Notes for Math 450
Stochastic Petri nets and reactions

Renato Feres

1 Petri nets

Petri nets are a special class of networks, introduced in 1962 by Carl Adam Petri,
that provide a convenient language and graphical representation for many kinds
of processes in a variety of areas of science and engineering. Some of the terms
used in our discussion will come from chemical kinetics, an area where Petri
nets are widely employed, but it will be clear that their applicability extends
well beyond chemistry. T will often call them simply nets, for short.

The first special feature of a Petri net is that the underlying graph is bipartite.
We begin by defining this and other basic terms concerning graphs and networks.
A directed graph, or digraph, is a pair G = (V, E) where V is a set whose elements
are called vertices, or nodes, and E is a subset of the product V' x V. Elements
of E are called edges, or arcs. An edge is thus simply an ordered pair of vertices,
(u,v). We sometimes write u — v if (u,v) belongs to E, and say that this edge
connects u to v.

Figure 1: An example of a bipartite graph.

A graph is said to be bipartite if the set V of vertices decomposes into a
disjoint union of two sets, V.= P U R, and each element of E has the form
(p,7) or (r,p), where r belongs to R and p belongs to P. In other words, an
edge can only connect vertices of different types. Vertices from P are called (in
the Petri nets literature) places, and will be represented by circles in the graph
diagram. Vertices from R are usually called transitions, and will be represented



by rectangles. We will also use the terms (molecular) species and reactions,
respectively. Figure 1 shows an example of a bipartite graph.

The state of a net is defined as an assignment of a non-negative integer,
M (p), to each place p € P. We call M(p) the population size of the species p.
We also use, alternatively, the term number of tokens, which is more standard
in the net literature.

In addition to the above basic structure, the edges of a net are assigned
weights, defined by functions Pre and Post. To an edge (p,r) (going from a
place to a transtition) we associate a non-negative integer Pre(p, r), and to each
edge (r,p), from a transition to a place, we associate a non-negative integer
Post(r, p).

I wish to think of each place as representing a molecular species and the
number of tokens X (p) as the number of molecules of species p at a given time.
(Time will be brought into this general set up explicitly once we define a Markov
process subordinate to a given Petri net. This will be done shortly when we
introduce stochastic Petri nets.) In the same spirit, I wish to view a transition
r as a reaction. The number Pre(p, r) indicates how many molecules of type p
are consumed in the reaction r, and Post(r, p) indicates how many molecules of
type p are produced by r. For example, consider the graph of figure 2.
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Figure 2: The Petri net of the reaction represented in ordinary chemistry notation by
r:2A+ B — 2C.

The net with the above diagram and weights Pre(A,r) = 2, Pre(B,r) = 1,
and Post(r, C') = 2 (indicated over the arrows), can be viewed as a representation
of the reaction r : 2A + B — 2C in standard chemical notation. The symbols
inside the circles are the number of tokens for each place. They are variables
n=X(A),m =X (B) and k = X(C), which we view as the number of molecules
of each species at a given time. A reaction event changes the population numbers
according to Pre and Post, as follows: n is updated to n — 2, m to m — 1, and
k to k + 2 every time the reaction event ¢ “occurs.”

It is useful to consider reactions in which tokens of a given species are created
or destroyed. We will indicate such transitions by

r:p—A or r: A— 0.



This may represent, for example, migration or transport between separate pop-
ulations.

In actual chemical processes, reactions usually come together with their re-
versed form. This is usually the case when the reaction represents an elementary
step in an overall complicated reaction mechanism. Given a reaction r, we de-
note its reversed form by —r. This is the reaction in which all the arrows of r
are reversed while the weights attached to each arrow are kept. In other words,
Post(—r, A) = Pre(A,r). (Later we will be regarding reactions as vectors in an
appropriate vector space, and the sign will have a more standard mathematical
meaning.) It may be convenient to indicate a forward-backward reaction pair
by some short-hand convention so as not to crowd the diagram too much. I will
do this by drawing a double harpoon such as = on top of the reaction box. For
example, consider the following set of reactions:

+ri:0=f
tro:=m
+rs:f+m=p
ra:p— 0

One may think of this system of reactions as a model for a dating service:
the reversible pair of reactions £r; represents one woman enrolling in or leaving
(still unmatched) the service; the reaction pair +rs represents the same for a
man. The reaction rz represents the formation of one matched pair, and the
reverse reaction —rs represents the dissociation of the pair and return to the
unmatched f and m populations (possibly due to “bad chemistry.”) Reaction ry4
represents a successfully matched pair leaving the service. It is not meaningful
to consider the reverse reaction —r4 since a successful pair will not re-enter the
service as a pair. (They might subsequently break up and re-enter the system
individually through reactions r; and ro.) We assume the functions Pre and
Post take value 1 on all edges.

