Math 450 - Homework 8 Solutions

1. Given the generator matrix

$$
Q=\left(\begin{array}{rrr}
-2 & 1 & 1 \\
4 & -4 & 0 \\
2 & 1 & -3
\end{array}\right)
$$

we look for $p_{11}(t)$ of $P(t)=e^{t Q}$. The eigenvalues of Q are the roots of

$$
\operatorname{det}(\lambda I-Q)=(\lambda+4)((\lambda+2)(\lambda+3)-6)=0
$$

They are $\lambda=0,-4,-5$. Therefore, it is possible to find an invertible matrix U (we do not need to have it explicitly) such that $U^{-1} Q U$ is diagonal, with diagonal entries $0,-4,-5$. This gives:

$$
e^{t Q}=U\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-4 t} & 0 \\
0 & 0 & e^{-5 t}
\end{array}\right) U^{-1}
$$

Then $p_{11}(t)$ must be a linear combination of the functions $1, e^{-4 t}$ and $e^{-5 t}$, so there must be constants a, b, c such that

$$
p_{11}(t)=a+b e^{-4 t}+c e^{-5 t}
$$

We know that $p_{11}(0)=1, p_{11}^{\prime}(0)=q_{11}=-2$, and $p_{11}^{\prime \prime}(0)=q_{11}^{(2)}=10$. (The last equation is justified by part (iv) of theorem 2.1.1) So we have three equations for a, b, c :

$$
\begin{aligned}
a+b+c & =1 \\
-4 b-5 c & =-2 \\
16 b+25 c & =10 .
\end{aligned}
$$

The solution to this system is easily obtained: $a=3 / 5, b=0, c=2 / 5$. Therefore,

$$
p_{11}(t)=\frac{3}{5}+\frac{2}{5} e^{-5 t}
$$

2. Consider the diagram of figure 1. The infinitesimal generator Q for this diagram is given by

$$
Q=\left(\begin{array}{rrrrr}
-5 & 5 & 0 & 0 & 0 \\
2 & -7 & 5 & 0 & 0 \\
0 & 4 & -9 & 5 & 0 \\
0 & 0 & 4 & -9 & 5 \\
0 & 0 & 0 & 4 & -4
\end{array}\right)
$$

The П-matrix is

$$
\Pi=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{2}{7} & 0 & \frac{5}{7} & 0 & 0 \\
0 & \frac{4}{9} & 0 & \frac{5}{9} & 0 \\
0 & 0 & \frac{4}{9} & 0 & \frac{5}{9} \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Figure 1: Diagram for exercise 2.

We can draw the graphs of $p_{24}(t), p_{55}(t), p_{34}(t)$, and $p_{45}(t)$ for $0 \leq t \leq 2$, using the following commands:

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q=zeros(5,5);
Q (1,1)=-5; Q (1,2)=5;
Q (2,1)=2; Q (2,2)=-7; Q (2,3)=5;
Q (3,2)=4; Q (3,3)=-9; Q(3,4)=5;
Q (4,3)=4; Q (4,4)=-9; Q(4,5)=5;
Q (5,4)=4; Q (5,5)=-4;
t=0:0.05:2;
a=length(t);
p24=[];
p55=[];
p34=[];
p45=[];
for i=1:a
    u=expm(t(i)*Q);
    p24=[p24 u(2,4)];
    p55=[p55 u(5,5)];
    p34=[p34 u(3,4)];
    p45=[p45 u(4,5)];
```

```
end
subplot(2,2,1)
plot(t,p24)
grid
title('p_{55}(t)')
subplot(2,2,2)
plot(t,p55)
grid
title('p_{55}(t)')
subplot(2,2,3)
plot(t,p34)
grid
title('p_{34}(t)')
subplot(2,2,4)
plot(t,p45)
grid
title('p_{45}(t)')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```


Figure 2: The transition functions $p_{24}(t), p_{55}(t), p_{34}(t)$, and $p_{45}(t)$ for the infinitesimal generator Q.
3. I will order the states as $0, H 1, T 1, H 2, T 2, \ldots$ The diagram is shown in figure 3.

