
Notes for Math 450

Elements of Stochastic Calculus

Renato Feres

These notes supplement the paper by Higham and provide more information
on the basic ideas of stochastic calculus and stochastic differential equations.
You will need some of this material for homework assignment 12 in addition
to Higham’s paper. There are many places where you can find this theory
developed in greater detail and better than here. See, for example, [CKO]. Also
note that the information you mostly need for the homework is contained in the
second part of these notes. The section about the Langevin equation won’t be
needed.

1 Informal introduction to stochastic ODEs

We begin by developing an intuitive understanding of what stochastic ODEs
are and what kinds of situations they can be used to model.

1.1 Processes driven by noise

The processes we wish to consider can be regarded as solutions to differential
equations in which noisy terms or coefficients are present. A specific type of
such equation with broad applicability is

X ′ = f(t, X) + g(t, X)ηt

where a solution X(t) ∈ Rn describes the state of a physical system at time t
and X ′(t) is the time derivative of X(t). Here ηt is meant to represent a source
of “noise” or external randomness imposed on the system. Thus g(t,X)ηt is a
noisy driving factor superposed to a deterministic “drift” term represented by
f(t,X). A general first order system of ordinary differential equations of the
deterministic (i.e., standard) kind is then one for which g(t, X) zero.

Before getting into the mathematics that underlies a calculus with noise
(which I take here to essentially mean the Itô calculus to be introduced in the
next few sections), we should form a preliminary idea of what we want the
source of noise, ηt, to represent. As we will see, t 7→ ηt cannot (in any naive
way) be described as an ordinary stochastic process, but we can still think of
it as, in a sense, being the derivative of a perfectly nice stochastic process, Wt,
called Brownian motion, or Wiener process.
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The term white noise was created to describe the sound made by current
fluctuations due to thermal agitation of electrons in electronic devices. Physical
Brownian motion relates to the erratic motion of small particles suspended on
a liquid due to the random bombardment by liquid molecules. Similar random
phenomena is seen in the erratic fluctuation in the price of some financial asset
during a period of little overall market change, in which case the “microscopic”
factors are the large number of individual financial transactions taking place in
the stock exchange. The key point in all such cases is that a large number of
individual random events happening mostly independently of each other have
a statistically identifiable collective behavior that is manifested as noise. (The
NYSE is for sure a very noisy place, but of course in this or most other cases
I don’t mean the term noise to refer to sound.) Since on the most basic level
these kinds of phenomena relate to counting large numbers of random events,
it makes sense to start our informal description of noise by briefly going back
to the Poisson process.

Let Nt denote a Poisson process with parameter λ. Nt could describe, for
example, the number of electrons that have arrived at the end of a wire by
time t. The difference ∆Nt = Nt+∆t − Nt represents the number of arrivals
during the interval [t, t + ∆t]. Recall from lecture notes 3 that the mean value
of ∆Nt is E[∆Nt] = λ∆t, so on average we have λ∆t arrivals during a time
interval of length ∆t. Also recall that the variance of ∆Nt is equal to its mean,
Var(∆Nt) = λt. When the number of arrivals is big enough on average (which
for many practical purposes we can take to mean that λ∆t is about 20 or
greater), ∆Nt can be approximated by a normal random variable with mean
and variance µ = σ2 = λ∆t. So we write

∆Nt
∼= λ∆t +

√
λ∆tZ,

where Z is a standard normal random variable (with mean 0 and variance 1).
The numbers of Poisson arrivals during non-overlapping time intervals are

independent random variables. If Z1, Z2, . . . are a sequence of independent
standard normal random variables, then the time-discretized process Ntk

, tk =
k∆t, k = 0, 1, 2, . . . , can be approximated (for large λ∆t) by

Ntk
∼= Ntk−1 + λ∆t +

√
λ∆tZk.

We assume N0 = 0. Notice that the process Vt defined by

Vt =
Nt − λt√

λ

(approximately) has the following properties:

1. V0 = 0;

2. If s < t < u, then Vu − Vt and Vt − Vs are independent random variables;

3. Vt − Vs is a normal random variable with mean 0 and variance t− s.
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The Wiener process Wt, which we already formally introduced in class (you
can find it in section 4.4 of Norris’s text), is a process that satisfies these prop-
erties exactly (in addition to the assumption that sample paths t 7→ Wt are
continuous functions with probability 1). Thus, it makes sense to write:

Nt
∼= λt +

√
λWt.

If Nt represents the number of arrivals of electrons at the end of a wire, then
the time derivative of Nt, if it could legitimately be taken, would describe the
electric current as a random process:

It = N ′
t = λ +

√
ληt

where ηt is now
√

λW ′
t , the time-derivative of the Wiener process. This is what

we would like to think of as “noise.” It should be clear, however, that there are
difficulties in interpreting the derivative of Wt as a process. In fact the variance
of the quotient ∆Wt/∆t is given by

Var
(

∆Wt

∆t

)
= Var(∆Wt)/∆t2 = ∆t/∆t2 = 1/∆t,

which does not have a limit as ∆t → 0.
It turns out that, properly interpreted, the differential dWt still makes sense.

The key idea is contained in the definition of Itô integral, introduced later. We
can now write the above differential equation as a stochastic differential

dXt = f(t,Xt) + g(t, Xt)dWt

which is interpreted in terms of stochastic integrals:

Xt −X0 =
∫ t

0

f(s,Xs)ds +
∫ t

0

g(s,Xs)dWs.

The definition of a stochastic integral will be given shortly.

1.2 Wt as limit of random walks

Continuing with our informal introduction, we wish now to see how the process
Wt can be interpreted as the trajectory of a particle following random (Brow-
nian) motion. Consider a random walk on the one-dimensional grid consisting
of all integer multiples of a small positive number δ. We model the motion by
a continuous time Markov process with set of states given by the numbers kδ,
k ∈ Z, and transition rate constant for jumping forward or backward equal to
λ/2. On average we have λ jumps per unit time, roughly half of them forward
and half backward.

Let Xt denote the position along the grid at time t. We wish to pass to the
limit as δ → 0 and λ → ∞. It turns out to be necessary to impose a relation
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between these two parameters in order to obtain a reasonable limit. We assume
that λ and δ satisfy the relation

λδ2 = σ2

where σ is a constant.

