
Math 450 - Homework 8

Solutions

1. Given the generator matrix

Q =

 −2 1 1
4 −4 0
2 1 −3


we look for p11(t) of P (t) = etQ. The eigenvalues of Q are the roots of

det(λI −Q) = (λ + 4)((λ + 2)(λ + 3)− 6) = 0.

They are λ = 0,−4,−5. Therefore, it is possible to find an invertible
matrix U (we do not need to have it explicitly) such that U−1QU is
diagonal, with diagonal entries 0,−4,−5. This gives:

etQ = U

 1 0 0
0 e−4t 0
0 0 e−5t

U−1.

Then p11(t) must be a linear combination of the functions 1, e−4t and
e−5t, so there must be constants a, b, c such that

p11(t) = a + be−4t + ce−5t.

We know that p11(0) = 1, p′11(0) = q11 = −2, and p′′11(0) = q
(2)
11 = 10.

(The last equation is justified by part (iv) of theorem 2.1.1) So we have
three equations for a, b, c:

a + b + c = 1
−4b− 5c = −2
16b + 25c = 10.

The solution to this system is easily obtained: a = 3/5, b = 0, c = 2/5.
Therefore,

p11(t) =
3
5

+
2
5
e−5t.
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2. Consider the diagram of figure 1. The infinitesimal generator Q for this
diagram is given by

Q =


−5 5 0 0 0

2 −7 5 0 0
0 4 −9 5 0
0 0 4 −9 5
0 0 0 4 −4

 .

The Π-matrix is

Π =


0 1 0 0 0
2
7 0 5

7 0 0
0 4

9 0 5
9 0

0 0 4
9 0 5

9
0 0 0 1 0

 .
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Figure 1: Diagram for exercise 2.

We can draw the graphs of p24(t), p55(t), p34(t), and p45(t) for 0 ≤ t ≤ 2,
using the following commands:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q=zeros(5,5);
Q(1,1)=-5; Q(1,2)=5;
Q(2,1)=2; Q(2,2)=-7; Q(2,3)=5;
Q(3,2)=4; Q(3,3)=-9; Q(3,4)=5;
Q(4,3)=4; Q(4,4)=-9; Q(4,5)=5;
Q(5,4)=4; Q(5,5)=-4;
t=0:0.05:2;
a=length(t);
p24=[];
p55=[];
p34=[];
p45=[];
for i=1:a

u=expm(t(i)*Q);
p24=[p24 u(2,4)];
p55=[p55 u(5,5)];
p34=[p34 u(3,4)];
p45=[p45 u(4,5)];
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end
subplot(2,2,1)
plot(t,p24)
grid
title(’p_{55}(t)’)

subplot(2,2,2)
plot(t,p55)
grid
title(’p_{55}(t)’)

subplot(2,2,3)
plot(t,p34)
grid
title(’p_{34}(t)’)

subplot(2,2,4)
plot(t,p45)
grid
title(’p_{45}(t)’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure 2: The transition functions p24(t), p55(t), p34(t), and p45(t) for the in-
finitesimal generator Q.
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3. I will order the states as 0,H1, T1,H2, T2, . . . . The diagram is shown in
figure 3.
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Figure 3: Diagram for problem 4.

(a) From the diagram we obtain the Q-matrix of the process:

Q =



−λ (1− β)λ βλ 0 0 0 . . .
0 −λ (1− β)λ βλ 0 0 . . .
0 0 0 0 0 0 . . .
0 0 −λ (1− β)λ βλ 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


and from the Q-matrix we obtain the Π-matrix:

Π =



0 1− β β 0 0 0 . . .
0 0 1− β β 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 1− β β 0 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


.

The Π-matrix shows that the jump process amounts to moving one
step forward with probability 1 − β or stopping, with probability
β. The holding times are given by qi = λ for all the odd-numbered
states (Hk), and ∞ for the even (absorbing) states (Tk). In terms
of the hold-and-jump interpretation, this means that at each stage
of the process, with probability β we remain forever at the current
position (indexed by the set {0, 1, 2, . . . }) or, after an exponential
(with parameter λ) holding time we jump one step ahead.

(b) Let N the be number of heads before obtaining a tail. This is a
geometric random variable of parameter β, that is.

P (N = n) = β(1− β)n−1, n = 1, 2, . . . .

Let T1, T2, . . . denote the holding times. We want to show that the
total time T = T1 + T2 + · · · + TN has exponential distribution of
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parameter βλ. Using the notation Yt of example 2.1.4 on page 66 we
have:

P0(T > t) = P0

(
N∑

i=1

Ti > t

)

=
∞∑

n=1

P0

(
n∑

i=1

Ti > t

)
P (N = n)

=
∞∑

n=1

P0 (Yt ≤ n− 1) β(1− β)n−1

=
∞∑

n=1

n−1∑
j=0

P0 (Yt = j)

β(1− β)n−1

=
∞∑

n=1

n−1∑
j=0

p0j(t)

β(1− β)n−1

=
∞∑

n=1

n−1∑
j=0

(λt)je−λt

j!
β(1− β)n−1

= βe−λt
∞∑

j=0

∞∑
n=j+1

(λt)j

j!
(1− β)n−1

= βe−λt
∞∑

j=0

((1− β)λt)j

j!

∞∑
n=j+1

(1− β)n−j−1

= βe−λte(1−β)λt 1
β

= e−βλt.

Therefore, T is exponential with parameter λβ.

(c) We know from our discussion in the lecture notes set 3 that the
expected value of an exponential random variable with parameter λ
is 1/λ. From the result of the previous item we conclude that the
expected value of T is 1/λβ.

(d) The following program took almost 1 minute to run. The steps go
from 0 to 16, so there are a total of 33 states.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
rand(’seed’,213)
pi=zeros(1,33);
b=0.1:1/10:1;
pi(1)=1;
mean_time=[];
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for k=1:10
c=b(k);
Q=zeros(33,33);
Q(1,1:3)=[-1 1-c c];
for k=1:15

Q(2*k,2*k:2*k+3)=[-1 0 1-c c];
end
s=0;
for j=1:1000

[t,y]=ctmc(10^6,pi,Q);
last=length(t);
s=s+t(last);

end
mean_time=[mean_time s/1000];

end
toc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure 4: Note that for the infinite state case, the mean stopping time as a
function of β would be 1/β (assuming λ = 1). In the finite chain we see a
similar qualitative behavior, except that the time does not go to infinity for
small β. If β = 0, the mean time to hitting absorbing state H16 is exactly 16.
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