The diagram of figure 3 shows the collection of reactions represented above
in standard chemical notation.
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Figure 3: A Petri net representation of the reaction mechanism described above in
standard notation. The number of tokens are not indicated.



We wish to think of the individual reaction events as taking place along
a succession of time steps with each reaction proceeding independently of the
other ones. This can be imagined as the work of several agents acting without
coordination, following their own individual clocks, each responsible for the
execution of one of the reactions in the overall mechanism. An event in the
process consists of one execution of a given reaction by its agent. Whenever an
event occurs, the number count of the populations of species participating in the
corresponding reaction changes according to the functions Pre and Post. l.e.,
the number X (A) is reduced by Pre(A,r), or increase by Post(r, A) depending
on whether A is a reactant or a product of reaction r. We will translate this
picture into a dynamical (stochastic) mechanism in the next section.

Generally, we omit the reaction rectangles if there is no more than one
reactant and no more than one product species. Also, for small number of
tokens, it is customary to indicate them by dots. The next example can be
regarded as a transition diagram for a Markov chain (with transition rates not
yet indicated). In this case we assume that the number of tokens at each place is
either 0 or 1 and the total number of tokens is 1, the occupied place representing
the present state of the Markov chain. State transitions of Markov chains can
be regarded as reactions of type A — B. In such cases we omit the reaction
rectangle.
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Figure 4: The transition diagram for a Markov chain is a special case of a Petri net.
Here we omit the reaction rectangles. The token represents the present state.

2 State transitions diagram

Recall that the state of a net is defined by a function X on the set of places:
X (p) indicates the number of tokens occupying a place p. Let S denote the set
of all states that a given net can attain. The state transition graph is a graph
with vertex set S and edges (s,s’) where s is a state that can follow s after the
occurrence of one reaction event.

Consider for example the Petri net of figure 5.
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Figure 5: A Petri net with a total of two tokens.

Its set of reactions is:

+R1:A=B
Ry: A+ B —2C
R;3:C— A
Ry:C — B

To obtain the transition diagram we first enumerate the states. Each state

is represented by a vector (a,b,c) giving the number of tokens in places A, B
and C. They are:

S9 = (]. 1 0)
S3 = (1 0 1)
ss = (0 2 0)
S5 = (0 1 1)

The transitions diagram for the Petri net of figure 5 is given in figure 6.
Note, for example, that the arrow from sg to s5 is due to reaction C' — B, and
the arrow from sy to sg is due to reaction A + B — 2C.
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Figure 6: State transitions diagram for the Petri net of figure 5.
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3 Stochastic Petri nets

We wish to introduce now a dynamical process that governs the way in which
the states of a Petri net change in time. We can define processes that are either
deterministic or stochastic. We begin with stochastic evolution model that in-
corporates the property that the various reactions operate in an uncoordinated,
asynchronous way, and the reaction events happen at exponential random times.

The additional data needed to specify the stochastic dynamics are the re-
action rates, h(r, X). These are functions of the reaction r and of the state X
of a Petri net. The reaction rates give the transition probability rates for the
state transitions diagram associated to the Petri net, making them transition
diagrams for a continuous-time Markov chain.

Note that the way in which the state of the process changes in time has the
following general form:

X1, (p) = Xty () + ) #+([t0, t1])(Post(r, p) — Pre(p, 7)), (1)
reR

where #,([a, b]) represents the number of reaction events of type r that occurred
during the time interval [a,b]. With this in mind, the evolution process of the
net can be described as follows:

1. The system is initially (time ¢ = 0) in state Xp. This may be a random
variable with probability distribution A on the set of states.

2. Let t be the time of occurrence of the last reaction and X = X; the present
state.

3. For each reaction » € R let S, be an exponential random variable with
parameter h(r, X). Let S be the minimum among the S, and r the random
reaction that gives the minimum, i.e., S = S,.. Now set the new time
t' =t + S and new state

X'(p) = X(p) + Post(r,p) — Pre(p,r).

4. Rename the present time t and present state X and if ¢t < T,,,., return to
step 2. Otherwise, stop.

Using the general properties of exponential distributions, we can restate the
third item above as follows: Let X be the present state and ¢ the time of last

transition. Define
h(X)=> h(r,X)
rER
and probabilities
pr = h(r, X)/h(X).
Obtain S, an exponential random variable with rate h(X), and new reaction r

chosen from R with probabilities p,.. Now set the new time t + .S and new state
X’ as in the above algorithm.