λ/2

λ/2

Figure 1: Random walk along the grid δZ. The transition rate constants are
λ/2. In particular, the holding times between consecutive jumps are exponential
random variables with parameter λ.

The number of forward jumps by time t, N+
t , and the number of backward

jumps by time t, N−
t , are independent Poisson processes with parameter λ/2.

Using the approximation of a Poisson random variable by a normal random
variable as described above we have:

N+
t
∼= λt/2 +

√
λ/2W1(t)

N−
t
∼= λt/2 +

√
λ/2W2(t),

where W1(t) and W2(t) are independent Wiener processes. We can now write:

Xt = δ
[
N+

t −N−
t

]
∼= δ

√
λ

[
W1(t)−W2(t)√

2

]
= σW (t).

Notice that the combination (W1(t) − W2(t))/
√

2 of two independent Wiener
processes, which we have indicated by W (t), also satisfies the conditions defining
a Wiener process. This shows that if we scale δ down to zero and λ up to infinity
in such a way that σ2 = λδ2 remains constant, then the random walk should be
expected to converge (in some appropriate sense of convergence) to a Wiener
process.

Since Wt is a normal random variable with mean 0 and variance t, σWt is a
normal random variable with mean 0 and variance σ2t. Its probability density
function can thus be written as

φ(t, x) =
1

σ
√

2πt
exp

(
−1

2
x2

σ2t

)
.

This is the probability density that Wt will be found at position x at time t.

4



A simple partial derivatives exercise shows that φ satisfies the diffusion equa-
tion:

∂φ

∂t
=

σ2

2
∂2φ

∂x2
.

Therefore, the Brownian motion described by Wt may be viewed as the “micro-
scopic” motion of particles diffusing with a diffusion constant D = σ2/2. We will
show later in a more direct way that the probability density function associated
to more general stochastic differentials must satisfy similar diffusion equations.

1.3 The chemical Langevin equation

Stochastic Petri nets provide a general source of examples to which the above
ideas can be applied. Recall that the state of a Petri net at time t is given
by a (column) vector Xt = (X1(t), . . . , Xm(t))′ whose components are the pop-
ulation numbers of the places (or species) of the net. We denote by Nt =
(N1(t), . . . , Nn(t))′ the column vector whose components are the number of re-
action events up to time t for each reaction type. Let ∆Nj(t) be the number
of reaction events over the time interval [t, t + ∆t] corresponding to reaction rj ,
j = 1, . . . , n, and ∆Nt the column vector with components ∆Nj(t). Let U be
the m-by-n stoichiometric matrix of the net. Then, as we saw before (lecture
notes on Petri nets),

∆Xt = U∆Nt.

To obtain dynamical equations, we introduce the reaction rate functions
hj(Xt), for j = 1, . . . , n. The number of events of each reaction is then a (non-
homogeneous) Poisson process with rate hj(Xt). This means that for small ∆t,
the increment ∆Nj(t) is approximately a Poisson(hj(Xt)∆t) random variable
and increments for different time steps are independent. (It can be shown that
the increment Nb −Na is also Poisson with parameter

∫ b

a
hj(Xt)dt.)

λ/2λ/2 n

2 2

1 1

Figure 2: Petri net for the random walk with parameter λ/2 for forward and
backward jump. The integer n represents the position along the grid Zδ,

The normal approximation of the Poisson process, dNt = λdt +
√

λdWt,
gives a stochastic differential model for the number of reaction events:

dNj(t) = hj(Xt)dt +
√

hj(Xt)dWj(t).
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Substituting into the equation for dXt and using the differential notation gives
a system of stochastic differentials:

dXi(t) =
n∑

j=1

uijhj(Xt)dt +
n∑

j=1

uij

√
hj(Xt)dWj(t).

These equations can be written more succinctly in matrix form as

dXt = Uh(Xt)dt + U
√

H(Xt)dWt

where h is the column vector of length n of reaction rate functions, H is the di-
agonal matrix with entries hj ,

√
H is the diagonal matrix with entries

√
hj , and

Wt = (W1(t), . . . ,Wn(t))′ is the column vector whose entries are independent
Wiener processes.

A simple example is given by figure 2. Notice that this is simply the ran-
dom walks example already discussed. The next section has a more elaborate
example.

1.4 Example: the Michaelis-Menten enzyme model

The Michaelis-Menten system is a simple model for a chemical reaction in which
a substrate S is converted to a product P only in the presence of a catalyst
(enzyme) E. The process involves the elementary reactions:

r1 : S + E → SE

r2 : SE → S + E

r3 : SE → P + E.

A diagram is shown in figure 3.

E

S

SE
r

2

r 1
r 3

1

1

1 1

p

1

= − r
1

Figure 3: Petri net for the Michaelis-Menten system.

Let X = (XE , XS , XSE , XP ) be the population numbers for the different
species. We order the molecular species as indicated by this vector. The stoi-
chiometric matrix is

U = Upost − Upre =


1 0 0
1 0 0
0 1 1
0 0 0

−


0 1 1
0 1 0
1 0 0
0 0 1

 =


−1 1 1
−1 1 0

1 −1 −1
0 0 1


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The rate functions are (using numerical indices rather than the molecular
symbols)

h1(Xt) = k1X1X2

h2(Xt) = k2X3

h3(Xt) = k3X3.

