L'Hospital's Rule:

Suppose
that $\quad f(x)$ and $g(x)$ are differentiable near $x=a$ (not necessarily at $x=a$ where f or g or both might not even be defined), and
that $\quad g^{\prime}(x) \neq 0$ near $x=a$ and
that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is one of the indeterminate forms:

$$
" \frac{0}{0} " \text { or } " \frac{ \pm \infty}{ \pm \infty} "
$$

Then

$$
\text { If } \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \text {, then } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L \text { also. }
$$

Notes: 1) L'Hospital's Rule works if " $x \rightarrow a$ " is replaced by " $x \rightarrow a^{+}$" or " $x \rightarrow a^{-}$"
2) In L'Hospital's Rule, it's OK if either
a or L is $\pm \infty$.

Q1: Find $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$
A) 0
B) 1
C) $\frac{1}{2}$
D) 2
E) ∞

Answer $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$ is of the form " $\frac{\infty}{\infty}$ " so we can try L'Hospital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} & =\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}\left(\text { which is still of form } \frac{\infty}{\infty}, \text { so we can try L'Hospital again }\right) \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty
\end{aligned}
$$

(Note that $\lim _{x \rightarrow \infty} \frac{e^{x}}{2}$ is not an indeterminate form: you couldn't try L'Hospital a third time.)
The idea here intuitively, is that as $x \rightarrow \infty$, the numerator e^{x} of $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$ is trying to make the whole fraction go to ∞, but at the same time the denominator as it $\rightarrow \infty$ is "pulling back" against the numerator and trying to make the whole fraction go to 0 . In this example, the numerator "wins" - that is, " e^{x} goes to infinity faster that x^{2}."

Q2: For any $n=1,2,3, \ldots:$ what is $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$
A) 0
B) 1
C) $\frac{1}{2}$
D) 2
E) ∞
$\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$ is again a " $\frac{\infty}{\infty}$ " indeterminate form and we can try L'Hospital's Rule, over and over. With each application of L'Hospital's Rule, the exponent in the denominator goes down by 1 , so after n applications, the denominator has become a constant and we then can see the limit. (In Q1, where $n=2$, we got to a constant denominator after two applications of L'Hospital.)
$\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n-1}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{n(n-1) x^{n-2}}=\ldots($ repeating until $)=\lim _{x \rightarrow \infty} \frac{e^{x}}{\text { constant }}=\infty$.
Intuitively, the whole fraction $\rightarrow \infty$ because e^{x} grows faster than any x^{n}.

Example (similar to Q2)

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} \frac{e^{x}}{9 x^{2}+3 x-5}\left(=" \frac{\infty}{\infty} "\right) & =\lim _{x \rightarrow \infty} \frac{e^{x}}{18 x+3}=\lim _{x \rightarrow \infty} \frac{e^{x}}{18}=\infty \text { and } \\
\lim _{x \rightarrow \infty} \frac{e^{x}}{-9 x^{2}+3 x-5}\left(=" \times \frac{\infty}{\infty}\right) & =\lim _{x \rightarrow \infty} \frac{e^{x}}{-18 x+3}=\lim _{x \rightarrow \infty} \frac{e^{x}}{-18}=-\infty
\end{array}
$$

In this same way you can see that $\lim _{x \rightarrow \infty} \frac{e^{x}}{P(x)}= \pm \infty$ when $P(x)$ is any polynomial. (The sign, + or - , depends on the sign of the coefficient of the highest power term in $P(x)$.)

MORAL: " e^{x} grows faster than any polynomial" and you should be able to convince yourself easily that the same is true for any exponential function a^{x} (where $a>1$).

Discussion of why L'Hospital's Rule rule works in one special case:
Suppose $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of form " $\frac{0}{0}$ " and that $f^{\prime}(x)$ and $g^{\prime}(x)$ are differentiable at a
Then $f^{\prime}(x)$ and $g^{\prime}(x)$ are differentiable at a and also (automatically) $f(x)$ and $g(x)$ are continuous at a

Since $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of form " $\frac{0}{0}$ ", we know that $\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)$
By continuity,

$$
0=\lim _{x \rightarrow a} f(x)=f(a) \text { and } \quad 0=\lim _{x \rightarrow a} g(x)=g(a)
$$

Therefore $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)-0}{g(x)-0}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{\frac{f(x)-f(x)}{x-a} \frac{g(x)-g(a)}{x-a}}{\frac{f(a)}{g^{\prime}(a)}}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ \uparrow (because we're assuming f^{\prime} and g^{\prime} are continuous at a)

Another indeterminate form " $0 \cdot \pm \infty$ "
This refers to a limit $\lim _{x \rightarrow a} f(x) \cdot g(x)$, where $f(x) \rightarrow 0$ and $g(x) \rightarrow \pm \infty$
The answer is indeterminate because, as $x \rightarrow a$,
$f(x) \rightarrow 0 \quad$ is trying to make the whole product $\rightarrow 0$, while $g(x) \rightarrow \pm \infty$ is trying to make the whole product $\rightarrow \pm \infty$.
f and g are "working against" each other and, without any other information, the outcome is uncertain.

