What does $f^{\prime \prime}$ tell us about f ?

- If $f^{\prime \prime}(x)>0$ on interval I, then f is concave up on I
- If $f^{\prime \prime}(x)<0$ on interval I, then f is concave down on I

Inflection Points Suppose f is a continuous function and c is a point in the domain of f.
If $\quad f^{\prime \prime}(x)$ "changes sign at c "
(that is: $f^{\prime \prime}$ positive near c on one side of c and negative near \boldsymbol{c} on the other side of \boldsymbol{c})
then f has an inflection point at c
Candidates for inflection points $=$

$$
\begin{aligned}
& =\text { the critical numbers of } f^{\prime}(x): \\
& =\text { the } x \text { 's for which }
\end{aligned}
$$

$$
\left(f^{\prime}\right)^{\prime}(x)=f^{\prime \prime}(x)=0 \text { or where }
$$

$$
\left(f^{\prime}\right)^{\prime}(c)=f^{\prime \prime}(x) \text { does not exist }
$$

Example Let $P(t)$ be the price (\$) of the drug at time t.
$P^{\prime}(t)>0$ means that the price is rising
$P^{\prime}(t)>0$ and $P^{\prime \prime}(t)>0$ means that the price is increasing and that $P^{\prime}(t)$, the rate of increase, is increasing - that is, the price is increasing faster and faster. The graph is increasing and concave up.
$P^{\prime}(t)>0$ and $P^{\prime \prime}(t)<0$ means that the price is increasing and that $P^{\prime}(t)$, the rate of increase, is decreasing - that is, the price is increasing more and more slowly,

Figure out what it means when $\left\{\begin{array}{l}P^{\prime}(t)<0 \text { and } P^{\prime \prime}(t)>0 \\ P^{\prime}(t)>0 \text { and } P^{\prime \prime}(t)<0\end{array}\right.$
Think about analogy between this example and the situation where f, f^{\prime}, and $f^{\prime \prime}$ represent position, velocity and acceleration.

Example $\quad f(x)=\sin x$

$$
\begin{aligned}
& f^{\prime}(x)=\cos x \\
& f^{\prime \prime}(x)=-\sin x \\
& f^{\prime \prime}(x)=0 \quad \text { at } \quad x=\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi, \ldots
\end{aligned}
$$

These are the candidates for inflection points.
Checking $x=0$:
for $x<0$ and near $0: f^{\prime \prime}(x)=-\sin x>0: f$ is concave up for $x>0$ and near $0: \quad f^{\prime \prime}(x)=-\sin x<0: \quad f$ is concave down so there is an inflection point at $x=0$, as indicated in the graph of $\sin x$, below:

Q1 (T/F) Suppose $y=f(x)$ is continuous function on the interval $I=[7,23]$ and that f is differentiable on $(7,23)$.

If the absolute minimum value of f in $[7,23]$ is 0 and the minimum occurs at two different points in $[7,23]$, then f must have a critical number between 7 and 23 .
A) True
B) False

Answer: True
There are two points in $[7,23]$ where an absolute minimum occurs. There must be at least one point where an absolute maximum value occurs. Of these three points, at least one must be in the "interior" $(7,23)$ of the interval. It is therefore a critical number.

Q2 If $f(x)$ is a quadratic function, then there must be a value $x=c$ where f has an inflection point.
A) Of course!
B) Certainly not!

Answer: $f(x)=a x^{2}+b x+c$ where (since the function is quadratic) the coefficient $a \neq 0$

$$
\begin{aligned}
& f^{\prime}(x)=2 a x+b \\
& f^{\prime \prime}(x)=2 a
\end{aligned}
$$

So either $f^{\prime \prime}(x)>0$ for all $x($ when $a>0)$ or $f^{\prime \prime}(x)<0$ for all x (when $a<0$). The graph of $y=f(x)$ is either always concave up or always concave down: no inflection points!
(Of course, the graph is a parabola, opening up when $a>0$ or opening down when $a<0$)

Q3 Suppose c is in the domain of a continuous function f. It cannot happen that c is a critical number and that there is an inflection point where $x=c$.
A) True
B) False

Answer It can happen than c is a critical number and that there is an inflection point at c. This happens, for example, when $c=0$ and the function is $y=f(x)=x^{3}$.

This can happen because the critical point was neither a local maximum nor a local minimum. If there were a local maximum or minimum at c, there would not also be an inflection point there.

