
Example:   Sketch the graph of     sincos 

Domain  All  except where cos so                    
      that is, odd multiple of   
Notice that has period           sin

cos cossin  
     


Since the function “repeats itself” every we can focus our attention on any interval of 

length , draw the graph there, and then just keep repeating our graph in adjacent
intervals of length  to the left and right.
So we will focus on for the interval , remembering that  is not even      
defined at . 
? Intercepts in the interval:   :    
    intercept: when , then         
   intercept:  in this interval, sin   only when .  Therefore      
   where      sincos 

  The graph crosses the -axis and the -axis only at    
? Symmetry with respect to the  axis or with respect to the origin
          sin

cos cossin
    



  so the graph is symmetric with respect to the origin
? Horizontal and vertical asymptotes:  since we are restricting our attention to the interval
        we can't compute  or No horizontal asymptoteslim lim  For  in (denominator is never ).  The only          lim


 

sincos
 possibilities for vertical asymptotes would be at the endpoints:  check at 
 and . 
 
 lim lim   

sin coscos  sin      positive,            
negative,        

     
   (“ ”)      “  ” LH    

    “  ” LHlim lim   
sin coscos  sin       negative ,          

   negative,         
    

     

 (Note: once you know that lim
sincos   , then you could immediately decide

 that  by using the fact the graph is symmetric withlim
sincos   

 respect to the origin.)



? Intervals of increase/decrease, local maxima or minima :
            

       
     cos cos  sin sin

cos cos cos coscos + cos  + sin cos
  

 

 Always, cos 0 and in the interval , cos             
 Therefore  everywhere in ( the function is always increasing in        
 this interval.  There are no critical points and no local maxima or minima.
 For graphing purposes, notice that so as the graph passes through    

  it should have slope   
? Concavity and Inflection points 
      

   
cos sin

cos cossin
 

 
 I  where sin , that is at n the interval ,         sincos         

 In , the denominator is always and for sin
for sin             

         


 so for  is concave down
for  is concave up          

        






 and there is an inflection point at 

All this information is gathered together in the graph below   We worked only in the
interval shaded gray.  Then repeat the graph in each adjacent intervals of    
width  

             



Example: (Optimization)
A rectangular box (open on the top no lid!) is to be constructed from a ft x ft square  
of cardboard by cutting a small square out of each corner and folding up along the dashed
lines to form the sides of the box.   What is the largest possible volume for the box?

   
           
Q1:  If an x square is cut from each corner of the cardboard, what will be the volume 
of the resulting box?
 A)     
 B)      
 C)      
 D)    
 E)      

Answer:  The rectangle surrounded by the dashed lines becomes the bottom of the box: it
has area   When the sides are folded up, the height of the box will be .     
So      



Q2:   What values for  make sense in this problem?
A)      
B)     
C)     

D)     
E)     

Answer:  We could argue between  
  C)   and    

  D) ,    


Since the cardboard is x  we certainly can't cut out square corners where  (the    
cardboard isn't lig enough) nor squares with a “negative side” .

The issue is whether to allow (no squares removed, no sides to fold up a “box”   
with height  and therefore ) and whether to allow  (after removing the       

corner squares, no cardboard is left, and we could think of that too as producing a “box”
with )  
But is doesn't really matter: either way, we are looking for the largest volume possible,
and the answer for how to do that doesn't depend whether we decide count  as the  
“smallest” possible volume)
I prefer thinking of  because then  is a continuous function on a closed    

interval  and the  guarantees, that there  an absolute  Extreme Value Theorem will be
maximum and minimum  for these 's, and it makes finding them simpler. 

Notice (just in case you were dubious) that changing   change the volume of the does
box you create.  Here's a table with just a couple of sample calculations:
   

 
 
 
 
 
 
 

   



We want to find the absolute maximum value of  on the interval           


 There must be an absolute maximum and minimum value for  these could 
 occur at the endpoints at any critical points in  



              
                   
  so  or     

 

  The only critical number in  is    
 

 Test the value of  for each candidate:          
                

 

 So the absolute maximum volume is  (ft ), obtained when the squares cut from 
 the corners are x ( 

   As observed before we began calculating,     
 produce “boxes” with absolute minimum volume .  

 
Same Example, continued:   What if we had decided to work with
         

 on the interval   (excluding the possibility of “boxes with
volume )?
This turns out to be a little more involved.  We are  mathematically that thenot guaranteed
continuous function  will have an absolute maximum value: we have to compute to 
see whether it does or not.
 Just as above:  setting  gives that  is the      

 only in the critical point 
  interval  



 Now we look at the sign of the derivative:
  in          
      when          

      when         
 

  Therefore   for     all      
  in 

      for    all     
  in

  This means that there must be an absolute maximum at , and , 
     

  as before.
  Notice that on the interval the is   no absolute minimum value for 



  (not that we care in this problem)..  If you think that  is still the absolute
  minimum value for , I ask you:  ?)  at what  in does it occur 



This solution uses the “First Derivative Test for Absolute Maxima and Minima” as stated
on p. 333 of the text:

We have been using a “First Derivative Test” to identify local maxima and minima, and
in general, it doesn't help with absolute maxima and minima.  But if  is continuous on an
interval  and  is a critical number in  and, say,  
   for   in  and         ALL
   for   in I,          ALL
then (of course)  has  a  maximum at  but also an  maximum at   local absolute
The key word up above is :  it implies that there are no critical points other than  ALL in
 if  is any  point  the interval , then either  or : so either        other
           or and therefore  isn't a critical number. The function is rising
(increasing) at  's  in and then falling for 's  in : so the valueALL ALL       
 ) is the highest point on the graph.
Similarly,             for   in  andALL
   for   in I,          ALL
  tells you that  its absolute minimum value in  at      

Look at the following graph:



           
 where   

      shaded green
Our optimization problem restricted   or      

 

Either way, the part of the graph we were looking at shows an absolute maximum value 
at   On  the First Derivative test detects the      

  absolute max at  because


   for   and  for in all all                
   

 

 But if, in some other situation, we were looking a  on, say, the interval 
  then the same check of the first derivative would reveal that  is    
 a local maximum value not absolute but is  an  maximum value:
   
     is  true for   in the new interval         

NOT ALL


