Math 450 - Homework 3 Solutions

1. Exercise 6.2, LN03. Let X be a random variable with mean m and standard deviation σ. Chebyshev's inequality reads:

$$
P(|X-m| \geq K \sigma) \leq \frac{1}{K^{2}}
$$

Therefore, the probability that X lies on the interval $(m-5 \sigma, m+5 \sigma)$ is

$$
P(|X-m|<5 \sigma)=1-P(|X-m| \geq 5 \sigma) \geq 1-\frac{1}{5^{2}}=\frac{24}{25}=0.96
$$

2. Exercise 6.4, LN03. For a random variable $X \sim \operatorname{Geom}(p)$ with have, by definition:

$$
P(X=k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots
$$

The cumulative distribution function is

$$
\begin{aligned}
F_{X}(k)=P(X \leq k) & =p+(1-p) p+(1-p)^{2} p+\cdots+(1-p)^{k-1} p \\
& =p \sum_{i=0}^{k-1}(1-p)^{i} \\
& =p \frac{1-(1-p)^{k}}{1-(1-p)} \\
& =1-(1-p)^{k}
\end{aligned}
$$

3. Exercise 6.7, LN03. We want to find the expected value and variance of an exponential random variable X with parameter λ. First the expected value. Note that $\lim _{x \rightarrow \infty} x e^{-\lambda x}=0$.

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x \lambda e^{-\lambda x} d x \\
& =\left[-x e^{-\lambda x}+\int e^{-\lambda x}\right]_{0}^{\infty} \\
& =\int_{0}^{\infty} e^{-\lambda x} d x \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Now, the variance. First note that

$$
\int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right) e^{-\lambda x} d x=0
$$

since the mean of X is $1 / \lambda$. Using again an integration by parts, we obtain

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(x-1 / \lambda)^{2}\right] \\
& =\int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right)^{2} \lambda e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{2}}+2 \int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right) e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{2}}
\end{aligned}
$$

4. Exercise 6.10, LN03. Let f be the function $f(x)=c x^{2}$ over the interval $[-1,1]$, where c is a normalization constant. We discretize it and write in Matlab:
\% $\mathrm{x}=[-1: 0.01: 1] ; \mathrm{f}=\mathrm{x} .{ }^{\wedge} 2$; f=f/(sum(f)*0.01); \%

We now use the discrete convolution program:

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function g=convolution(f,a,b,n)
%Input - f vector discretization of a function
% - a and b are the left and right endpoints
% of an interval outside of which f is zero
% - n degree of convolution
%Output - h vector approximating the n degree
% convolution of f with itself
% over interval [na, nb]
N=length(f)-1;
e=(b-a)/N;
s=[a:e:b];
g=f;
for k=2:n
    x=[k*a:e:k*b];
    h=zeros(size(x));
    for j=1:k*N+1
        for i=max([j-N,1]):min([j,(k-1)*N+1])
            h(j)=h(j)+f(j-i+1)*g(i)*e;
        end
```

```
    end
    g=h;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

To find the convolution power $f^{* n}=f * \cdots * f$ of degree n, we invoke the function convolution defined above. This is done with the command
\%
$\mathrm{g}=$ convolution ($\mathrm{f},-1,1, \mathrm{n}$) ;
\%

When plotting g, keep in mind that it may be non-zero over the bigger interval $[n a, n b]$. So write now $\mathrm{x}=[-\mathrm{n}: 0.01: \mathrm{n}]$; $\operatorname{plot}(\mathrm{x}, \mathrm{g})$.

Figure 1: Graphs of f and the convolution powers of degree $n=2,5$ and 20 .
5. Exercise 6.11, LN03. We wish to simulate a random variable X with values in $[0,1]$ and PDF $f(x)=3 x^{2}$ using the transformation method. The cumulative distribution function is

$$
F(x)=\int_{0}^{x} 3 s^{2} d s=x^{3}
$$

Its inverse $F^{-1}:[0,1] \rightarrow[0,1]$ is given by $F^{-1}(u)=u^{1 / 3}$. Let now U be a random variable with the uniform distribution over $[0,1]$. By the transformation method, $X=U^{1 / 3}$ will have the desired PDF, $f(x)=3 x^{2}$. The following program simulates n independent realizations of X.
\% function $y=h w 3 _1(n)$
$\%$ Simulates n independent realizations of $\%$ random variable with PDF $f(x)=3 x^{\wedge} 2$.
$\%$ The output is a row vector of length n.
$\mathrm{u}=\mathrm{rand}(1, \mathrm{n})$;
$\mathrm{y}=\mathrm{u} .{ }^{\wedge}(1 / 3)$;
\%

Figure 2: Stem plot with 20 bins for 1000 realizations of a random variable with PDF $f(x)=3 x^{2}$. Superposed to it is the graph of $f(x)$, suitably normalized so as to give the right occupation proportion in each bin.

The above graph was obtained using the following commands.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y=hw3_1(1000);
[n, xout]=hist (y,20);
stem(xout,n/1000)
hold on
dx=xout(2)-xout(1);
f=3*xout. `2;
```

```
plot(xout,f*dx)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

6. Exercise 6.12, LN03. We wish now to simulate a random variable X over $[-1,1]$ with PDF

$$
f(x)=\frac{3}{4}\left(1-x^{2}\right)
$$

using the uniform rejection method.

Figure 3: Stem plot with 20 bins for 1000 realizations of a random variable with PDF $f(x)=(3 / 4)\left(1-x^{2}\right)$. Superposed to it is the graph of $f(x)$, suitably normalized so as to give the right occupation proportion in each bin.

The following program simulates n independent realizations of X.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x=hw3_2(n)
%Simulates n independent realizations of
%a random variable with PDF (3/4)*(1-x^2)
%over the interval [-1,1] using the uniform
%rejection method.
x=[];
for i=1:n
    U=0;
    Y=1;
    while Y>=(3/4)*(1-U^2)
        U=2*rand-1;
```

```
                Y=(3/4)*rand;
    end
    x=[\begin{array}{ll}{\textrm{x}}\end{array}];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

The above graph was obtained using the following commands.
\%
y=hw3_2(1000);
[n, xout] $=$ hist ($\mathrm{y}, 20$);
stem(xout, $n / 1000$)
grid
hold on
dx=xout (2)-xout (1);
$\mathrm{f}=(3 / 4) *\left(1-\mathrm{xout} .{ }^{\wedge} 2\right)$;
plot(xout,f*dx)
\%

