(0|C) = 0 = P(1]|C), as it should be.) The P(qy) represent
Gary’s prior probabilities, and P(qi|X) his posterior probabilities after some
experimental evidence is offered. These equations can be iterated: given a

P(q|C) = , and P(q|C) =
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sequence of observations, X1, X9, Xs,..., each giving C or C, we produce a
sequence of probability distributions Py, P»,... on the set of hypothesis Hg,
describing the evolution of Gary’s belief in the predictive power of John. In the
following exercise you will produce a simulation of this situation.

Exercise 4.13 Suppose that hypothesis Hy g is correct. (John has some ability
to predict market movement, but not as great as he claims.) Simulate a sample
sequence X1, X2, X3,..., X100 of outcomes {C,C} then use it to obtain the
probability vectors Py, Py, .... Assume Py(q) = a[0.5Y/% — (¢ — 0.5)'/?] for the
initial probabilities, where a is a normalizing constant. On the same coordinate
system, plot the graphs of Py , Pigg, and Piggg, as a functions of gq.

n=0 n=10
0.4 0.4
0.3 0.3
0.2 0.2
0.1 T T 0.1
o ¢ T T ¢ & oo ) T T Q 4
0 0.5 1 0 0.5 1
n=30 n=90
0.5 0.8
0]
0.4 06
0.3
0.4
0.2
01 02 T
0% @ ? o 05 ? o)
0 0.5 1 0 0.5 1

Figure 6: The greater the number of trials, the more concentrated is P around
q = 0.6, which means that Gary is more and more confident that the hypothesis
Hy g is correct. The top left graph represents Gary’s initial beliefs. The other
graphs correspond to his re-evalutation after observing John’s predictions over
n days.

T It Tototo T o Toto o o To o 1o o ToToto o o To o o o To o 1o o T To o o o To o o o To o 1o o T To o o o To o o o To o o o o To o oo To o o
rand(’seed’,121);

5=0.6; %Actual predictive power of John.
u=1/2; %Can be modified to represent different
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%models of Gary’s initial belief.

n=90; %number of days tested
q=0:0.1:1;
p=0.5"u-(abs(q-0.5)) . u;
p=p/sum(p) ;
R=[p];
for i=1:n

x=(rand<=s) ;

if x==
p=q.*p/sum(q.*p) ;
else
p=(1-q) . *p/sum((1-q) . *p);
end
R=[R;pl;

end

stem(q,R(n,:))
ToToTo oo To T o o ToTo o o o To o o To o o o To o oo To o o o o o to o o To o oo o o o o oo o o oo oo Jo o o o o oo o o Jo o o

4.3 Continuous random variables

Exercise 4.14 (Convolution of exponential random variables) Suppose
that the lifetime of a component is exponentially distributed and that an iden-
tical and independent backup component is available. The system operates as
long as one of the components is functional; therefore, the distribution of the
life of the system is that of the sum of two independent exponential random
variables. Let T} and T5 be independent exponential random variables with
parameter A\, and let S = T; + T5. Find the probability density function of
S. Note: the probability density function of the exponential random variable
with parameter A is Aexp(—Az) if # > 0 and 0 if # < 0. (Be careful with
the limits of integration when calculating the convolution integral.) Answer:
fs(s) = A2sexp(—As).

Exercise 4.15 (Convolution of normal distributions) Show that a linear
combination Y = a1 X1 + a2 Xs of independent normal random variables X7, Xo
is also a normal random variable.

4.4 The Monty Hall problem

The Monty Hall problem in based on a TV game show from the 1960s called
“Let’s Make a Deal.” The show host, Monty Hall, would ask a contestant to
choose one of three doors. Behind one of the doors was a valuable prize, say a
car, and each of the other two concealed a goat. Instead of opening the door
picked by the contestant, Monty would open one of the remaining two that did
not conceal the car, and then give the contestant a choice whether to switch or
to stick with the first selection. Should the contestant switch or not?
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To avoid issues of interpretation, we assume that the same contestant has
the opportunity to play the game many times, and has to decide on a strategy
to follow. Should she always switch doors? Should she never switch doors?
Should she follow a mixed strategy? Here is a more precise formulation of the
game, from the point of view of the contestant:

step 1.

step 2.

step 3.

step 4.

