Math 450 - Homework 4 Solutions

1. The cat and mouse problem.
(a) Directed graph representing a Markov chain for the mouse's random walk.

Figure 1: Directed diagram for the mouse random walk. States 7 and 9 are absorbing.
(b) Transition probability matrix P.

$$
P=\left(\begin{array}{ccccccccc}
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 \\
0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(c) Let $u_{7}(n)$ (respectively, $\left.u_{9}(n)\right)$ represent the probability that the mouse will be visiting room 7 (respectively, 9) at the nth room change. On a same coordinate system, plot the graphs of $u_{7}(n)$ and $u_{9}(n)$ for n from 1 to 50 . (Note: these numbers can be obtained from the powers P^{n}.) Also find approximate values for

$$
\lim _{n \rightarrow \infty} u_{7}(n) \quad \text { and } \quad \lim _{n \rightarrow \infty} u_{7}(n)
$$

Figure 2: Probabilities $u_{7}(n)$ and $u_{9}(n)$ for n from 1 to 50 . From the graph it seems that $\lim _{n \rightarrow \infty} u_{7}(n)=0.4$ and $\lim _{n \rightarrow \infty} u_{9}(n)=0.6$.

The above graph was obtained with the following script:
\%
$\mathrm{P}=$ zeros $(9,9)$;
$P(1,[24])=1 / 2$;
$P\left(2,\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right)=1 / 3$;
$P(3,[26])=1 / 2$;
$P\left(4,\left[\begin{array}{ll}1 & 5\end{array}\right]\right)=1 / 3$;
$P\left(5,\left[\begin{array}{lll}2 & 4 & 6\end{array}\right]\right)=1 / 4$;
$P(6,[350])=1 / 3$;
$P(7,7)=1$;
$P(8,[579])=1 / 3$;
$P(9,9)=1$;

```
pi=zeros(1,9);
pi(3)=1;
u7=[] ;
u9=[];
for i=1:50
    p=pi*P^i;
    u7=[u7 p(7)];
    u9=[u9 p(9)];
end
n=1:50;
plot(n,u7,'--o')
hold on
plot(n,u9,'--x')
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

(d) With probability 1 , the mouse eventually visits one of the absorbing states, 7 and 9. All the other rooms correspond to transient states. This is clear from the graph since the sum of the two probabilities (for 7 and 9) is 1 . It is also apparent of visiting room 9 before 7 is 0.6.
(e) To simulate the Markov chain with stop at hitting a set A, we use the following program.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function X=stop_at_set(p,P,A,n)
%Inputs - p probability distribution of initial state
% - P transition probability matrix
% - A set of states where chain is stopped
% - n maximal time. (If A is empty, stop at time n.)
%Output - X sample chain till hitting time min{T_A,n}.
%
%Note: need function samplefromp.m
q=p;
i=samplefromp(q,1);
X=[i];
m=0;
while length(find(A==i))==0 & m<n-1
q=P(i,:);
i=samplefromp(q,1);
X=[\ i];
m=m+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

For the problem, $A=\{7,9\}$. We run the above program 1000 times
and count the number of times we arrive at 9 . (Take $A=\left[\begin{array}{ll}7 & 9\end{array}\right]$ and a large arbitrary n such as 10000 , to insure that we will have hit A before the deadline n.) This is done with the following program.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rand('seed',121)
a=0;
for i=1:1000
    X=stop_at_set(pi,P,[7 9],10000);
    s=length(X);
    a=a+(X(s)==9);
end
a=a/1000;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

This gave proportion 0.5780 of reaching 9 before 7. Running the same experiment (with same seed) 10000 times gives the value 0.5998 .
2. Exercise 1.2 .1 on page 11 of Norris' book.

Figure 3: Diagram for Exercise 1.2.1. The communication classes are $\{1,5\}$, $\{2,4\}$, and $\{3\}$. The first and last (boxed in the figure) are closed classes.

