L'Hospital's Rule:

Suppose

that f(x) and g(x) are differentiable <u>near</u> x = a (not necessarily <u>at</u> x = a where f or g or both <u>might</u> not even be defined), and

that $g'(x) \neq 0$ near x = a and

that $\lim_{x \to a} \frac{f(x)}{g(x)}$ is one of the indeterminate forms:

"
$$\frac{0}{0}$$
" or "
 $\frac{\pm \infty}{\pm \infty}$ "

Then

If
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$$
, then $\lim_{x\to a} \frac{f(x)}{g(x)} = L$ also.

Notes: 1) L'Hospital's Rule works if " $x \to a$ " is replaced by " $x \to a^+$ " or " $x \to a^-$ "

2) In L'Hospital's Rule, it's OK if either a or L is $\pm \infty$.

Q1: Find
$$\lim_{x \to \infty} \frac{e^x}{x^2}$$

A) 0
B) 1
C) $\frac{1}{2}$
D) 2
E) ∞

Answer $\lim_{x \to \infty} \frac{e^x}{x^2}$ is of the form " $\frac{\infty}{\infty}$ " so we can try L'Hospital's Rule: $\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x}$ (which is still of form $\frac{\infty}{\infty}$, so we can try L'Hospital again) $= \lim_{x \to \infty} \frac{e^x}{2} = \infty$

(Note that $\lim_{x\to\infty} \frac{e^x}{2}$ is <u>not</u> an indeterminate form: you couldn't try L'Hospital a third time.)

The idea here intuitively, is that as $x \to \infty$, the numerator e^x of $\lim_{x\to\infty} \frac{e^x}{x^2}$ is trying to make the whole fraction go to ∞ , but at the same time the denominator as it $\to \infty$ is "pulling back" against the numerator and trying to make the whole fraction go to 0. In this example, the numerator "wins" – that is, " e^x goes to infinity faster that x^2 ."

Q2: For any
$$n = 1, 2, 3, ...$$
: what is $\lim_{x \to \infty} \frac{e^x}{x^n}$
A) 0
B) 1
C) $\frac{1}{2}$
D) 2
E) ∞

 $\lim_{x\to\infty} \frac{e^x}{x^n}$ is again a " $\frac{\infty}{\infty}$ " indeterminate form and we can try L'Hospital's Rule, over and over. With each application of L'Hospital's Rule, the exponent in the denominator goes down by 1, so after *n* applications, the denominator has become a constant and we then can see the limit. (In Q1, where n = 2, we got to a constant denominator after two applications of L'Hospital.)

$$\lim_{x \to \infty} \frac{e^x}{x^n} = \lim_{x \to \infty} \frac{e^x}{nx^{n-1}} = \lim_{x \to \infty} \frac{e^x}{n(n-1)x^{n-2}} = \dots \text{(repeating until)} = \lim_{x \to \infty} \frac{e^x}{constant} = \infty.$$

Intuitively, the whole fraction $\rightarrow \infty$ because e^x grows faster than any x^n .

Example (similar to Q2)

$$\lim_{x \to \infty} \frac{e^x}{9x^2 + 3x - 5} \ \left(= \underbrace{``\infty]}{\infty} \right) = \lim_{x \to \infty} \frac{e^x}{18x + 3} = \lim_{x \to \infty} \frac{e^x}{18} = \infty \text{ and}$$
$$\lim_{x \to \infty} \frac{e^x}{-9x^2 + 3x - 5} \ \left(= \underbrace{``\infty]}{\infty} \right) = \lim_{x \to \infty} \frac{e^x}{-18x + 3} = \lim_{x \to \infty} \frac{e^x}{-18} = -\infty$$

In this same way you can see that $\lim_{x\to\infty} \frac{e^x}{P(x)} = \pm \infty$ when P(x) is any polynomial. (The sign, + or -, depends on the sign of the coefficient of the highest power term in P(x).)

MORAL: " e^x grows faster than any polynomial" and you should be able to convince yourself easily that the same is true for any exponential function a^x (where a > 1).