Monty hides the car behind one of the three doors. No other information
being available from the outset, the contestant assumes that the door
concealing a car was chosen at random with equal probabilities.

The contestant picks a door at random with probabilities (1/3,1/3,1/3).

Monty selects one of the other two doors to open. If the contestant’s
initial choice did not hid the car, then Monty necessarily opens the only
remaining door that conceals a goat. If the contestant’s first pick actually
hid the car, Monty chooses from the other two at random with probabilities

(1/2,1/2).

The contestant now applies one of several strategies chosen beforehand:
(1) on every game, she chooses to stick with her initial choice; (2) on every
game, she chooses to flip; (3) she picks from the set {flip, not flip} with
probabilities P(flip) = p and P(not flip) = 1 — p, independently, every
game. (One can imagine other strategies, but these seem the simplest and
most natural.)

In fact, these constitute a single family of strategies parametrized by p. If
p = 0 we have strategy (1) and if p = 1 we have strategy (2). The problem is to
find p that maximizes the expected payoff, which we may agree to define as 1
for the car and 0 for a goat. We represent by S, the strategy parametrized by

p.

TololoToToToTo o o oo o o o o o o o o o oo oo oo o o o o o o oo oo To oo o o o o o o o oo oo oo o o o o oo oo oo
function y=montyhall(p,k)
%Input - p probability of switching initial choice of door

h
h

- k number of games played

%0utput - string of Os (lose) and 1s (win) of length k

y=[1]

for

i=1:k

%The doors are numbered 1, 2, 3.

%Monty selects one door at random with probabilities
%(1/3, 1/3, 1/3) and places the car behind it.

%The winning door with the car is representeed by w.
x=rand;

w=1k(x<=1/3) + 2x(x>1/3 & x<= 2/3) + 3*(x>2/3);

%The doors with goats will be called gl and g2
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if w==
gl=2;
g2=3;
elseif w==2
gl=1;
g2=3;
else

%#Contestant makes initial choice of door

%with probabilities (1/3, 1/3, 1/3). Call the choice cl.
x=rand;

cl=1%(x<=1/3) + 2% (x>1/3 & x<= 2/3) + 3*%(x>2/3);

%Now, Monty picks a door different from cl and opens it.
%Call this door m.
if cl == w
x=rand;
m=gl* (x<=1/2)+g2*(x>1/2) ;
elseif cl==gil
m=g2;
else
m=gl;
end

%The two remaining closed doors are cl and another
%which we call r, determined by:
r=6-(cl+m);

%The contestant now chooses a door c2 between cl and r.
%With probability p, she chooses to switch to r.
x=rand;

c2=r* (x<=p)+c1*(x>p) ;

%The payoff, a, is either O or 1:

if c2==w
=1;
else
=0;
end
y=Ly al;

end

Tololoto1oToTo oo oo o o o o o o o o o oo o oo oo o o o o o o oo ToTo oo oo o o o o o o oo oo To oo o o o o oo oo oo
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Exercise 4.16 For each p from 0 to 1 in steps of 0.2, find the relative frequency
of wins for 5000 trials of the game, then plot the result as a function of p.

Exercise 4.17 Derive analytically the exact value of the expected payoff for
strategy S, as a function of p.

