
Math 450 - Homework 9

Solutions

1. Exercise 3.3.1, page 114. Consider the Markov chain on {1, 2, 3, 4} with
generator matrix 

−1 1/2 1/2 0
1/4 −1/2 0 1/4
1/6 0 −1/3 1/6

0 0 0 0

 .

Calculate (a) the probability of hitting 3 starting from 1, and (b) the
expected time to hit 4 starting from 1.

For (a), let h = (h1, h2, h3, h4) be the vector where hi denotes the proba-
bility of hitting 3 starting from i. Then by Theorem 3.3.1 h is the minimal
non-negative solution to the system of equations

h3 = 1
q11h1 + q12h2 + q13h3 + q14h4 = 0
q21h1 + q22h2 + q23h3 + q24h4 = 0
q41h1 + q42h2 + q43h3 + q44h4 = 0.

Substituting the values of qij and h3 = 1 gives:

−h1 +
1
2
h2 +

1
2

= 0

1
4
h1 −

1
2
h2 +

1
4
h4 = 0.

The general solution to this system is h = (h1, 2h1 − 1, 1, 3h1 − 2). The
minimal non-negative solution is the one for which h1 = 2/3. This yields

h = (2/3, 1/3, 1, 0).

For part (b), let k = (k1, k2, k3, k4) be the vector where ki denotes the
expected time to hit 4 starting from i. Note that qi > 0 for all i 6= 4, so
Theorem 3.3.3 applies. It says that k is the minimal non-negative solution
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to the system of equations:

k4 = 0
q11k1 + q12k2 + q13k3 + q14k4 = −1
q21k1 + q22k2 + q23k3 + q24k4 = −1
q31k1 + q32k2 + q33k3 + q34k4 = −1.

Substituting the values of qij and k4 = 0 gives:

−k1 +
1
2
k2 +

1
2
k3 = −1

1
4
k1 −

1
2
k2 = −1

1
6
k1 −

1
3
k3 = −1.

This system has a unique solution, which is:

k = (7, 11/2, 13/2, 0).

2. Exercise 3.6.2, page 123.

(a) The chain having generator matrix

Q =


−2 1 1 0

0 −1 1 0
0 0 −1 1
1 0 0 −1


is easily seen to be irreducible. (Use, e.g., Theorem 3.2.1) By Theo-
rem 3.6.2 we have that pij(t) → λj as t →∞, where λ is an invariant
distribution, λQ = 0. This last condition leads to the system

−2λ1 + λ4 = 0
λ1 − λ2 = 0

λ1 + λ2 − λ3 = 0
λ3 − λ4 = 0.

The solution is λ = (λ1, λ1, 2λ1, 2λ1). After normalization we obtain

λ = (1/6, 1/6, 1/3, 1/3).

Therefore,
p12(t) → 1/6.
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(b) The matrix

Q =


−2 1 1 0

0 −1 1 0
0 0 −1 1
0 0 0 0


is not irreducible, so Theorem 3.6.2 does not apply. We will solve for
p12(t) using Kolmogorov’s equations. But first not that, intuitively,
the limit should be 0 since the chain should eventually (with prob-
ability 1) reache the absorbing state 4 and never again return to 2.
The below calculation will bear this out.
First note that Q is an upper-triangular matrix. The exponential of
Q is also upper-triangular (think about the definition of etQ in terms
of its Taylor series), so we have

P (t) =


e−2t ∗ ∗ ∗

0 e−t ∗ ∗
0 0 e−t ∗
0 0 0 1

 .

By Kolmogorov’s backward equation we have (note: p32 = p42 = 0)

p′12 = q11p12 + q12p22 + q13p32 + q14p42

= −2p12 + p22

= −2p12 + e−t.

Thus p12 is the solution of the initial value problem

p′12 + 2p12 = e−t, p12(0) = 0.

This is a standard first order linear equation. It can be solved by the
integrating factor method. The solution is

p12(t) = e−t − e−2t → 0 as t →∞.

