Review problem:

Find the absolute maximum and minimum values of the function $f(x)=\frac{1}{1+x^{2}}$ on the interval $[-1,2]$.

We know that there is an absolute maximum value and there is an absolute minimum value because f is a continuous function and its domain is a closed interval.
$f^{\prime}(x)=\frac{-2 x}{1+x^{2}}$. The derivative is defined for all x, and $f^{\prime}(x)=0$ only when $x=0$.
The candidates for where the absolute maximum and minimum of f might occur:

$$
\begin{array}{lc}
\text { Critical numbers: } & 0 \\
\text { Endpoints: } & -1,2
\end{array}
$$

The absolute maximum and minimum values must occur at one of these points.
Since $f(-1)=\frac{1}{2}, f(0)=1$, and $f(2)=\frac{1}{5}$, we conclude that the absolute max value is 1 (occurring at $x=0$) and the absolute minimum value is $\frac{1}{5}$ (occurring at $x=2$).

Notice that $f^{\prime}(x)>0$ when $x<0$ and that $f^{\prime}(x)<0$ when $x>0$.
This means that f is increasing when $x<0$ and decreasing when $x>0$.
Just for reference, the graph of $y=f(x)$ looks like

Each picture shows the graph of a function $y=f(x)$ and (in red) the straight line segment L joining $(a, f(a))$ to $(b, f(b))$.

In each case: is there a point $(z, f(z))$ on the graph of $y=f(x)$ where slope of tangent line to graph of $\boldsymbol{f}=$ slope of line segment L ? or equivalently
is there $\mathrm{a} z$ in (a, b) where $f^{\prime}(z)=\frac{f(b)-f(a)}{x-a}$?

In Q1 and Q2, the function is either not differentiable; in Q2, the function is not even continuous. In those two pictures, no such z exists; in the picture for Q3 and Q4, the function is continuous and differentiable (in the "interior" of the domain - that is, between then endpoints. In Q3, there is a z that works; in Q4 there is more than one z that works.

The Mean Value Theorem tells us when such a z (maybe more than one) is guaranteed to exist:

The Mean Value Theorem
If $f(x)$ is continuous on $[a, b]$ and differentiable for all x between a and b, then
there must be at least one z in (a, b) where

$$
\begin{aligned}
& f^{\prime}(z)=\frac{f(b)-f(a)}{b-a} \text { or, equivalently, where } \\
& f^{\prime}(z)(b-a)=(f(b)-f(a))
\end{aligned}
$$

Move away from the graph of $y=f(x)$ and draw a straight line parallel to the secant line through the points $A=(a, f(a))$ and $B=(b, f(b))$.

The slide your line toward the graph (following the arrows), keeping your line parallel to the line through A and B. At the point where your line first touches the graph of f, your line will be a tangent line parallel to the line through A and B. The first coordinate of this contact point is a z that works.

If we change the name of the variables: suppose $s=f(t)$ in the Mean Value Theorem, where s is the position function of a point moving along a straight line. Then
$\frac{f(b)-f(a)}{b-a}$ represents the average velocity of the moving point between times $t=a$ and $t=b$.

The Mean Value Theorem says, then, that there must be (at least one) time z between a and b when the instantaneous velocity equals the average velocity:

$$
v(z)=f^{\prime}(z)=\frac{f(b)-f(a)}{b-a}
$$

Q5 A particle moves along a straight line for $0 \leq t \leq 5$).
At time $t(\mathrm{sec})$, its position is $s=f(t)=t^{3}-12 t+70$ (meters).
For your convenience: $\frac{f(5)-f(0)}{5-0}=\frac{135}{5}=27(\mathrm{~m} / \mathrm{sec})$
At what time t is the particle's instantaneous velocity equal to its average velocity for the whole trip?
A) $t=1 \mathrm{sec}$
B) $t=\sqrt{2} \mathrm{sec}$
C) $t=\frac{1+\sqrt{70}}{4} \mathrm{sec}$
D) $t=\sqrt{13} \mathrm{sec}$
E) $t=\sqrt{53} \mathrm{sec}$

Answer Instantaneous velocity $=v(t)=\frac{d s}{d t}=3 t^{2}-12=27$ when $3 t^{2}=39$, that is, when $t=\sqrt{13} \quad($ since $t \geq 0)$

In the Mean Value Theorem, it could happen that the value of f at the endpoints is the same: $f(a)=f(b)$

This is nothing but a "special case" of the Mean Value Theorem, but it is sometimes given a special name:

Rolle's Theorem

If $f(x)$ is continuous on $[a, b]$ and differentiable for all x between a and b, and
if $f(a)=f(b)$
there must be at least one z in (a, b) where

$$
f^{\prime}(z)=0 \quad\left(=\frac{f(b)-f(a)}{b-a}\right)
$$

Example Suppose we are trying to solve some equation

$$
f(x)=k \quad(\text { where } f \text { is a differentiable function) }
$$

Whenever we have two roots (solutions), say $x=a$ and $x=b$, then (according to Rolle's Theorem), there must be a root of the equation

$$
f^{\prime}(x)=0 \text { between } a \text { and } b \text { (the root is the } z \text { promised by Rolle's Theorem) }
$$

In other words: between any two roots of $f(x)=k$, there is a root of $f^{\prime}(x)=0$.
To be specific:
The equation $x^{7}-14 x+23=10$ has at most 3 real roots (maybe fewer)
Reason: \quad Suppose the equation had 4 real roots $r_{1}<r_{2}<r_{3}<r_{4}$
Then the equation

$$
f^{\prime}(x)=0
$$

$7 x^{6}-14=0$ would need to have at least 3 real roots
(one in each of the intervals $\left(r_{1}, r_{2}\right),\left(r_{2}, r_{3}\right)$, and $\left(r_{3}, r_{4}\right)$)
But $7 x^{6}-14=0$ has only two real roots: $x= \pm \sqrt[6]{2}$.