This leads to the system of four stochastic differentials:
dX1

dX2

dX3

dX4

 =


−1 1 1
−1 1 0

1 −1 −1
0 0 1


 h1dt + h

1/2
1 dW1

h2dt + h
1/2
2 dW2

h3dt + h
1/2
3 dW3


A numerical simulation of this system requires greater care than I am go-

ing to take here. The following simple program obtains sample paths for a
chemical Langevin system with given stoichiometric matrices and reaction rate
constants. The program assumes the mass-action kinetics. One problem with
this particular implementation is that occasionally, if some of the population
numbers become too small, the random fluctuations may turn them negative
and render the result of the calculation completely meaningless. The program
includes a parameter σ multiplying the terms dWi, which can be adjusted to
change the relative contribution of the noisy terms. (It can be thought of as
a function of the system’s temperature.) If σ = 0 the program reduces to the
Euler method for systems of ordinary differential equations. Tinkering with σ
may help evaluate whether something we are seeing is an artifact of this poor
numerical implementation or something more likely to be a feature of the real
solution.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [t,X]=chemlangevin(U_pre,U_post,c,X_0,T,N,sigma)
%Obtains a sample path for the solution X_t of a
%discretized chemical Langevin system
%associated to a stochastic Petri net with
%stoichiometric matrix U=U_post-U_pre, where
%U_pre is the m-by-n matrix of
%place-to-reaction multiplicities (there are
%m places and n reactions); U_post is the m-by-n
%matrix of reaction-to-place multiplicities, and
%c=[c1,...,cn] are the reaction constants. We assume
%mass-action kinetics. The initial
%state is a row vector X0 of length m, the time interval
%is [0, T] and the number of step sizes is N.
%The solution X(t) is given as a matrix of
%size m-by-N, where m is the number of species.
%sigma is a positive number to control the variance of
%the source Wiener processes. When sigma=0 the system
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%reduces to the determninistic system.
dt=T/N;
[m n]=size(U_pre); %n=number of reactions; m=number of species
U=U_post-U_pre; %stoichiometric matrix
t=0:dt:T-dt;
X=zeros(m,N);
X(:,1)=X_0’;
for k=1:N-1

h=c.*prod(repmat(X(:,k),1,n).^U_pre);
H=diag(h);
X(:,k+1)=X(:,k)+U*h’*dt+sigma*U*sqrt(H)*randn(n,1)*sqrt(dt);
if sum(h)<=0

return
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure 4: Population sizes of S and P as functions of time. The parameters are
indicated below in the text.

We apply the program to the Michaelis-Menten system with the following
parameters:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
U_pre=[1 0 0; 1 0 0; 0 1 1; 0 0 0];
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U_post=[0 1 1; 0 1 0; 1 0 0; 0 0 1];
c=[10^(-5) 10^(-3) 1];
X_0=[600 800 500 0];
T=50;
N=1000;
sigma=1;
[t,X]=chemlangevin(U_pre,U_post,c,X_0,T,N,sigma);
hold off
plot(t,X(2,:),’--’)
hold on
plot(t,X(4,:))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 Temperature

3 The Itô integral

We begin now with a somewhat more formal development of Itô’s stochastic
calculus. The first and main issue to understand is how to make sense of integrals
of the form

G =
∫ T

0

g(t)dW (t),

where g(t) is a stochastic process and W (t) is the Wiener process. As may be
expected, we will define such an integral by a limit of Riemann sums. What
will be different from ordinary calculus is the mode of convergence that will be
used. (See definition of mean-square convergence below.)

The processes g(t) for which a good integration theory can be obtained are
those with the following two properties:

1. For each t ≥ 0, the random variable g(t) only depends on (Ws)0≤s≤t, and
not on any Wu for u > t. We say that g(t) is non-anticipating. In other
words, if t is the present time, we do not need to look into the future of
the process (Wu)u≥0 in order to know the value of g(t).

2. The expected value of g(t) is square-integrable over intervals where we
wish to integrate g(t) along W (t). In other words,∫ T

0

E[g(t)2]dt < ∞.

For example, g(t) = W 2
t − 3Wt/2 + t2 satisfies the two properties for all T > 0.

Definition 3.1 (Mean-square convergence) A sequence G1, G2, . . . of ran-
dom variables is said to converge in mean-square to a random variable G if

E
[
(Gn −G)2

]
→ 0

as n → 0. We indicate this by saying that Gn → G in mean-square.
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Let now Gn be the Riemann sum

Gn =
n∑

j=1

g
(
t
(n)
j

)(
W
(
t
(n)
j+1

)
−W

(
t
(n)
j

))

for a partition 0 = t
(n)
1 < t

(n)
2 < · · · < t

(n)
n = T of the interval [0, T ]. It is

important to notice that g(t) is evaluated at the beginning of the interval. As
we will see, the result could be completely different for a different choice of
representative point.

It can be shown (we will not do it here) that if g(t) satisfies the two properties
above, then the sequence of Riemann sums Gn has a limit, G, in the sense of
mean-square convergence. We call the limit the Itô integral of g(t).

3.1 A simple example

As one example to illustrate the definition, we will show that∫ T

0

WtdWt =
1
2
W 2

T −
1
2
T.

The first term on the right-hand side is just what one would expect from our
knowledge of ordinary integration. (Recall that W0 = 0.) The presence of the
second term, T/2, shows that something new is going on.

For simplicity of notation we drop the index n and write ∆Wtj = Wtj+1−Wtj

and ∆tj = tj+1 − tj . We now write:

W 2
T = W 2

T −W 2
0

=
n∑

i=1

(
W 2

ti+1
−W 2

ti

)
=

n∑
i=1

(
Wti+1 + Wti

) (
Wti+1 −Wti

)
=

n∑
i=1

(
Wti+1 −Wti

)2 + 2
n∑

i=1

Wti

(
Wti+1 −Wti

)
=

n∑
i=1

(
Wti+1 −Wti

)2 + 2Gn.

So to prove that Gn converges to 1
2W 2

T − 1
2T it is enough to show that

n∑
i=1

∆Wti

2 → T.

Write ui = ∆W 2
ti
− ∆ti and notice that T =

∑n
i=1 ∆ti. The limit we wish to

establish amounts to
∑

i ui → 0 in mean-square. In other words, we need to
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show that

E

( n∑
i=1

ui

)2
→ 0.

Observe that ui and uj are independent random variables if i 6= j and have
mean 0 so E[uiuj ] = E[ui]E[uj ] = 0. Also note the following facts: each ∆Wtj

is a normal random variable with mean 0 and variance ∆tj , so ∆Wtj =
√

∆tjZ,
where Z is a standard normal random variable. The expected value of an odd
power of Z is 0 since it involves integrating an odd function over R. Setting
ck = E[Z2k] (a number that we could compute explicitly if we needed), gives
then

E[(∆Wtj
)n] =

{
0 if n is odd
cm(∆tj)m if n = 2m.

Although not important for the argument, an exercise in ordinary integration
gives the explicit value c2 = 3. Putting all of this together yields:

E

( n∑
i=1

ui

)2
 = E

 n∑
i,j=1

uiuj


=

n∑
i,j=1

E[uiuj ]

=
n∑

i=1

E
[
u2

i

]
=

n∑
i=1

E
[
(∆W 2

ti
−∆ti)2

]
=

n∑
i=1

(
E
[
∆W 4

ti

]
− 2E

[
∆W 2

ti

]
∆ti + ∆t2i

)
=

n∑
i=1

(
3∆t2i − 2∆ti∆ti + ∆t2i

)
= 2

n∑
i=1

∆t2i

= 2T∆t.