Natural choices of the reaction rates will ensure that the rate for a reaction
r will decrease as the population size for a reactant involved in r decreases, so
that the states do not take on negative values.

What we have described is, essentially, what is called Gillespie method of
stochastic simulation. Before implementing this method, we stop to consider a
class of rate functions coming from chemical kinetics known as mass-action law.

3.1 Mass-action kinetics

We specialize now to a family of rate functions defining what is called mass-
action kinetics. First of all, the order of a reaction r is defined as the number
of reactant species,

d= Z Pre(r, p)

peP

In situations where a reaction event requires individuals of different species
randomly to come together in close proximity at about the same time (a multiple
collision), reactions of high order are rare. This is the case in chemistry. In fact,
it is often the case in chemistry that reactions of order greater than 2 describe
the overall effect of a sequence of elementary reactions of order 2 or less. Because
of that, I will only write the precise expression of the mass-action laws up to
order 2. This is shown in the next table.

order | reaction r | rate function h(r, X)
0 |0—= c
1 | p—x cX(p)
2 | pitp2—* | cX(p1)X(p2)
2 [2p—+ cX(p)(X(p) —1)/2

For example, consider the following stochastic version of a classical ecological
model of predator-prey interaction known as the Lotka-Volterra system. Here
ay represents the prey species and as the predator species.

ayp — 2(11
a1+ as — 2(12

as — 0

The first reaction represents the reproduction of the prey species. The second
indicates the reproduction of predators require consumption and death of preys,
and the last reaction represents predator death. The Petri diagram is shown in
figure 7.

The mass-action rate functions are, respectively:

h(’l"l,X) = ch(al)
h(’f’Q,X) = CQX(al)X((IQ)
h(’/‘g,X) = C3X(a2).



Figure 7: A net diagram for the predator-prey reaction model.

For large population sizes, the reaction rate function for the second order
equation 2A — x is approximated by ¢X(A4)?. More generally, the mass-action
rate for the reaction

ringpr + -+ ngprp — *

is taken to be
h(r, X) =cX(p1)" X(p2)"* ... X (pr)"*

if the population sizes are large. Each term of the form z™ in the product can be
regarded as an approximation of the binomial coefficient C(z,n) (z-choose-n).

For ordinary chemical mixtures these quantities are typically measured in
number of moles, where one mole equals 6.03 x 1023 molecules. This number is
known as the Avogadro number. If we are considering reacting substances inside
a well-mixed container of fixed volume, these quantities are usually expressed
as molar concentrations, i.e., as the number of moles per unit volume.

3.2 Simulation of the stochastic Petri net process

The full specification of a stochastic Petri net at any given time involves the
data N' = (P, R, Pre, Post, h, X), where P is the set of places; R the set of
transitions (or reactions); Pre gives the multiplicities of place-transition edges;
Post gives the multiplicities of transition-place edges; h is the probability rates
function, which we often choose according to the mass-action law; and X is
represents the state of the process at a given time. Recall that X is a function
on P that gives the number of tokens, X (p), of each place p € P. We consider
the edge-multiplicity functions Pre and Post as defined on all pairs (p,r) and
(r, p) respectively, taking the value 0 if a pair is not an element in the edge set E.
Thus the set F, which we didn’t include in the Petri net data above, is already
specified by the edge-multiplicity functions. Also recall that the function h(r, X)
is completely specified by the rate constants ¢, under the mass-action law.
Before giving a more detailed algorithm for simulating the stochastic Petri
net, it is convenient to represent the information in A in matrix form based
on some numbering of the sets P and R. We write P = {p1,p2,...,Pm},
R = {ry,ra,...,m}. (In realistic reaction mechanisms in chemistry, often the
number n of reactions is much greater than the number m of molecular species.)
Define h;(X) = h(r;, X), j = 1,...,n, and write the state of the system as a



column vector with coordinates X; = X (p;). Thus we write X = (X1,..., X,n)¥,
where the upper-script indicates matrix transpose. When we need to write the
state vector X as a function of time, we write it X; or X(t), depending on
convenience of notation. We write the individual coordinates of X; as X;(t).
Denote by U = (u;;) the m-by-n matrix such that
u;; = Post(rj, p;) — Pre(p;, rj).