Figure 3: Diagram for problem 4.
(a) From the diagram we obtain the Q-matrix of the process:

$$
Q=\left(\begin{array}{ccccccc}
-\lambda & (1-\beta) \lambda & \beta \lambda & 0 & 0 & 0 & \ldots \\
0 & -\lambda & (1-\beta) \lambda & \beta \lambda & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & -\lambda & (1-\beta) \lambda & \beta \lambda & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and from the Q-matrix we obtain the Π-matrix:

$$
\Pi=\left(\begin{array}{ccccccc}
0 & 1-\beta & \beta & 0 & 0 & 0 & \ldots \\
0 & 0 & 1-\beta & \beta & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1-\beta & \beta & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The Π-matrix shows that the jump process amounts to moving one step forward with probability $1-\beta$ or stopping, with probability β. The holding times are given by $q_{i}=\lambda$ for all the odd-numbered states $(H k)$, and ∞ for the even (absorbing) states ($T k$). In terms of the hold-and-jump interpretation, this means that at each stage of the process, with probability β we remain forever at the current position (indexed by the set $\{0,1,2, \ldots\}$) or, after an exponential (with parameter λ) holding time we jump one step ahead.
(b) Let N the be number of heads before obtaining a tail. This is a geometric random variable of parameter β, that is.

$$
P(N=n)=\beta(1-\beta)^{n-1}, \quad n=1,2, \ldots
$$

Let T_{1}, T_{2}, \ldots denote the holding times. We want to show that the total time $T=T_{1}+T_{2}+\cdots+T_{N}$ has exponential distribution of
parameter $\beta \lambda$. Using the notation Y_{t} of example 2.1.4 on page 66 we have:

$$
\begin{aligned}
P_{0}(T>t) & =P_{0}\left(\sum_{i=1}^{N} T_{i}>t\right) \\
& =\sum_{n=1}^{\infty} P_{0}\left(\sum_{i=1}^{n} T_{i}>t\right) P(N=n) \\
& =\sum_{n=1}^{\infty} P_{0}\left(Y_{t} \leq n-1\right) \beta(1-\beta)^{n-1} \\
& =\sum_{n=1}^{\infty}\left(\sum_{j=0}^{n-1} P_{0}\left(Y_{t}=j\right)\right) \beta(1-\beta)^{n-1} \\
& =\sum_{n=1}^{\infty}\left(\sum_{j=0}^{n-1} p_{0 j}(t)\right) \beta(1-\beta)^{n-1} \\
& =\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \frac{(\lambda t)^{j} e^{-\lambda t}}{j!} \beta(1-\beta)^{n-1} \\
& =\beta e^{-\lambda t} \sum_{j=0}^{\infty} \sum_{n=j+1}^{\infty} \frac{(\lambda t)^{j}}{j!}(1-\beta)^{n-1} \\
& =\beta e^{-\lambda t} \sum_{j=0}^{\infty} \frac{((1-\beta) \lambda t)^{j}}{j!} \sum_{n=j+1}^{\infty}(1-\beta)^{n-j-1} \\
& =\beta e^{-\lambda t} e^{(1-\beta) \lambda t} \frac{1}{\beta} \\
& =e^{-\beta \lambda t} .
\end{aligned}
$$

Therefore, T is exponential with parameter $\lambda \beta$.
(c) We know from our discussion in the lecture notes set 3 that the expected value of an exponential random variable with parameter λ is $1 / \lambda$. From the result of the previous item we conclude that the expected value of T is $1 / \lambda \beta$.
(d) The following program took almost 1 minute to run. The steps go from 0 to 16 , so there are a total of 33 states.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
rand('seed',213)
pi=zeros(1,33);
b=0.1:1/10:1;
pi(1)=1;
mean_time=[];
```

```
for k=1:10
    c=b(k);
    Q=zeros(33,33);
    Q(1,1:3)=[-1 1-c c];
    for k=1:15
            Q(2*k,2*k:2*k+3)=[\begin{array}{llll}{-1}&{0}&{1-c}&{c}\end{array}];
    end
    s=0;
    for j=1:1000
        [t,y]=ctmc(10^6,pi,Q);
        last=length(t);
        s=s+t(last);
    end
    mean_time=[mean_time s/1000];
end
toc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```


Figure 4: Note that for the infinite state case, the mean stopping time as a function of β would be $1 / \beta$ (assuming $\lambda=1$). In the finite chain we see a similar qualitative behavior, except that the time does not go to infinity for small β. If $\beta=0$, the mean time to hitting absorbing state $H 16$ is exactly 16 .