To argue exercise 4.17 we need to know that once the contestant has decided
on the strategy of not switching doors, her estimated probability, 1/3, of winning
a car is not affected by the extra information gained when Monty opened one
of the other two doors. This can be justified as follows. Let Dy, Do, D3 be the
events that the car is behind doors 1,2, 3, respectively. Say that the contestant
has chosen door D;. Let Ms, M3 be the events that Monty opens doors 2 and
3, respectively (and contestant already selected door 1). Then

P(M;|D1)P(D:)

P(DI‘MZ) = P(MQ)

(by Bayes theorem)

_ P(M;|Dy)P(Dy)
~ P(M,|D1)P(Dy) 4+ P(M3|D2)P(Ds) + P(M;|D3)P(Ds)
(1/2)(1/3)
(1/2)(1/3) +0(1/3) +1(1/3)

4.5 Random permutations

Exercise 4.18 (Lotto simulation) Write a program to simulate a lotto ma-
chine. It should pick five balls at random from a set numbered 1 to 50, one by
one without replacement. The following line of Matlab code may be helpful: we
can obtain a permutation of the numbers 1,2, ..., n using

Tototo oo o ToTo o To o o To o o To o o To o o To o o To o o To o o To o o Jo o o To o o Jo o o Jo o o To o o Jo o o Jo o o Jo o o Jo o o Jo o o To 1o
[ignore,p] = sort(rand(1l,n));

Tt Toto o Toto o To o o To o o oo o To o o To o o oo o oo o To o o To o o oo o Jo o o Jo o o oo o oo o oo o oo o oo o oo o o
The permutation itself is the output p, which is a vector of length n with entries
from 1 to n. The variable ignore (which is a vector of random numbers between
0 and 1 sorted in increasing order) is not used. Why does this command actually

produce a random permutation? Use the Matlab help facility to learn about
the sort function.

If you play cards, you will likely know the meaning of terms such as ‘riffle
shuffles,” ‘cuts,” etc. These are permutations done to a deck of cards to ran-
domized them. You can find a discussion of this topic and about simulation
of card shuffling in [CGI]. Reference [LC] has a more mathematical, but very
brief, discussion of the problem of how many shuffles are needed to mixed the
deck up. This is fundamentally a problem about random walks on groups, and
there is a lot of interesting group theory involved.
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Exercise 4.19 (Riffles and cuts) Describe the permutation of 1,...,n (n is
the number of cards in a deck) that represents a riffle. Do the same for a cut.
(You may need to look up for the meaning of these terms.)

4.6 Buffon’s needle problem

Exercise 4.20 Show how to construct the function X described in the example
2.2, draw the region E C [0, a] x [0, 27] corresponding to intersection and prove
that P(F) = 2l/ma, as claimed there. Hint: For each fixed 6 find the range of
x to have intersection.
You can do a simulation of the needle problem with the Matlab script below.

Tt Toto o Toto o To o o To o o To o o To o o Jo o o oo o To o o To o o Jo o o oo o To o o Jo o o oo o Jo o o oo o oo o oo o oo o oo
tic
rand(’seed’,121)
c=0;
N=1000000;
for i=1:N

h=rand;

u=2*pi*rand;

y=h+0.5*sin(u) ;

if (y>0 & y<1)

c=c;
else
c=c+1;

end
end
buffonpi=N/c
toc

Tl ToToto o o ot ToToTodo o o oo ToToTo o o o o o To ToTo o fo oo o To ToFo o fo oo o o To oo o oo o o To oo o o o o Jo Fo oo oo o o

4.7 A non-measurable set

It was pointed out earlier that one of the reasons for making explicit the o-
algebra of events F in the definition of probability space is that, for the most
important example of the interval [0, 1] with probability measure derived from
the rule P([a, b]) = b—a, there are subsets for which it is not possible to associate
a probability measure (or length) at all. Such subsets cannot be regarded as
events of any probability experiment without incurring logical contradictions,
and must be excluded from the outset. The purpose of this extended exercise
is to have you construct one example of such a non-measurable set.

Rather than construct the set in [0, 1] directly, it is simpler to construct it
in the unit circle S' = {z € C : |z| = 1} and note that we can map the interval
onto the circle almost bijectively (except for the endpoints 0 and 1, which are
sent to 1 € S) using the map

o= [07 1] — e27rim c Sl.
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Also note that the measure on the interval corresponds under this map to the
length of segments of arc on the circle. Therefore, this measure is invariant
under rotation. We denote by Ry : S — S the rotation by angle 6:

Ry(z) = 2.

