Math 450 - Homework 12

Due date: Friday, 4/20/07

1. Read sections 3 and 4 (pages 530-533) of D.J. Higham's paper. Also read the lecture notes posted on-line about stochastic differential equations. (I should have them ready sometime over the weekend.)
2. Use Itô's formula to write the following stochastic processes X_{t} in standard form,

$$
d X_{t}=u(t) d t+v(t) d W_{t}
$$

(We denote by $W_{t}=\left(W_{1}(t), \ldots, W_{n}(t)\right)$ the n-dimensional Wiener process. Part (c) uses the 2-dimensional process, and part (d) uses the 3dimensional process.)
(a) $X_{t}=W_{t}^{3}$
(b) $X_{t}=2 t+e^{W_{t}}$
(c) $X_{t}=W_{1}^{2}(t)+W_{2}^{2}(t)$
(d) $X_{t}=\left(W_{1}(t)+W_{2}(t)+W_{3}(t), W_{2}^{2}(t)-W_{1}(t) W_{3}(t)\right)$
3. Express the Itô integral

$$
\int_{0}^{t} \sin (W(s)) d W(s)
$$

as a sum of a function of $W(t)$ and a deterministic integral; i.e., find functions $F(x)$ and $g(x)$ such that

$$
\int_{0}^{t} \sin (W(t)) d W(t)=F(W(t))+\int_{0}^{t} g(W(s)) d s .
$$

Explain how you did it.
4. Calculate numerically a sample path of the Itô integral

$$
A(t)=\int_{0}^{t} \sin (W(s)) d W(s)
$$

for $0 \leq t \leq 1$. (Adapt the program stint.m from Higham's paper. Use $\mathrm{N}=10000$.) Then plot the sample path for the difference $A(t)-B(t)$, where

$$
B(t)=1-\cos (W(t))-\frac{1}{2} \int_{0}^{t} \cos (W(s)) d s
$$

(Note: it is important to use the same sample path for the Wiener process when calculating $A(t)$ and $B(t)$. We should expect this difference to be small. Why?)
5. In this exercise you will obtain numerical solutions for a stochastic harmonic oscillator. First recall that the deterministic case. We assume a spring-mass system with mass m, spring constant k and friction coefficient c.

Figure 1: Spring-mass system. We assume that the mass attached to the spring is acted on by a random force term given by white noise.

Recall that the differential equation for this system (obtained from Newton's second law) has the form:

$$
m x^{\prime \prime}=-k x-c x^{\prime}+f(t)
$$

where $f(t)$ is a forcing term. Let $\kappa=k / m, \gamma=c / m$, and $\eta(t)=f(t) / m$. Let $v=x^{\prime}$. The second order differential equation can be written as a system of two first order equations

$$
\begin{aligned}
x^{\prime} & =v \\
v^{\prime} & =-\kappa x-\gamma v+\eta(t) .
\end{aligned}
$$

We assume that the forcing term is random, of the form $\eta(t) d t=\sigma d W_{t}$. This leads to the system of stochastic differential equations written in matrix form as:

$$
\binom{d X_{t}}{d V_{t}}=\left(\begin{array}{rr}
0 & 1 \\
-\kappa & -\gamma
\end{array}\right)\binom{X_{t}}{V_{t}} d t+\binom{0}{\sigma} d W_{t} .
$$

Take $\kappa=1, \gamma=0.1$ and $\sigma=0.1$. Adapt the Euler-Maruyama method (see em.m in Higham's paper) to solve for a sample path $X_{t}, 0 \leq t \leq T$, $T=100$, with initial conditions: $X_{0}=-1, V_{0}=0$. (Choose $d t=T / 10000$ for the step size.) On the same coordinate system plot the graph of X_{t} versus t for 10 independent sample paths.