This question is related to the Second Derivative Test for local maxima and minima.:

Suppose c is in the domain of f and $f^{\prime \prime}$ is continuous near c :

$$
\text { if } f^{\prime}(c)=0 \text { and } \begin{cases}f^{\prime \prime}(c)>0 & \text { then local min at } c \\ f^{\prime \prime}(c)<0 & \text { then local max at } c\end{cases}
$$

NOTE
if $f(x)=x^{4}$, then $f^{\prime}(x)=4 x^{3}$ and $f^{\prime \prime}(x)=12 x^{2}$
Then
0 is a critical point
There is a local minimum at 0 , but the second derivative test doesn't "pick up" on that fact. When $f^{\prime \prime}(c)=0$, all you can say is that the Second Derivative Test leaves you undecided: the Second Derivative Test can sometimes fail (in the sense of not giving you a decision - NOT that it ever gives you an incorrect conclusion!)

Q4 Water is being poured at a constant rate into a conical paper cup. The height h of the liquid in the cup is a function of the volume V of water in the cup:

$$
h=f(V)
$$

The graph of h is
A) decreasing and concave down
B) increasing and concave up
C) increasing and concave down
D) a straight line with positive slope
E) I'm not sure.

Answer Since $V=\frac{1}{3} \pi r^{2} h$, we know that $h=V /\left(\left.\frac{1}{3} \right\rvert\, r^{2}\right)$ where r depends on V. So h is not a linear function of V, eliminating answer D).

As V increases, h also increases, so the correct answer is either B) or C). As water enters the cup, the remaining unfilled part of the cup is wider so as water is added at a constant rate, its depth h grows more slowly. The correct answer is C)

Example Make a sketch of the graph. Here is the function and its derivatives:

$$
\begin{aligned}
y=\quad f(x) & =\frac{x^{2}}{x-1} \\
f^{\prime}(x) & =\frac{(x-1)(2 x)-x^{2}(1)}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}}=\frac{x(x-2)}{(x-1)^{2}} \\
f^{\prime \prime}(x) & =\frac{(x-1)^{2}(2 x-2)-\left(x^{2}-2 x\right)(2(x-1))}{(x-1)^{4}} \\
& =\frac{2(x-1)\left((x-1)^{2}-\left(x^{2}-2 x\right)\right)}{(x-1)^{4}} \\
& =\frac{2(x-1)\left(x^{2}-2 x+1-x^{2}+2 x\right)}{(x-1)^{4}}=\frac{2}{(x-1)^{3}}
\end{aligned}
$$

We will piece together several things that we know.

1) From the formula for f : the domain is all $x \neq 1$. Since the denominator is 0 at 1, we consider that there might be a vertical asymptote $x=1$. To check :
$\lim _{x \rightarrow 1^{+}} \frac{x^{2}}{x-1}=\lim _{x \rightarrow 1^{+}} x\left(\frac{x}{x-1}\right)$. As $x \rightarrow 1^{+}$, the denominator is positive and $\rightarrow 0$, while the numerator $x \rightarrow 1$. Therefore $\frac{x}{x-1} \rightarrow \infty=\lim _{x \rightarrow 1^{+}} \frac{x^{2}}{x-1}=\infty$
So $x=1$ is a vertical asymptote.

Also (similar calculation) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}}{x-1}=-\infty$.
2) From the derivative: $f^{\prime}(x)=0$ when $x=0,2$. These are the critical numbers. (Notice that $x=1$ is not a critical number: 1 is not in the domain of f)

Since these may be "important" numbers we compute $f(0)=0$ and $f(2)=4$ to plot as part of the graph.

$$
x \quad x-2 \quad(x-1)^{2} \quad f^{\prime}(x) \quad f(x)
$$

For $x>2:$	+	+		+		+
For $1<x<2+$	-		+		-	increasing
decreasing						
For $0<x<1+$	-		+		-	decreasing
For $x<0$	-	-		+		$+\quad$ increasing

Notice that we broke the interval $(0,2)$ into two pieces:

$$
\begin{aligned}
& 1<x<2 \\
& 0<x<1
\end{aligned}
$$

If would be incorrect to say something about $f^{\prime}(x)$ or $f(x)$ across the whole interval $(0,2)$ since f (and therefore also f^{\prime}) are not defined at 1

The first derivative test shows that there is a local minimum at 2 and a local maximum at 0

From the second derivative:

Notice that you could also use the second derivative test at 0 and 2 :

$$
\begin{array}{ll}
f^{\prime \prime}(0)=\frac{2}{(0-1)^{3}}<0, \text { so } & \text { a local maximum at } 0 \\
f^{\prime \prime}(2)=\frac{2}{(2-1)^{3}}>0, \text { so } & \text { a local minimum at } 2
\end{array}
$$

Since $f^{\prime \prime}(x)=\frac{2}{(x-1)^{3}}>0$ when $x>1$
f is concave up for $x>1$
Since $f^{\prime \prime}(x)=\frac{2}{(x-1)^{3}}<0$ when $x<1$
All these conclusions are represented in the following graph:

$$
y=\quad f(x)=\frac{x^{2}}{x-1}
$$