Fix o = 27v2. (There is nothing special about /2 other than that it is irra-
tional.) Define for each z € S* the set

I :={R}(z) :m € Z}.

In other words, I, consists of all the points on the circle obtained by rotating z
by an integer multiple of the angle a.

If you took Math 310, you should not have much difficulty checking the
claims of the following exercise.

Exercise 4.21 Show that the following claims hold:

1. For any two points 21,20 € S', either I, =1,o0rI, NI, =0. Note:
check that the relation

21 ~ 29 < 29 = R'(2z1), for some m € Z
is an equivalence relation.

2. By item one, argue that S! is an (uncountable) union of sets

St = UIZ,

z€EA

where A is a set that contains a single element from each distinct equiva-
lence class. (Being able to do this requires that you have faith in the axiom
of choice. In fact, the set A is defined by choosing from each distinct set
I, a single element.)

3. Let A,, = RJ'(A) denote the sets obtained by rotating A by the angle
ma. Using the fact that «/27 is irrational, show that

St=J An,

mMmEL
and that the union is disjoint.

4. Now argue that A cannot be a measurable set. In fact, suppose, in order
to arrive at a contradiction, that it makes sense to define the arc-length of
A. We denote this arc-length by 2w P(A), where P(A) is the measure the
set would have if we view it as a subset of [0, 1] through the identification
with S' described above. Arc-lengths are not changed under rotations, so
each set A,, must have the same length as A. But now we have a dilemma:
if A has positive length, the length of S' would be infinite, by the axiom
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of additivity of probability under countable disjoint unions and the claim
of Part 3. On the other hand, if A had arc-length 0, S* would be forced
to have arc-length zero, being a countable union of sets of zero length.
Either way we have a contradiction. The only escape is to conclude that
A cannot be assigned an arc-length measure consistent with the axioms
of probability.

5 Appendix: The Lebesgue integral

The definition of measurable sets leads in a natural way to a very general and
powerful notion of integration, known as the Lebesgue integral. We take here a
very brief look at this concept. Our main motivation is to have a general notion
of expected value of a random variable.

Suppose that (S,F,P) is a probability space and let X : S — R be a
random variable. For technical convenience we assume that X is bounded by
two numbers: a < X < b, although this is not esssential.

Ay /\

Ay b : A,

Ax

Figure 7: Pre-image of an interval

For a given positive integer n subdivide the interval [a,b] into n equally
spaced intervals of length (b — a)/n:

[a,b] = [ag,a1] U (a1, a2] U+ U (an—1,anl,

where ag = a and a,, = b. Let Ay C S denote the event ar < X < agy1. Now
write

n—1
I(X) =) arP(Ap).
k=1
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The limit of I,,(X) as n — oo is called the Lebesgue integral of X and is denoted

/ X (s)dP(s) = lim I,(X).
S n—oo
Sometimes the notation P(ds) is used for dP(s).

If f:R — R is a Borel measurable (bounded) function and X : S — R is a
random variable with probability law Py, it is not too difficult to obtain from
the definition that the expected value of f o X is given by

E[f o X] := /S fexnares) = [ " f(2)dPx (),

where the second integral is the Lebesgue integral on the set of values of X
relative to the probability measure Px.

We note the following remarks. First, what makes this definition much
more general than Riemann’s definition of integral is that we are freed from the
limitation of using simple sets (intervals) to partition the domain of the function
X. Here we partition S using measurable sets, on each of which X falls into a
narrow interval in its image set.

Another feature of the Lebesgue integral is its notational convenience. Notice
that S could have been continuous or discrete. In the continuous case, the
integral may reduce to ordinary Riemann integral, whereas in the discrete case
it reduces to a discrete sum. For example, if S = {1,2,...,6}3 as in the rolling
of three dice example, and X (s) = (4, j, k) is the outcome of a roll, then it can
be shown that )

[ rxenape) = 515 S fib.
(

o i.j.k)ES
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