At the last step we are using the assumption that the intervals have equal step
size, ∆t. As ∆t → 0 (in the ordinary sense of the limit), the above expectation
approaches 0. This concludes the proof.

What we have just shown justifies writing

∫ T

0

dW k
t =


Wt when k = 1
T when k = 2
0 when k ≥ 3.
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The essence of the above calculations can be summarized symbolically in the
following multiplication table:

dW 2
t = dt, and dt2 = dt dWt = dWt dt = 0.

Recall that the standard deviation of dWt is
√

dt and that terms of order (dt)α,
for α > 1, can be disregarded in integration. Thus, it makes sense to write

(dXt)2 = (udt + vdWt)2 = v2dt.

Definition 3.2 (Itô process) Let Wt be a (one-dimensional) Wiener process.
A one-dimensional Itô process, or stochastic integral is a stochastic process Xt

of the form

Xt = X0 +
∫ t

0

u(s)ds +
∫ t

0

v(s)dWs.

Alternatively, we write dXt = u(t)dt + v(t)dW (t).

For example, from what we saw in the previous section, Xt = W 2
t /2 is an

Itô process. Its stochastic differential is given by

d

(
1
2
W 2

t

)
=

1
2
dt + WtdWt.

3.2 Itô’s formula

Itô’s formula can be thought of as the chain rule in stochastic calculus. It is
used to obtain the stochastic differential of the composition F (Xt), where F (x)
is a (twice) differentiable function and Xt is an Itô process. One difference
between the deterministic and the stochastic chain rules is that the latter also
involves the second derivatives of F , as we will see. We begin by stating the one-
dimensional case. The higher-dimensional Itô formula will be presented later in
the section.

More generally, we consider functions F (t, x) that may also depend explicitly
on t. All such functions will be assumed to have continuous partial derivatives
up to order 2 or greater. Let dXt = u(t)dt + v(t)dW (t) be an Itô process and
define the new process

Yt = F (t, Xt).

The next theorem asserts that Yt is also an Itô process and shows how to write
it as a stochastic differential.

Theorem 3.1 (One-dimensional Itô formula) Let F (t, x) be a twice con-
tinuously differentiable function jointly in t and x. Let Xt be an Itô process
given by dXt = udt + vdWt, and define Yt = F (t, Xt). Then Yt is also an Itô
process and

dYt =
∂F

∂t
(t, Xt)dt +

∂F

∂x
(t, Xt)dXt +

1
2

∂2F

∂x2
(t, Xt)(dXt)2.
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Using that (dXt)2 = v2dt, the differential of Yt can be written as:

dYt =
(

∂F

∂t
(t, Xt) + ut

∂F

∂x
(t, Xt) +

1
2
v2

t

∂2F

∂x2
(t,Xt)

)
dt + vt

∂F

∂x
(t,Xt)dWt.

The proof of Itô’s formula will be sketched in the next section. We look now
at a few examples.

Example 3.1 Let F (t, x) = xn, n ≥ 2, and Xt = Wt. Then

dWn
t = nW (t)n−1dW (t) +

n(n− 1)
2

W (t)n−2dt.

This shows that∫ t

0

Wn−1
s dW (s) =

1
n

Wn
t −

n− 1
2

∫ t

0

Wn−2
s ds.

If n = 2, this formula reduces to what we obtained earlier using the definition
of the stochastic integral.

Example 3.2 (Integration by parts) If F (t, x) = f(t)x, where f(t) is a dif-
ferentiable function, Xt = Wt, and Yt = F (t, Wt) = f(t)Wt, then by Itô’s
formula:

d(f(t)Wt) = f ′(t)Wtdt + f(t)dWt.

In integral form, this is the formula for integration by parts:∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

f ′(s)Wsds.

As a special case, if f(t) = t, we obtain:∫ t

0

sdWs = tWt −
∫ t

0

Wsds.

It is helpful to keep in mind that expressions like
∫

f(t,Wt)dt, for a continu-
ous function f(t, x), can be interpreted in terms of ordinary integration along in-
dividual sample paths of the process u(t) = f(t,Wt). The apparatus of stochas-
tic calculus comes in when trying to interpret integrals like

∫
f(t, Wt)dWt. In

this sense, the expression
∫

W 2
t dWt = W 3

t /3 −
∫

Wtdt has indeed reduced the
process Yt =

∫
W 2

t dWt to something we better understand.

3.3 The multi-dimensional Itô formula

Let Wt = (W1(t), . . . ,Wm(t)))′ (in column vector form) represent the Wiener
process in dimension m. The components Wi(t) are independent standard
Wiener processes. Let u(t) = (u1(t), . . . , un(t))′ and v(t) = (vij(t)), an n-by-m
matrix valued process, and suppose that u and v have the properties required
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for stochastic integration. An n-dimensional process Xt (in column form) is
called n-dimensional Itô process if its stochastic differential is given by

dXt = udt + vdWt.

This is the matrix form of the following system:
dX1 = u1dt + v11dW1 + · · ·+ v1mdWm

...
dXn = u1dt + vn1dW1 + · · ·+ vnmdWm.

For the manipulation of stochastic differentials, it is useful to note the fol-
lowing symbolic multiplication table:

dWidWj = δijdt, dt dWi = dWi dt = 0, dt2 = 0,

where δij is 1 if i = j and 0 otherwise. The justification for these products is
containing in the proof of Itô’s formula.

Theorem 3.2 (The general Itô formula) Let dX(t) = udt + vdW (t) be an
n-dimensional Itô process as defined above. Let F (t, x) = (F1(t, x), . . . , Fp(t, x))
be a twice continuously differentiable map from [0,∞) × Rn to Rp. Then Yt =
F (t, Xt) is also an Itô process, whose component Yj(t) is given by

dYk =
∂Fk

∂t
(t, X)dt +

n∑
i=1

∂Fk

∂xi
(t, X)dXi +

1
2

n∑
i,j=1

∂2F

∂xi∂xj
(t, X)dXidXj .

We consider a few examples.

