What is $\frac{d}{d s} \int_{1}^{2} s^{2} d s$?
Solution: $\int_{1}^{2} s^{2} d s$ is a constant $\left(=\frac{7}{3}\right.$, if you work it out $)$, and $\frac{d}{d s}($ constant $)=0$.

What is $\frac{d}{d s} \int_{1}^{s} t^{2} d t$?

Solution: By the Fundamental Theorem of Calculus (Part I),
$\frac{d}{d s} \int_{1}^{s} t^{2} d t=s^{2}$ (In this case, the integral is so easy that you could simplify it first and avoid the Fundamental Theorem: $\frac{d}{d s} \int_{1}^{s} t^{2} d t=\frac{d}{d s}\left(\frac{s^{3}}{3}-\frac{1}{3}\right)=s^{2}$.)

What is $\frac{d}{d z} \int_{1}^{s} t^{2} d t$?
Solution: $\int_{1}^{s} t^{2} d t$ is a function of s, not of z : so $\frac{d}{d z} \int_{1}^{s} t^{2} d t=0 \quad\left(^{*}\right)$
Actually, this assumes that s and z are independent - in other words, that s does not depend on z so that $\int_{1}^{s} t^{2} d t$ also does not depend on z and therefore $\frac{d}{d z} \int_{1}^{s} t^{2} d t=0$.

If you want to allow for the possibility that s might depend on z (for example, that perhaps $s=z^{2}$), we would use the chain rule:

$$
\frac{d}{d z} \int_{1}^{s} t^{2} d t=s^{2} \cdot \frac{d s}{d z} . \quad(* *)
$$

This formula (**) "better than" our original solution (*) because, if s is really independent of t, then $\frac{d s}{d t}=0$ and $\left({ }^{* *}\right)$ reduces to the original formula (${ }^{*}$)

$$
\frac{d}{d z} \int_{1}^{s} t^{2} d t=0
$$

What is $\frac{d}{d u} \int_{u}^{2 u} 2 t d t$?
Solution: $\frac{d}{d u} \int_{u}^{2 u} 2 t d t=\frac{d}{d u} \int_{u}^{0} 2 t d t+\frac{d}{d u} \int_{0}^{2 u} 2 t d t$
$=\frac{d}{d u} \int_{0}^{2 u} 2 t d t-\frac{d}{d u} \int_{0}^{u} 2 t d t=\frac{d}{d u} \int_{0}^{2 u} 2 t d t-2 u$
$=2(2 u) \frac{d}{d u}(2 u)-2 u=8 u-2 u=6 u$.

What is $\frac{d}{d z} \int_{z^{3}}^{z^{3}} \sqrt[4]{t^{2}+t+1} d t$?
Solution: Since both limits on the integral are the same, $\int_{z^{3}}^{z^{3}} \sqrt[4]{t^{2}+t+1}=0$, so $\frac{d}{d z} \int_{z^{3}}^{z^{3}} \sqrt[4]{t^{2}+t+1} d t=\frac{d}{d z}(0)=0$.
(Of course, you could work it out the "longer way":

$$
\begin{aligned}
& \frac{d}{d z} \int_{z^{3}}^{z^{3}} \sqrt[4]{t^{2}+t+1} d t \\
& =\frac{d}{d z} \int_{z^{3}}^{0} \sqrt[4]{t^{2}+t+1} d t+\frac{d}{d z} \int_{0}^{z^{3}} \sqrt[4]{t^{2}+t+1} d t \\
& \left.=-\frac{d}{d z} \int_{0}^{z^{3}} \sqrt[4]{t^{2}+t+1} d t+\frac{d}{d z} \int_{0}^{z^{3}} \sqrt[4]{t^{2}+t+1} d t=0 .\right)
\end{aligned}
$$

What is $\frac{d}{d s} \int_{1}^{\int_{1}^{s} t^{2} d t} t d t$?
Solution: Let $y=\int_{1}^{\int_{1}^{s} t^{2} d t} t d t=\int_{1}^{u} t d t$, where $u=\int_{1}^{s} t^{2} d t$.
Then $\frac{d u}{d s}=s^{2}$ (using the Fundamental Theorem, Part I)) so

$$
\frac{d y}{d s}=\frac{d y}{d u} \frac{d u}{d s}=u \cdot \frac{d u}{d s}=u \cdot s^{2}=s^{2} \int_{1}^{s} t^{2} d t
$$

If we simplify further, $s^{2} \int_{1}^{s} t^{2} d t=\left.s^{2} \cdot \frac{t^{3}}{3}\right|_{1} ^{s}$

$$
=s^{2}\left(\frac{s^{3}}{3}-\frac{1}{3}\right)=\frac{s^{5}-s^{2}}{3} .
$$