For example, all of the following (simple) limits are of form " $\infty \cdot 0$ " but each one has a different answer:
$\lim _{x \rightarrow \infty}(2 x)\left(\frac{1}{x}\right)=2 \quad \lim _{x \rightarrow \infty}(13 x)\left(\frac{1}{x}\right)=13 \quad \lim _{x \rightarrow \infty}\left(2 x^{2}\right)\left(\frac{1}{x}\right)=\infty \quad \lim _{x \rightarrow \infty}(2 x)\left(\frac{1}{x^{2}}\right)=0$

Since L'Hospital's Rule only applies to an indeterminate fraction limit, we rewrite a " $0 \cdot \pm \infty$ " limit such as $\lim _{x \rightarrow a} f(x) \cdot g(x)$ in fraction form. There are two ways to do this and both lead to a fraction to which L'Hospital's Rule can be applied (although from one problem to another, one version may be more convenient to use than the other):

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)= \begin{cases}\lim _{x \rightarrow a} \frac{f(x)}{\frac{1}{g(x)}} & \text { which is a " } \frac{0}{0} " \text { form, or } \\ \lim _{x \rightarrow a} \frac{g(x)}{\frac{1}{f(x)}} & \text { which is an " } \frac{\infty}{\infty} " \text { form }\end{cases}
$$

Example: $\lim _{x \rightarrow \infty} e^{-x} x^{2}$ is a " $0 \cdot \infty$ " indeterminate form.

$$
\lim _{x \rightarrow \infty} e^{-x} x^{2}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0
$$

Note: You could instead try $\lim _{x \rightarrow \infty} e^{-x} x^{2}=\lim _{x \rightarrow \infty} \frac{e^{-x}}{\frac{1}{x^{2}}} \quad$ (" $\frac{0}{0}$ ") and use L'Hospital's Rule. But while "legal," this doesn't seem to actually work very well. Try it.

Q3: Find $\lim _{x \rightarrow 0^{+}} x \ln x$
A) $-\infty$
B) -1
C) 0
D) 1
E) ∞

Answer: $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}(-x)=0$

Example: another indeterminate form " $1 \times$ "
This refers to a limit like $\lim _{x \rightarrow a} f(x)^{g(x)}$ where $f(x) \rightarrow 1$ and $g(x) \rightarrow \infty$.
This is indeterminate because

$$
\begin{cases}f(x) \rightarrow 1 & \text { is trying to make the whole expression } \rightarrow 1 \\ g(x) \rightarrow \infty & \text { is trying to make the whole expression } \rightarrow \infty\end{cases}
$$

It's impossible to tell, without more work, what the limit really is in a specific case. For example

$$
\lim _{x \rightarrow 0^{+}}\left(3^{x}\right)^{1 / x} \text { and } \quad \lim _{x \rightarrow 0^{+}}\left(5^{x}\right)^{1 / x} \text { are both of form " } 1^{\infty "}
$$

but $\lim _{x \rightarrow 0^{+}}\left(3^{x}\right)^{1 / x}=\lim _{x \rightarrow 0^{+}} 3=3$, and $\lim _{x \rightarrow 0^{+}}\left(5^{x}\right)^{1 / x}=\lim _{x \rightarrow 0^{+}} 5=5$

Example: $\lim _{x \rightarrow 0}(2 x+1)^{1 / x} \quad$ (this is of the form " 1∞ ")
Let $y=(2 x+1)^{1 / x}$
so $\ln y=\ln (2 x+1)^{1 / x}=\frac{1}{x} \ln (2 x+1)=\frac{\ln (2 x+1)}{x}$
$\lim _{x \rightarrow 0}(2 x+1)^{1 / x}=\lim _{x \rightarrow 0} \frac{\ln (2 x+1)}{x}\left({ }^{\prime} 0 / 0\right.$ ") $)=\lim _{x \rightarrow 0} \frac{\frac{2}{2 x+1}}{1}=2$
so as $x \rightarrow 0, \quad \ln y \rightarrow 2$
so

$$
\begin{aligned}
& e^{\ln y} \rightarrow e^{2} \\
& \| \\
&
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 0}(2 x+1)^{1 / x}=e^{2}$