Example 3.3 Let F (t, x) = f(x) ∈ R, for x ∈ Rm, Xt = Wt and define
Yt = f(Wt). Then

dYt = (∇f)(Wt) · dWt +
1
2
(∇2f)(Wt)dt.

Here ∇f denotes the gradient of f and ∇2f =
∑

i
∂2f
∂x2

i
the Laplacian. In par-

ticular, if f is a harmonic function, i.e., ∇2f = 0, Itô’s formula reduces to the
ordinary total differential formula:

d(f(Wt)) =
∑

i

∂f

∂xi
(Wt)dWi(t).

For example, let f(x1, x2) = x2
1 − x2

2. Then

d(W 2
1 −W 2

2 ) = 2W1dW1 − 2W2dW2.
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As a general remark, if Xt =
∫ t

0
usds +

∫ t

0
vsdWs then E[Xt] =

∫ t

0
E[us]ds.

To show that the second integral has zero expectation, note that each term
vtj

(Wtj+1 −Wtj
) in a Riemann sum approximation of

∫ t

0
vsdWs satisfies

E[vtj
(Wtj+1 −Wtj

)] = E[E[vtj
(Wtj+1 −Wtj

)|Wtj
]]

= E[vtj
E[(Wtj+1 −Wtj

)|Wtj
]]

= E[vtj
0]

= 0.

Example 3.4 We used before that E[W 4
t ] = 3t2. Here is a simple way to prove

this fact. Set ck(t) = E[W k
t ]. By Itô’s formula,

dW k
t = kW k−1

t dWt + (1/2)k(k − 1)W k−2
t dt.

Taking expected value and using the above remark about the expectation of an
Itô differential gives:

ck(t) =
1
2
k(k − 1)

∫ t

0

ck−2(s)ds.

It is easy to obtain explicitly that c1(t) = 0, c2(t) = t, and ck(0) = 0 for all k.
It follows that all odd numbered terms c2j+1(t) are 0 and

c4(t) = 6
∫ t

0

sds = 3t2.

Other terms can be found by induction.

Example 3.5 Let W = (W1, . . . ,Wn) be the standard Wiener process in Rn,
n ≥ 2. The distance from W (t) to the origin is given by

R(t) = |W (t)| = (W 2
1 + · · ·+ W 2

n)1/2.

A simple application of the Itô formula shows that

dR =
1
R

W · dW +
n− 1
2R

dt.

Example 3.6 Let gt ∈ Rn be a process that it satisfies the required conditions
for the Itô integral

∫ t

0
gsdWs to make sense. Let gt · gt represent the standard

inner product (dot product) of gt with itself. Now define the process

Yt = exp
(∫ t

0

gsdWs −
1
2

∫ t

0

gs · gsds

)
.

I claim that Yt is a process without drift (a Martingale). In other words, the
differential dYt does not contain the term in dt. In fact, set

Xt =
∫ t

0

gsdWs −
1
2

∫ t

0

gs · gsds,
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F (x) = ex, and Yt = F (Xt). Then

dYt = F ′(Xt)dXt +
1
2
F ′′(Xt)(dXt)2

= eXt(dXt +
1
2
(dXt)2)

= Yt(gtdWt −
1
2
gt · gtdt +

1
2
gt · gtdt)

= YtgtdWt.

3.4 Sketch of proof of the Itô formula

I will return to this later. Some indications of the proof will be given in class
probably before I get a chance to finish this write-up. For now, the following
exercise should give you a good indication of what is going on: write G(t) =
F (t, Xt) and develop G(t + ∆t)−G(t) in Taylor approximation up to order 2.
Then form the Riemann sum and show that the equivalent integrated form the
theorem holds. Limits should be taken in the sense of mean-square convergence.
The new point is the need to keep terms of order 2 due to the fact that dW 2

t = dt.

3.5 Stochastic ODEs

We now return to the study of stochastic differential equations. As a warm-up,
we discuss a couple of examples.

Example 3.7 (Geometric Brownian motion) Consider the equation

dXt = rXtdt + αXtdWt.

This can be viewed as a model for population growth (or a compound interest
model), with a noisy term proportional to Xt. The case α = 0 reduces to
the equation x′ = rx, which has solution x(t) = x0e

rt. We assume the initial
condition X0 > 0.

Due to the term dXt/Xt, it is natural to first examine the Itô differential
form of d lnXt. The Itô formula gives:

d lnXt =
dXt

Xt
− 1

2X2
t

(dXt)2

= rdt + αdWt −
1
2

(
dXt

Xt

)2

= rdt + αdWt −
1
2

(rdt + αdWt)
2

= rdt + αdWt −
α2

2
dt

= d

(
r − α2

2

)
+ αdWt
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Integrating from 0 to t results in

lnXt = ln X0 +
(

r − α2

2

)
t + αWt.

By exponentiating both sides of the equation we obtain the solution

Xt = X0 exp
(
(r − α2/2)t + αWt

)
.

A process of the form Xt = X0 exp(µt+αWt) is called a geometric Brownian
motion.

Example 3.8 (Merton’s Portfolio Selection) Let X(t) denote the wealth
of an investor at time t. The investor allocates a fraction w of the wealth in a
risky asset and the remainder in a sure asset. the sure asset produces a rate
of return s. The risky asset yields a rate of return µ (greater than s) with a
variance σ2 per unit time. In other words, the risky asset earns a return dr(t)
over time interval [t, t + dt], where

dr = µdt + σdWt.

The change in investor’s wealth over the same time interval is then

X(t + dt) = X(t) + s(1− w)X(t)dt + dr(t)wX(t)
= X(t) + s(1− w)X(t)dt + (µdt + σdW (t))wX(t)
= X(t) + [s(1− w) + µw]X(t)dt + σwX(t)dW (t).

Consequently, the investor’s wealth is described by an Ito differential equa-
tion of the form

dX = f(t, X)dt + σ(t, X)dW

where f(t, x) = (s(1− w) + µw)x and σ(t, x) = σwx.
Assuming that s, w, µ, σ are all constants, we obtain that X(t) is a geometric

Brownian motion.

Example 3.9 (Forward contracts on a non-dividend-paying security)
This discussion is taken from [Kao]. A forward contract is an agreement between
two parties to buy or sell a security at a certain future time for a certain price,
called the delivery price. The party to buy the security is said to assume a long
position and the party to sell the security is said to assume a short position.
Let t denote the current time and T the maturity date of the contract. Let S(t)
denote the price of the security at time t. Assume that S(t) follows a geometric
Brownian motion with expected return µ and volatility σ, i.e.

dS = µSdt + σSdW.