This is sometimes called the stoichiometric matriz of the net. For example, in
the predator-prey reaction model, U has the form

2 00 110 1 -1 0
— 77t 7 = _ —
v=v U‘(020> (011>_(0 11)'

The number of reaction events for each r; over the interval of time [a, b] will
be denoted by #;([a,b]) and the column vector with these components will be
written #([a, b]). Formula 1 now takes the form

Xy = Xpy + U#([to, 11]), (2)

where U#([to, t1]) is the matrix product of U by the column vector #([to, t1]).
We note that if only one reaction event took place over a given time interval
and the reaction was 7;, then

Xiy = Xpy + U,

where U is the j-th colum of U.
A more explicit description of Gillespie’s algorithm, in the form of a hold-
and-jump process, can now be given in the following way:

1. Initialize the state vector X = Xj;

2. for each i = 1,2,...,n, calculate h;(X) based on the current state X;
3. calculate the combined reaction rate h(X) = hy(X) + -+ + hp(X);
4

. simulate a sample value of an exponential random variable with rate con-
stant h(X) and call the value s. This is the holding time till the next
reaction event;

5. set the current time to ¢ + s and call it ¢;

6. simulate a sample value of index k with probabilities hy(X)/h(X) and call
it j;

7. set the new state of the system as X + UU), where UY) denotes the j-th
column of the stoichiometric matrix U;

8. output X and t;

9. if ¢ is less than a preassigned maximum time (or the number of steps is
less than a preassigned value), return to step 2. Otherwise, stop.



3.3 A Matlab program for the Gillespie method

We implement here Gillespie method for the special case of reactions satisfying
the mass-action law.

Tl lolololoToToTo o To ToTo ToToToToTo oo oo oo 1o o oo fo oo o o o o o o o o o T o o T To To T To T T T o oo oo o o oo
function [t yl=gillespie(U_pre, U_post, c, x_0, N)
%Simulate a reaction system using the Gillespie
%algorithm.
%Inputs: U_pre is the m-by-n matrix of
place-to-reaction multiplicities (there are
%m places and n reactions);
%U_post is the m-by-n matrix of reaction-to-place
Jmultiplicities; c=[c_1 ... c_n] are the reaction
Y%constants; x_0 is the initial state written as
%»a row vector of length m; and N-1 the
%maximum number of reaction steps.
%0utputs: t is a vector of length N of time events;
%y is an m-by-N matrix whose k-th column gives the state
%of the system at time step k. I.e., the system is
%at state y(k) during the interval from times
%t (k) to t(k+1), for each k.
[m n]=size(U_pre); %n=number of reactions; m=number of species
U=U_post-U_pre; ’%stoichiometric matrix
t=zeros(1,N);
y=zeros(m,N) ;
y(:,1)=x_0;
for k=1:N-1
h=c.*prod(repmat(y(:,k),1,n). U_pre); Jreaction rate vector
h_sum=sum(h) ;
pi=h/h_sum; %jump probabilities
s=-log(rand) /h_sum; %holding time
t(k+1)=t(k)+s; %time of next reaction event
%simulate next reaction with probability pi:
a=rand;
e=0;
for i=1:n
e=e+ix(sum(pi(l:i-1))<=a & a<sum(pi(1:i)));
end
y (L k+D)=y(:,k)+U(:,e);
end

ToloToTototo o o To o Too o o o To o To oo o o o Jo ToTo oo o o o Jo ToTo o fo o o o o To oo o o o o o To oo o o o o o To oo o o o o

We apply this program to the predator-prey model. The following commands
can be used to obtain the graph of the population sizes as functions of time .
Here we have used reaction constants ¢; = 1, ¢o = 0.005, and ¢z = 0.6. The
initial population sizes are 50 preys and 100 predators.

10
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U_pre =[1 1 0; 0 1 1];

U_post=[2 0 0; 0 2 0];

N=10000;

c=[1 0.005 0.6];

x_0=[50 100];

[t yl=gillespie(U_pre,U_post,c,x_0,N);

plot(t,y(1,:))

hold on

plot(t,y(2,:),’-=?)

Tototototo ToTo Toto oo To oo FoTo To o oo o fo o Fo o oo Fo oo Fo o Fota Fo o o oo Fo o Foito Fo oo fo o Fo o o o o oo Fo o Fo o o oo o o o
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Figure 8: Changing populations of predator and prey in the stochastic Lotka-Volterra
model.

Exercise 3.1 The gillespie program, as given, does not take into account
the possibility that rate function h may become zero and the reaction net-
work reaches an absorbing state. For example, the species populations may go
“extinct.” Modify gillespie so that the program will exit when reaching an
absorbing state, returning the sample path of the process up to that moment.