Discussion of why L'Hospital's Rule rule works in one special case:

Suppose $\lim_{x\to a} \frac{f(x)}{g(x)}$ is of form " $\frac{0}{0}$ " and that f'(x) and g'(x) are differentiable at a

Then f'(x) and g'(x) are differentiable at a and also (automatically) f(x) and g(x) are continuous at a

Since $\lim_{x \to a} \frac{f(x)}{g(x)}$ is of form " $\frac{0}{0}$ ", we know that $\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$

By continuity,

$$0 = \lim_{x \to a} f(x) = f(a) \text{ and } 0 = \lim_{x \to a} g(x) = g(a)$$

Therefore $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - 0}{g(x) - 0} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(x)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ \uparrow (because we're assuming f' and g' are continuous at a)

<u>Another indeterminate form</u> " $0 \cdot \pm \infty$ "

This refers to a limit $\lim_{x\to a} f(x) \cdot g(x)$, where $f(x) \to 0$ and $g(x) \to \pm \infty$ The answer is indeterminate because, as $x \to a$,

> $f(x) \to 0$ is trying to make the whole product $\to 0$, while $g(x) \to \pm \infty$ is trying to make the whole product $\to \pm \infty$. f and g are "working against" each other and, without any other information, the outcome is uncertain.

For example, <u>all of</u> the following (simple) limits are of form " $\infty \cdot 0$ " but each one has a different answer:

 $\lim_{x \to \infty} (2x)(\frac{1}{x}) = 2 \qquad \lim_{x \to \infty} (13x)(\frac{1}{x}) = 13 \quad \lim_{x \to \infty} (2x^2)(\frac{1}{x}) = \infty \qquad \lim_{x \to \infty} (2x)(\frac{1}{x^2}) = 0$

Since L'Hospital's Rule only applies to an indeterminate fraction limit, we rewrite a " $0 \cdot \pm \infty$ " limit such as $\lim_{x \to a} f(x) \cdot g(x)$ in fraction form. There are two ways to do this and both lead to a fraction to which L'Hospital's Rule can be applied (*although from one problem to another, one version may be more convenient to use than the other*):

$$\lim_{x \to a} f(x) \cdot g(x) = \begin{cases} \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} & \text{which is a "}\frac{0}{0} \text{"form, or} \\ \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}} & \text{which is an "}\frac{\infty}{\infty} \text{"form} \end{cases}$$

Example: $\lim_{x\to\infty} e^{-x}x^2$ is a " $0\cdot\infty$ " indeterminate form.

$$\lim_{x \to \infty} e^{-x} x^2 = \lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0$$

Note: You could instead try $\lim_{x\to\infty} e^{-x}x^2 = \lim_{x\to\infty} \frac{e^{-x}}{\frac{1}{x^2}}$ (" $\frac{0}{0}$ ") and use L'Hospital's Rule. But while "legal," this doesn't seem to actually work very well. Try it.

Q3: Find $\lim_{x\to 0^+} x \ln x$ A) $-\infty$ B) -1C) 0 D) 1 E) ∞

Answer: $\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$

Example: another indeterminate form " 1^{∞} "

This refers to a limit like $\lim_{x\to a} f(x)^{g(x)}$ where $f(x) \to 1$ and $g(x) \to \infty$.

This is indeterminate because

 $\begin{cases} f(x) \to 1 & \text{is trying to make the whole expression} \to 1 \\ g(x) \to \infty & \text{is trying to make the whole expression} \to \infty \end{cases}$

It's impossible to tell, without more work, what the limit really is in a specific case. For example

 $\lim_{x\to 0^+} (3^x)^{1/x} \text{ and } \lim_{x\to 0^+} (5^x)^{1/x} \text{ are both of form "}1^{\infty}$ "

but $\lim_{x \to 0^+} (3^x)^{1/x} = \lim_{x \to 0^+} 3 = 3$, and $\lim_{x \to 0^+} (5^x)^{1/x} = \lim_{x \to 0^+} 5 = 5$

Example: $\lim_{x\to 0} (2x+1)^{1/x}$ (this is of the form "1[∞]") Let $y = (2x+1)^{1/x}$ so $\ln y = \ln (2x+1)^{1/x} = \frac{1}{x} \ln(2x+1) = \frac{\ln(2x+1)}{x}$ $\lim_{x\to 0} (2x+1)^{1/x} = \lim_{x\to 0} \frac{\ln(2x+1)}{x}$ ("0/0") = $\lim_{x\to 0} \frac{2}{2x+1} = 2$ so as $x \to 0$, $\ln y \to 2$ so $e^{\ln y} \to e^2$ ||Therefore $\lim_{x\to 0} (2x+1)^{1/x} = e^2$