Let Y (t) denote the forward price at time t. The forward price at any time is
the delivery price that would make the contract have a zero value. Let r be the

17



risk-free interest rate. We now consider the case in which the security does not
yield any dividends.

For arbitrage opportunities to be absent, the forward and security prices
must be related as follows:

Y (t) = S(t)er(T−t).

Otherwise, if Y (t) > S(t) exp(r(T − t)), an arbitrageur can borrow S dollars
for a period ofT − t at the risk-free interest rate r, buy the security, and take
a short position in the forward contract. At time T , the security is sold for
Y (t). After paying the loan of S(t) exp(r(T − r)) the arbitrageur nets a profit
of Y (t)−S(t) exp(r(T − t)). If the inequality goes the other direction, a similar
scenario can be constructed.

A simple application of Itô’s lemma now gives

dY = (µ− r)Y dt + σY dW.

Therefore, Y is also a geometric Brownian motion with an expected growth rate
of µ− r and volatility σ.

Example 3.10 (Stochastic harmonic oscillator) First recall the determin-
istic case. We assume a spring-mass system with mass m, spring constant k and
friction coefficient c.

Figure 5: Spring-mass system. We assume that the mass attached to the spring
is acted on by a random force term given by white noise.

Recall that the differential equation for this system (obtained from Newton’s
second law) has the form:

mx′′ = −kx− cx′ + f(t)

where f(t) is a forcing term. Let κ = k/m, γ = c/m, and η(t) = f(t)/m. Let
v = x′. The second order differential equation can be written as a system of
two first order equations

x′ = v

v′ = −κx− γv + η(t).

We assume that the forcing term is random, of the form η(t)dt = σdWt. This
leads to the system of stochastic differential equations written in matrix form
as: (

dXt

dVt

)
=
(

0 1
−κ −γ

)(
Xt

Vt

)
dt +

(
0
σ

)
dWt.
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More generally, consider the system

dUt = AUtdt + BdWt

where A is a constant square matrix, Ut is a vector-valued process of dimension
n written in column form, B is a constant column vector of dimension n and
Wt is Wiener process in R.

Using Itô’s formula, we can show

d
(
e−AtUt

)
= e−AtBdWt.

Some standard manipulation gives

Ut = eAtU0 +
∫ t

0

e(t−s)ABdWs.

As a simple example, let γ = 0 and κ = 1. Also assume U0 = 0. This gives

Xt = σ

∫ t

0

sin(t− s)dWs = σ

∫ t

0

cos(t− s)Wsds.

There is a general existence and uniqueness theorem for stochastic differen-
tial equations, which I’m not going to discuss in any detail at this point. (I may
come back later and add a fuller discussion of stochastic ODEs here.) For now,
I will only point out that the following conditions are enough to prove existence
and uniqueness of solutions. Let f(x) and g(x) be differentiable function on R
and suppose that the absolute values of their derivatives are bounded above by
a finite constant. Suppose that X(0) = x0 with probability 1. Then the Itô
equation

X(t) = x0 +
∫ t

0

f(X(s))ds +
∫ t

0

g(X(s))dW (s)

has a solution X(t) defined for all t and the solution is unique.

Example 3.11 (Double-well potential) We consider a stochastic mechani-
cal system with potential V (x) = (x2 − 1)2 and dissipative term −cv, where v
is velocity and c a positive constant. The graph of V (x) is shown in figure 6.
The deterministic system has the equation

mx′′ = −V ′(x)− cx′ + f(t)

where f(t) is an external force. We assume that f(t) is pure noise. We assume
the stochastic model the velocity process):

dXt = Vt

dVt = [−4Xt(X2
t − 1)− cVt]dt + σdWt.

There are two stable equilibrium points for the deterministic motion: x = 1
and x = −1. The presence of noise can impart enough energy for the particle
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Figure 6: A double-well potential.

to cross the potential barrier from time to time. How often this will happen
depends on the value of σ.

Figure 7 shows the particle motion over a period of time. A few transitions
between equilibrium points are clearly shown.
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Figure 7: Occasionally the stochastic term yields enough energy for the particle
to cross the potential barrier.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s=.7;

20



c=1;
N=100000;
T=600;
dt=T/N;
Z=zeros(2,N);
Z(:,1)=[-1;0];
for i=1:N-1;

x=Z(1,i);
v=Z(2,i);
Z(:,i+1)=Z(:,i)+[v;-4*x*(x^2-1)-c*v]*dt+[0;s*sqrt(dt)*randn];

end
t=0:dt:T-dt;
plot(t,Z(1,:))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 Diffusion processes and PDEs

There is a direct relationship between stochastic differential equations and bound-
ary value problems for parabolic partial differential equations (diffusion equa-
tions). This section provides a quick overview of this topic.

4.1 Kolmogorov’s backward equation

We consider a time homogeneous stochastic differential equation

dX = f(X)dt + σ(X)dW.

Fix a twice continuously differentiable function h(x). We think of h(x) as a test
function for observing the behavior of X(t). In particular, we wish to study the
expected value:

u(x, t) = Ex[h(X(t))].

The symbol Ex denotes expectation over all sample paths of X that satisfy
X(0) = x.

Assume that the conditions for existence and uniqueness of solutions hold.
We call the resulting process Xt an Itô diffusion. Itô diffusions satisfiy the
by now familiar Markov property: the future behavior of the process given its
history up to time a is the same as its behavior if it had started at Xa. More
precisely, the following theorem holds. (See [Oks].)

Theorem 4.1 (Markov property for Itô diffusions) Let Xt be an Itô dif-
fusion in Rn and h a bounded Borel function from Rn to R. Then for a, t ≥ 0

Ex[h(Xt+a)|(Xs)s≤a] = EXa
[h(Xt)].

We now show that u(x, t) must satisfy a parabolic partial differential equa-
tion of the form ∂u

∂t = Lu where L is a second order differential operator which
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we call the infinitesimal generator of X. But first, define this infinitesimal gen-
erator as follows:

Definition 4.1 (Generator of Itô diffusion) let X be an Itô diffusion in
Rn. The infinitesimal generator of X is the operation on functions defined
by

(Lg)(x) = lim
a→0

Ex[g(Xa)]− g(x)
a

for all functions g(x) for which this operation makes sense. (This will include
all functions with compact support that are twice continuously differentiable.)