3.4 Improvements of gillespie

The above program suffers from a few drawbacks. First, it outputs data of every
single event that occurs in the simulation of the reaction network. This is often
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not desirable for systems with relatively large size and complexity, for which the
number of simulated events becomes very large. In this case all that we may
want to keep is the state of the system on a sufficiently fine grid of time points
rather than the full sequence of states at every event time. Also the program
does not take into account the possibility that one species population can go
extinct and the reactions cannot continue.

The following modification of the gillespie program takes care of these
shortcomings.

oo oo o ToTo o oo To o ToToToTo oo oo oo o o o o fo o o o o o o o o o o o o o o o o T To T T T oo oo oo o oo
function [t yl=gillespied(U_pre, U_post, c, x_0, T, dt)
%Simulate a reaction system using the Gillespie
%halgorithm only recording states on a regular grid

%of time points. Adapted from D. Wilkinson, "Stochastic
%Modelling for Systems Biology" (1st edition, page 155).
%Inputs: U_pre is the m-by-n matrix of
place-to-reaction multiplicities (there are

%m places and n reactions);

%U_post is the m-by-n matrix of reaction-to-place
Jmultiplicities; c=[c_1 ... c_n] are the reaction
Y%constants; x_0 is the initial state written as

%a row vector of length m; and T is the

%final time (the initial time being 0).

%0utputs: t is a regular grid of time points with

%step size dt;

%y is an m-by-N matrix whose k-th column gives the state
%of the system at time step k. I.e., the system is

%at state y(k) during the interval from times

%t (k) to t(k+1), for each k.

[m nl=size(U_pre);

U=U_post-U_pre;

N=floor(T/dt) ;

y=zeros(m,N);

y(:,1)=x_07;
t=0:dt: (N-1)*dt;
ylast=x_0";
tt=0;

target=dt;

k=1;

while k<N

h=c.*prod(repmat(ylast,1,n). U_pre);
h_sum=sum(h) ;
if h_sum<10~(-10)
tt=107(99) ;
else
tt=tt-log(rand)/h_sum;
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pi=h/h_sum;
end
while tt>=target
y(:,k+1)=ylast;
k=k+1;
target=target+dt;
if k>=N
return
end
end
a=rand;
e=0;
for i=1:n
e=e+ix(sum(pi(l:i-1))<=a & a<sum(pi(1:i)));
end
ylast=ylast+U(:,e);
end
T 1oToto o ToTo o o To To o o o To o o o ToToto o o To o o o ToJo o o o To o o o To o o o To o o o o To o o o To o o o Jo T o o o Fo o o o To o o
As an example, we run gillespied for the same Lotka-Volterra model and

same initial conditions as in the first numerical example, taking 7' = 100 and
dt = 0.05. The result is shown in figure 9.
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Figure 9: Changing predator population in the stochastic Lotka-Volterra model, show-
ing extinction.
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4 Homework 10

We modify the stochastic Lotka-Volterra model to allow migration of both
predator and prey between two geographic sites. A diagram is shown in fig-
ure 10.

' a; ' i as E
A L L
S | ] — E
| 1 2. 1 2
| L) |
e O |
1 I I's : 1
. 1 ' T ! 1 ,
AR : L sC E
L0 i L2 :

Figure 10: Predator-prey model with migration.

Note that the prey population is divided into two Petri net places, a; and as.
The places corresponding to the two predator populations are as and ay. Let us
assume that the interactions inside a given site have the same rate constants as
in the one-site Lotka-Volterra model we examined before. Somewhat arbitrarily,
let us set the migration rate for prey equal to ¢,, = c_,, = 0.01 and for predator
¢rs = c_py = 0.1. Thus the full set of reaction rates is:

reaction ‘ 1 To r3 T4 T4 T5 —T5 Tg 7 T8
rate constant‘l 0.005 0.6 0.01 0.01 0.1 0.1 1 0.005 0.6

1. Write down the matrices Upre, Upost and U. (Assume that the reactions
are ordered as in the above table of reaction rates and that places are
ordered as in the graph aq,aq, as, aq.)

2. Assume that initially the population sizes are 100 at a1, 50 at as, and zero
at the other places. Do a simulation of the process using gillespied for
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T = 150, dt = 0.05, and obtain a graph of the predator population at the
site that was initially not populated. I.e., plot the population size of a4 as
a function of time. (This took the gillespied program about one minute
on my laptop.)
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