Math 450 - Homework 2 - Solutions (Exercises from Lecture Notes 2)

1. Exercise 4.1 To count the number of ways to get a 9 , I'll count how many triples $\left(n_{1}, n_{2}, n_{3}\right)$ of numbers from 1 to 6 such that $n_{1} \leq n_{2} \leq n_{3}$ and $n_{1}+n_{2}+n_{3}=9$, and then the number of permutations leading to different triples. Here they are:
$\left.\begin{array}{llll}(1 & 2 & 6\end{array}\right) \quad$ \# of permutations: 6

This gives a total of 25 triples. So the probability of obtaining a 9 is $25 / 216=0.1157$. Doing the same thing for a 10 gives:
$\left.\begin{array}{llll}\left(\begin{array}{lll}1 & 3 & 6\end{array}\right) & \text { \# of permutations: } 6 \\ (1 & 4 & 5\end{array}\right)$ \# of permutations: 6

This gives a total of 27 triples. So the probability of obtaining a 10 is $27 / 216=0.1250$. This shows that it is more likely to obtain a 10 than a 9.

I use below the samplefromp (p, n) program of lecture notes 1 .

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rand('seed',121)
p=[ll/6 1/6 1/6 1/6 1/6 1/6
x1=samplefromp(p,50000);
x2=samplefromp(p,50000);
x3=samplefromp(p,50000);
s=x1+x2+x3;
fraction_of_09=sum(s== 9)/50000
```

```
fraction_of_10=sum(s==10)/50000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

This gives the proportions: 0.1149 of 9 s and 0.1246 of 10 s .
2. Exercise 4.2 The experiment consists of tossing 3 coins. The sample space is $S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$. We designate the various events by the sets below.

Exactly two heads: $A=\{H H T, H T H, T H H\}$
The first outcome is a head: $E_{1}=\{H H H, H H T, H T H, H T T\}$
The first outcome is a tail: $\quad E_{2}=\{T H H, T H T, T T H, T T T\}$
The first two outcomes are heads: $E_{3}=\{H H H, H H T\}$
The first two outcomes are tails: $\quad E_{4}=\{T T H, T T T\}$
The first and third outcomes are heads: $E_{5}=\{H H H, H T H\}$
Now recall the definition:

$$
P\left(A \mid E_{i}\right)=\frac{P\left(A \cap E_{i}\right)}{P\left(E_{i}\right)}
$$

It is now straightforward to obtain:

$$
\begin{aligned}
& P\left(A \mid E_{1}\right)=\frac{P(H H T, H T H)}{P(H H H, H H T, H T H, H T T)}=1 / 2 . \\
& P\left(A \mid E_{2}\right)=\frac{P(T H H)}{P(T H H, T H T, T T H, T T T)}=1 / 4 . \\
& P\left(A \mid E_{3}\right)=\frac{P(H H T)}{P(H H H, H H T)}=1 / 2 . \\
& P\left(A \mid E_{4}\right)=\frac{P(\not)}{P(T T H, T T T)}=0 . \\
& P\left(A \mid E_{5}\right)=\frac{P(H T H)}{P(H H H, H T H)}=1 / 2 .
\end{aligned}
$$

3. Exercise 4.5 We consider quadratic equations $a x^{2}+b x+c=0$ with random coefficients a, b, c so that a and c are uniform random variables over $[0,1]$ and b is a uniform random variables over $[0,2]$. So the sample space is $S=[0,1] \times[0,2] \times[0,1]$. The set of points corresponding to equations with real roots are:

$$
E=\{(a, b, c): b \geq 2 \sqrt{a c}\}
$$

Thus we need to find $P(E)$. I claim that the probability is $5 / 9$ of having only real roots. We can see this as follows.

$$
\begin{aligned}
P(E) & =\frac{1}{2} \iiint_{E} d a d b d c \\
& =\frac{1}{2} \int_{0}^{1} \int_{0}^{1}(2-2 \sqrt{a c}) d a d c \\
& =1-\int_{0}^{1} a^{\frac{1}{2}} d a \int_{0}^{1} c^{\frac{1}{2}} d c \\
& =1-(2 / 3)^{2} \\
& =5 / 9
\end{aligned}
$$

We can simulate choosing at random 50000 quadratic equations and testing whether $b \geq 4 \sqrt{a c}$ as follows.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rand('seed',121);
x=rand(50000,3); %a, b, c correspond to columns 1, 2, 3 of x
x(:,2)=2*x(:,2); %multiply second column by 2
y=sum(x(:,2)>=2*sqrt(x(:,1).*x(:,3)))/50000
%y gives proportion of the }50000\mathrm{ with non-negative discriminant
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

This gave me the value 0.5559 , which should be compared with the exact value $5 / 9=0.5556$.
4. Exercise 4.11 A certain disease is present in about one out of 10000 persons. We denote by D the event that a person has the disease, no other information being given. So $P(D)=1 / 10000$. The clinical test gives a positive reading 98% of the time given that a person has the disease. If R represents the event that the test has a positive reading, then $P(R \mid D)=0.98$. Similarly, it is given that $P(R \mid \bar{D})=0.01$, where \bar{D} represents the event that a person is healthy. We wish to find $P(D \mid R)$, the probability that a person has the disease given a positive test reading. By Bayes theorem,

$$
\begin{aligned}
P(D \mid R) & =\frac{P(R \mid D) P(D)}{P(R \mid D) P(D)+P(R \mid \bar{D}) P(\bar{D})} \\
& =\frac{0.98 \times 0.0001}{0.98 \times 0.0001+0.01 \times 0.9999} \\
& =0.0097
\end{aligned}
$$

This means that a positive reading implies a less than 1% chance that the person actually has the disease. Note that, although the test is fairly reliable with a 98% accuracy in detecting the disease and a 1% chance
of a false positive reading, the probability of actually having the disease having tested positive for it is still small due to the fact that the disease is fairly rare.
5. Exercise 4.14 The PDF of an exponentially distributed random variable with parameter λ is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

The convolution integral is

$$
(f * f)(x)=\int_{-\infty}^{\infty} f(x-s) f(s) d s
$$

Note that $f(s)$ is 0 for $s \leq 0$ and $f(x-s)$ is 0 for $s \geq x$. Thus we only need to integrate from 0 to x. So we have:

$$
\begin{aligned}
(f * f)(x) & =\int_{0}^{x}\left(\lambda e^{-\lambda(x-s)}\right)\left(\lambda e^{-\lambda s}\right) d s \\
& =\lambda^{2} e^{-\lambda x} \int_{0}^{x} d s \\
& =\lambda^{2} x e^{-\lambda x}
\end{aligned}
$$

Therefore,

$$
(f * f)(x)=\lambda^{2} x e^{-\lambda x}
$$