An explicit expression for L is obtained by applying Itô’s formula (we denote
by gi, gij , etc., the partial derivatives of g(x)):

Ex[g(Xa)]− g(x)
a

= Ex

[
1
a

∫ a

0

dg(Xs)
]

=
1
a

∫ a

0

Ex

∑
i

gi(Xs)dXi +
∑
i,j

1
2
gij(Xs)dXidXj


=

1
a

∫ a

0

Ex

∑
i

fi(Xs)gi(Xs) +
∑
i,j

1
2
(σσT )ij(Xs)gij(Xs)

 ds

→
∑

i

fi(x)gi(x) +
∑
i,j

1
2
(σσT )ij(x)gij(x)

= (Lg)(x) as a → 0.

The expression σσT corresponds to the product of the matrix σ and its trans-
pose.

Therefore,

Lg = f · ∇g +
1
2

∑
i,j

(σσT )ijgij .

In particular, if X = W is n-dimensional Wiener process

Lg =
1
2

n∑
i=1

∂2g

∂x2
i

is (one-half times) the Laplacian. In dimension one, Lg = f(x)g′(x)+ 1
2σ2(x)g′′(x).

Theorem 4.2 (Kolmogorov’s backward equation) Let X be an Itô diffu-
sion satisfying the stochastic differential equation

dX = f(X)dt + σ(X)dW

and define u(x, t) = Ex[h(X(t)]. Then

∂u

∂t
= Lu(x, t)
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and
u(x, 0) = h(x).

for any twice continuously differentiable test function h(x).

Proof. Fix t ≥ 0. An application of the Markov property gives:

Ex[u(Xa, t)]− u(x, t)
a

=
1
a
Ex [EXa

[h(Xt)]− Ex[h(Xt)]]

=
1
a
Ex [Ex[h(Xt+a)|(Xs)s≤a]− Ex[h(Xt)|(Xs)s≤a]]

=
1
a
Ex [Ex[h(Xt+a)− h(Xt)|(Xs)s≤a]]

=
1
a
Ex[h(Xt+a)− h(Xt)]

=
Ex[h(Xt+a)]− Ex[h(Xt)]

a

=
u(x, t + a)− u(x, t)

a
.

This gives time derivative of u(x, t):

∂u

∂t
(x, t) = lim

a→0

Ex[u(Xa, t)]− u(x, t)
a

= Lu(x, t).

This proves Kolmogorov’s equation. �

4.2 The Dynkin formula

Essentially the same argument used above also proves:

Theorem 4.3 (Dynkin’s formula) Let g be a twice continuously differen-
tiable function on Rn with compact support. Let τ be a stopping time with
finite expectation: Ex[τ ] < ∞. Then

Ex[g(Xτ )] = g(x) + Ex

[∫ τ

0

Lg(Xs)ds

]
.

We give a couple of applications of this formula.

Example 4.1 (Expected hitting time I) Let Xt be standard Wiener pro-
cess in Rn starting at x0 and let B(0, r) denote the ball of radius r and center 0.
Suppose that |x0| = a < r. Applying Dynkin’s formula to g(x) = |x|2 =

∑
i x2

i

and τ the hitting time at the boundary of B(0, r) gives (note that Lg is the
one-half the Laplacian of g, which is the constant n):

r2 = Ex0 [|Xτ |2] = a2 + Ex0

[∫ τ

0

Lg(Xs)ds

]
= a2 + nEx0 [τ ].
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Therefore, the expected hitting time at the boundary of the ball is

Ex0 [τ ] =
r2 − a2

n
.

If Xt = Wt (starting at 0), the expected hitting time is r2/n.

Example 4.2 (Expected hitting time II) Suppose that K is a bounded open
connected region on Rn and let ∂K denote the boundary of K. Let τ be the
hitting time of Brownian motion at ∂K. Let g(x) be the solution of Lg = −1,
where L is one-half the Laplacian in Rn with boundary value g(x) = 0 for
x ∈ ∂K. Then Ex[g(Xτ )] = 0 for all x ∈ K, and 0 = Ex[g(Xτ )] = g(x)−Ex[τ ].
This shows that the solution of this boundary value problem can be interpreted
as the expected hitting time at ∂K for Brownian motion starting at x ∈ K, i.e.,

g(x) = Ex[τ ].

4.3 The Feynman-Kac formula

A similar argument to the one used to prove theorem 4.2 also gives the next
theorem.

Theorem 4.4 (Feynman-Kac formula) Assume the same notation of theo-
rem 4.2, except that we now consider the expression

v(x, t) = Ex,t

[
h(X(T )) exp

(∫ T

t

V (X(s), s)ds

)]
.

Here V (x, t) is a continuous function. (It may be thought of as a physical po-
tential.) Then v(x, t) satisfies the partial differential equation

∂v

∂t
+ Lv + V v = 0

and the condition
v(x, t) → h(x) as t → T.

Exercise 4.1 (Backward Feynman-Kac) Assume the same notation as of
theorem 4.4, except that we now define

v(x, t) = Ex,0

[
h(X(t)) exp

(∫ t

0

V (X(s))ds

)]
.

Show that v(x, t) satisfies the equation

∂v

∂t
= Lv + V v

and v(x, t) = h(x) for t > 0, x ∈ R. (See section on Fokker-Plank equation.)
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Exercise 4.2 Show that the function

u(x, t) = Ex,t

[∫ T

t

g(s,X(s))ds

]

satisfies
∂u

∂t
+ Lu + g = 0, u(x, T ) = 0

for t < T and x ∈ R.

4.4 The Fokker-Planck equation

Let X(t) be the solution of the stochastic differential equation dX = fdt+σdW ,
where f and σ satisfy the conditions for existence and uniqueness of solutions.
Define

F (t, x, s, y) = P (X(s) ≤ y|X(t) = x).

It can be shown that F (t, x, s, y) is obtained from a transition probability density
function p(t, x, s, y), i.e.,

F (t, x, s, y) =
∫ y

−∞
p(t, x, s, u)du.

The Markov property implies the property

p(t, x, s, y) =
∫ ∞

−∞
p(t, x, t′, u)p(t′, u, s, y)dt′.

