What does $\boldsymbol{f}^{\boldsymbol{\prime}}$ tell us about \boldsymbol{f} ?

If $f^{\prime}(x)>0$ on an interval I, then $f(x)$ is increasing on I
If $f^{\prime}(x)<0$ on an interval I, then $f(x)$ is decreasing on I

First Derivative Test for Local Maxima and Minima

A critical number for f is a number c in the domain of f for which either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist. The critical numbers are the candidates for where local maxima or minima might occur.

Suppose $f(x)$ is a continuous function and that c is a critical number:

- If $\left\{\begin{array}{cl}f^{\prime}(x)>0 & \text { near } c \text { on the left } \\ f^{\prime}(x)<0 & \text { near } c \text { on the right }\end{array}\right.$
then f has a local maximum at c
- If $\left\{\begin{array}{cl}f^{\prime}(x)<0 & \text { near } c \text { on the left } \\ f^{\prime}(x)>0 & \text { near } c \text { on the right }\end{array}\right.$
then f has a local minimum at c
- If $f^{\prime}(x)$ is positive near c on both sides of c or negative near c on both sides of c
then f has neither a local maximum nor a local minimum at c

Here is the graph of $f^{\prime}(x)$
Describe where $f(x)$ is increasing or decreasing and where are the local maxima and minima?

$f^{\prime}(x)>0 \quad$ when $\quad x>3 \quad$ so $f(x)$ is increasing when $x>3$
$f^{\prime}(x)<0 \quad$ when $x<0$ and \quad so $f(x)$ is decreasing when $x<0$ when $0<x<3 \quad$ and decreasing when $0<x<3$
$f^{\prime}(x)=0 \quad$ when $x=0$ and when $x=3$
Since $f^{\prime}(x)$ is negative near 0 on both sides of 0 , there is neither a local max no min at 0 Since $f^{\prime}(x)$ is negative near 3 on the left and positive near 3 on the right, f has a local minimum at 3

From the graph (or even a formula) for $f^{\prime}(x)$, we don't have enough information to reconstruct $f(x)$: there are many functions all of which have the same $f^{\prime}(x)$.

But if we assume, say, that $f(0)=0$, we can draw a "rough" graph of f - where the shape of the graph indicates where f increasing, decreasing, and where the local max's and min's are located. The graph

The graph above was actually drawn by a graphing program, using $f(x)=x^{4}-4 x^{3}$.
So the graph above is actually a graph of $f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3)$.
From the formula, the critical values and $x=0$ and $x=3$, just as we deduced from the graph of $f^{\prime}(x)$. And. from the formula, you can check where $f^{\prime}(x)>0$ and $f^{\prime}(x)<0$.
Compare all your conclusions from those we drew above where we had only the graph of $f^{\prime}(x)$ to work with.

The figure below include both the graph of $f^{\prime}(x)$ and (in red) the graph of $f(x)=x^{4}-4 x^{3}$

Q1 (T/F) If $y=f(x)$ has a local minimum at $x=c$, then $f^{\prime}(c)=0$.
A) True
B) False

Answer False. For example, the function $y=f(x)=|x|$ has a local minimum at $c=0$ but $f^{\prime}(0)$ does not even exist!

Q2 (T/F) If $y=f(x)$ and $f^{\prime}(c)=0$, then $f(x)$ has either a local maximum or a local minimum at $x=c$.
A) True
B) False

Answer False. For example, let $f(x)=x^{3}$. Then $f^{\prime}(x)=3 x^{2}$ and $f^{\prime}(0)=0$. But $f(x)$ has neither a local maximum nor a local minimum at 0 .

Discussed in class/textbook
f is called concave up on an interval I if, at every point $(x, f(x))$ the graph of f lies above its tangent line
f is called concave down on an interval I if, at every point $(x, f(x))$ the graph of f lies below its tangent line

Discussed in class: Suppose f is for which $f^{\prime \prime}(x)$ exists in an interval I.
The following are equivalent ways of describing "concave up" on an interval:
$f(x)$ is concave up on I
moving left to right in I, the slopes of the tangent lines are increasing $f^{\prime}(x)$ is an increasing function in I $f^{\prime \prime}(x)>0$ for all x in I

The following are equivalent ways of describing "concave down" on an interval:
$f(x)$ is concave down on I
moving left to right in I, the slopes of the tangent lines are decreasing $f^{\prime}(x)$ is an decreasing function in I $f^{\prime \prime}(x)<0$ for all x in I

We say the f has an inflection point at $x=c$
if f is concave up near c on one side of c and concave down near c on the other side of c : in other words, if f has different concavity on the two sides of c (near c).

This is the same as saying that $f^{\prime \prime}(x)$ has different signs on opposite sides of c (near c): positive one side, negative on the other.

Candidates for inflection points (discussed in class):
all c in the domain where either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist

Example (same function as earlier): $f(x)=x^{4}-4 x^{3}$.

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3) \\
& f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2)
\end{aligned}
$$

We checked earlier where f is increasing, decreasing and found the (only) local minimum at 3 .
$f^{\prime \prime}(x)$ exists for every $x ; f^{\prime \prime}(x)=0$ when $x=0$ or $x=2$
Candidates for critical points: 0,2
Check the sign of $f^{\prime \prime}(x)$:

$$
\begin{array}{lll}
x<0: & f^{\prime \prime}(x)>0 & (f \text { is concave up }) \\
0<x<2: & f^{\prime \prime}(x)<0 & (f \text { is concave down }) \\
2<x: & f^{\prime \prime}(x)>0 & (f \text { is concave up })
\end{array}
$$

$f^{\prime \prime}$ changes sign at $x=0$ and at $x=2$ (or, equivalently, f changes concavity at $x=0$ and $x=2$)
so we have located two inflection points.
Spot them in the (red) graph of $f(x)$

Note: if you started with only the graph of $f^{\prime}(x)$ and no formulas, you should still be able to spot where f has inflection points:

For $x<0, f^{\prime}(x)$ is increasing: so f is concave up for $x<0$

For $0<x<2, f^{\prime}(x)$ is decreasing: so f is concave down for $0<x<2$
For $x>2, f^{\prime}(x)$ is increasing: so f is concave up for $x>2$
Therefore f has inflection points at 0 and 2 .

Q3 (T/F) If $f^{\prime \prime}(x)=0$, then f has an inflection point at c.
A) True
B) False

Answer: false. For $f(x)=x^{4}$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3} \\
& f^{\prime \prime}(x)=12 x^{2} \\
& f^{\prime \prime}(0)=0, \quad \begin{array}{l}
\text { but } f^{\prime \prime}(x)>0 \text { both to the left and to the right of } 0: \\
\text { so } 0(x) \text { is concave up on both sides of } 0: \underline{\text { no }} \\
\text { inflection point at } 0
\end{array}
\end{aligned}
$$