(c) The generator matrix

Q =


−1 1 0 0

1 −1 0 0
0 0 −2 2
0 0 2 −2


has block form. From the Taylor series definition of etQ it is easy to
see that

P (t) = etQ =
(

A(t) 0
0 B(t)

)
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where A(t) = (aij(t)) is the exponential of the upper-left 2-by-2 block
and B(t) the exponential of the lower-right 2-by-2 block. So we have
p12(t) = a12(t). Now, the smaller Q-matrix

Q′ =
(
−1 1

1 −1

)
is irreducible, so we can apply Theorem 3.6.2 to it. The solution to
λQ′ = 0 is λ = (λ1, λ2) such that λ1 = λ2 = 1/2. Therefore

p12(t) → 1/2 as t →∞.

(d) The matrix

Q =


−2 1 0 1

0 −2 2 0
0 1 −1 0
0 0 0 0


is not irreducible. Again, we try to find the function p12(t) explicitly.
Using Kolmogorov’s forward equations we obtain for p12 and p13 the
following equations (note that p11(t) = e−2t):

p′12 = e−2t − 2p12 + p13

p′13 = 2p12 − p13.

To solve this system, notice that (p12 + p13)′ = e−2t, so

p12 + p13 =
(
1− e−2t

)
/2.

Substituting the value for p13 from this equation into the first equa-
tion in the above system gives:

p′12 + 3p12 =
(
1 + e−2t

)
/2.

This is again an ordinary first order linear differential equation, which
we can solve by the method of integrating factor. The initial condi-
tion is p12(0) = 0. The result is:

p12(t) =
1
6

(
1 + 3e−2t + 4e−3t

)
→ 1/6.

3. Perform the following simulated experiment. A number of balls, some
red and some black, are distributed between two urns. The balls are
numbered from 1 to N . At random times one person picks a number
between 1 and N and transfers the corresponding ball from its urn to the
other. Independent of the first person and also at random times, a second
person picks a number between 1 and N and replaces the corresponding
ball with a red one if the chosen ball is from urn I, or black if the chosen
ball is from urn II, keeping the new ball in the same urn as the old one.
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(Note that if, for example, the chosen ball is red and it was in urn I,
then the action does not change anything.) We assume that the sequence
of actions of the first person have independent holding times which are
exponential of parameter q1, and the actions of the second person have
independent holding times which are exponential of parameter q2. We
wish to find the long term fraction, b, of the N balls that are black and
lie in urn II. Do this for the values q1 = 1 and q2 = 0.1, 2, and 20. For
each value of q2, draw a graph of the fraction of balls that are black and
in urn II as a function of time. I suggest taking the following parameters:
total number of balls: 100, total number of events (actions of the two
persons): 20000. (It took about 45 seconds for each of the three runs of
20000 events.) What are the approximate values b for each q2? Give a
qualitative explanation for the values you obtain.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
rand(’seed’,123)
N=100; %number of balls
u=zeros(2,N); %u(1,j)=0 if j in urn I, u(1,j)=1 if in urn II

%u(2,j)=0 if j ball is red, u(2,j)=1 if black
q1=1; %exponential rate for type 1 event
q2=2; %exponential rate for type 2 event
t=[0]; %time sequence of events
b=[0]; %number of black balls in urn II at each time
K=20000; %number of events in one run of the experiment
for k=1:K-1

s=-log(rand)/(q1+q2);
i=ceil(N*rand); %choose ball at random
x=(rand<q1/(q1+q2)); %decide if event 1 (x=1) or 2 (x=0)
if x==1

u(1,i)=rem(u(1,i)+1,2); %transfer ball i to other urn
else

u(2,i)=u(1,i); %change color of ball i according to urn
end
t=[t t(k)+s];
b=[b sum(u(1,:).*u(2,:))/N];

end
stairs(t,b)
toc
%We get for q1=1 and
%q2=0.1 : b approaches approx. 0.25
%q2=2 : b approaches approx. 0.35
%q2=20 : b approaches approx. 0.5
%each run takes approx. 45 sec.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure 1: q1 = 1, q2 = 0.1. Black balls in urn II comprise approximately one-
fourth of all balls.
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Figure 2: q1 = 1, q2 = 2. Black balls in urn II comprise approximately 0.35 of
all balls.
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Figure 3: q1 = 1, q2 = 2. Black balls in urn II comprise approximately half of
all balls.
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