This is interpreted as saying that the probability that X goes from x to y in the
time interval [t, s] is the probability that X goes to any point u at any time t′

and then, independently of the way it reached u, it goes to y in the time interval
[t′, s]

Theorem 4.5 (Fokker-Plank equation) Let X(t) be the solution to dX =
fdt+σdW and let p(t, x, s, y) be the transition probabilities density for X. Then
p = p(t, x, s, y) satisfies the partial differential equation

∂p

∂s
+

∂

∂y
[f(s, y)p]− 1

2
∂2

∂y2
[σ2(s, y)p] = 0

and p(t, x, s, y) → δ(x− y) as s → t.

In the above, δ(x− y) is the distribution (generalized function) defined by∫ ∞

−∞
h(x)δ(x− y)dx = h(y)

for any continuous function h.
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An analogous formula can be derived by taking derivatives of p in t and x.
The following is known as the backward Kolmogorov equation:

∂p

∂t
+ f(t, x)

∂p

∂y
+

1
2
σ2(t, x)

∂2p

∂y2
= 0.

If f and σ are independent of t, we say that the equation dx = fdt + σdW is
time homogeneous. This implies that

p(t, x, s, y) = p(0, x, s− t, y).

In particular,
∂p

∂t
= −∂p

∂s
.

Therefore, the backward Kolmogorov equation can be written in this case as

∂p

∂t
= Lp

and the Fokker-Plank equation has the form

∂p

∂t
= L∗p

where L∗ is the adjoint operator of L.
We can use the backward Kolmogorov equation to derive a partial differential

equation for

u(x, t) = Ex,0[h(X(t)] =
∫ ∞

−∞
h(y)p(x, t, y)dy

where p(x, t, y) = p(0, x, t, y) and X(t) is solution to the time-homogenous
stochastic differential equation.

4.5 The multi-dimensional case

The formulas derived in the previous sections have counterparts for processes
in Rn. The main change lies in the definition of the derivative operator L. If
X(t) is solution to the stochastic differential equation

dX = fdt + σdW

where f(t, x) ∈ Rn is a vector-valued function of t ≥ 0 and x ∈ Rn W is the
Wiener process in Rp, and σ(t, x) is a n-by-p matrix, then

Lu = f(t, x) · ∇xu +
1
2

∑
i,j

(σσt)ij(t, x)
∂2u

∂xi∂xj
.

The symbol σσt represents the matrix product of σ and its transpose. It is an
n-by-n matrix.
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The operator L plays a similar role in this theory as the Q-matrix does for
the theory of Markov chains. We call it the infinitesimal generator of X(t).
Note that if X(t) = W (t), L reduces to (one-half times) the Laplace operator.
In this sense, we say that the Laplace operator is the infinitesimal generator of
Brownian motion. In general, the matrix 1

2σσt is called the diffusion matrix. If
this matrix is of the form DI where I is the identity matrix and D is a constant,
then D is called the diffusion constant of the process.

4.6 Boundary value problems

Let X(t) be the solution of the vector-valued stochastic differential equation
dX = fdt + σdW in a bounded domain (an open and connected set contained
in some big enough ball) R ⊂ Rn and define the exit time from R, starting at
x at time s, as

τx,s = inf{t ≥ s : X(t) ∈ ∂R and X(s) = x}.

We wish to find the expected value of the exit time: Ex,0[τx,s].
Let u(x, t) be the solution of the problem:

∂u

∂t
+ Lu = −1, t ≥ s, x ∈ R

and u(x, t) = 0 if x ∈ ∂R. (The operator L is defined in the previous section.)
By Itô’s formula

u(X(t), t) = u(x, s) +
∫ t

s

(
∂u

∂t
+ Lu

)
dt′ +

∫ t

s

∇u · (σdWt′)

for all s ≤ t ≤ τx,s. Setting t = τx,s and taking expectations,

0 = E[u(X(τx,s), τx,s)] = u(x, s) + E

[∫ τx,s

s

(−1)dt′
]

= u(x, s)− E[τx,s] + s.

We have used the fact that u(X(τx,s), τx,s) = 0 since X(τx,s) is a point on the
boundary of R. Therefore,

E[τx,s] = s + u(x, s).

If the stochastic equation is time-homogenous (f and σ do not depend ex-
plicitly on t), u(x, s) = u(x) is independent of s. In this case we write τx, with
the understanding the the initial time is 0. Then we have

E[τx] = u(x).

This proves the following theorem.

Theorem 4.6 (Dynkin’s formula) Let u(x) be the solution to the boundary
value problem Lu = −1 on a bounded domain R, with boundary values 0, where
L is the infinitesimal generator of a time homogeneous stochastic differential
equation dX = fdt + σdW . Then u(x) = Ex,0[τx] is the expected value of the
first exit time from R, starting at x ∈ R.
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5 Distribution of exit points

Let g(x) be any smooth function on ∂R and let u(x, t) be the solution of the
problem

∂u

∂t
+ Lu = 0

for t ≥ s and x ∈ R, with boundary value u(x, t) = g(x) for x ∈ ∂R. Using
Itô’s formula, we obtain Kolmogorov’s formula

E[u(X(τx,s), τx,s)] = u(x, s).

Therefore,
u(x, s) = E[g(X(τx,s))].

If the stochastic equation is time-homogeneous, we obtain the following the-
orem.

Theorem 5.1 (Solution to the Dirichlet problem) Let L be the infinites-
imal generator of a time homogeneous stochastic differential equation. Let u(x)
be the solution to the Dirichlet boundary value problem Lu(x) = 0 for x in a
boundary domain R and u(x) = g(x) for x ∈ ∂R. Then u(x) = E[g(X(τx))]
is the expected value of g(X(τx)), where X(t) is the solution to the stochastic
differential equation with initial value (at time 0) x.

6 Some ideas from mathematical finance

References

[CKO] S. Cyganowski, P. Kloeden, and J. Ombach. From Elementary Probabil-
ity to Stochastic Differential Equations with MAPLE, Springer, 2002.

[Kao] E.P.C. Kao. An Introduction to Stochastic Processes,

[Oks] B. Øksendal. Stochastic Differential Equations - An Introduction with
Applications, Springer, 1998.

[Sch] Z. Schuss. Theory and Applications of Stochastic Differential Equations,
John Wiley & Sons, 1980.

28


