Example: Sketch the graph of  $y = f(x) = \frac{\sin x}{1 + \cos x}$ 

<u>Domain</u> All x except where  $\cos x = -1$ : so  $x \neq ..., -3\pi, -\pi, \pi, 3\pi$ , (that is,  $x \neq odd$  multiple of  $\pi$ )

Notice that f(x) has period  $2\pi$ :  $f(x+2\pi) = \frac{\sin(x+2\pi)}{1+\cos(x+2\pi)} = \frac{\sin x}{1+\cos(x)} = f(x)$ . Since the function "repeats itself" every  $2\pi$ , we can focus our attention on any interval of length  $2\pi$ , draw the graph there, and then just keep repeating our graph in adjacent intervals of length  $2\pi$  to the left and right.

So we will focus on f(x) for the interval  $(-\pi, \pi)$ , remembering that f is not even defined at  $\pm \pi$ .

<u>? Intercepts</u>: <u>in the interval</u>  $(-\pi, \pi)$ :

y intercept: when x = 0, then y = 0x intercept: in this interval,  $\sin x = 0$  only when x = 0. Therefore  $y = \frac{\sin x}{1 + \cos x}$  0 where x = 0

The graph crosses the x-axis and the y-axis only at (0,0)

? Symmetry with respect to the y axis or with respect to the origin

 $f(-x) = \frac{\sin(-x)}{1 + \cos(-x)} = -\frac{\sin x}{1 + \cos x} = -f(x)$ 

so the graph is symmetric with respect to the origin

? Horizontal and vertical asymptotes: since we are restricting our attention to the interval

 $(-\pi,\pi)$ , we can't compute  $\lim_{x\to\infty} f(x)$  or  $\lim_{x\to-\infty} f(x)$ . No horizontal asymptotes For a in  $(-\pi,\pi)$ ,  $\lim_{x\to a} f(x) = \geq \frac{\sin a}{1+\cos a}$  (denominator is never 0). The only possibilities for vertical asymptotes would be at the endpoints: check at  $\pi$ and  $-\pi$ .

$$\lim_{x \to \pi^{-}} \frac{\sin x}{1 + \cos x} \quad (" \ \frac{0}{0}") \quad \stackrel{\underline{\mathsf{LH}}}{=} \quad \lim_{x \to \pi^{-}} - \frac{\cos x}{\sin x} = " - \frac{\operatorname{negative}, \quad \rightarrow -1}{\operatorname{positive}, \quad \rightarrow 0}" = \infty$$
$$\lim_{x \to -\pi^{+}} \frac{\sin x}{1 + \cos x} \stackrel{\underline{\mathsf{LH}}}{=} \lim_{x \to -\pi^{+}} - \frac{\cos x}{\sin x} = " - \frac{\operatorname{negative}, \quad \rightarrow -1}{\operatorname{negative}, \quad \rightarrow 0}" = -\infty$$

(Note: once you know that  $\lim_{x \to \pi^-} \frac{\sin x}{1 + \cos x} = \infty$ , then you could immediately decide that  $\lim_{x \to -\pi^+} \frac{\sin x}{1 + \cos x} = -\infty$  by using the fact the graph is symmetric with respect to the origin.)

? Intervals of increase/decrease, local maxima or minima :

$$y' = \frac{(1+\cos x)(\cos x) - (\sin x)(-\sin x)}{(1+\cos x)^2} = \frac{\cos x + \cos^2 x + \sin^2 x}{(1+\cos x)^2} = \frac{1+\cos x}{(1+\cos x)^2} = \frac{1}{(1+\cos x)^2}$$

Always,  $1 + \cos x \ge 0$  and in the interval  $(-\pi, \pi)$ ,  $1 + \cos x > 0$ Therefore y' > 0 everywhere in  $(-\pi, \pi)$ : the function is always increasing in this interval. There are no critical points and no local maxima or minima.

For graphing purposes, notice that  $f'(0) = \frac{1}{2}$ , so as the graph passes through (0,0) it should have slope  $\frac{1}{2}$ .

? Concavity and Inflection points :

$$y'' = \frac{(1 + \cos x)(0) - (1)(-\sin x)}{(1 + \cos x)^2} = \frac{\sin x}{(1 + \cos x)^2}$$

In the interval  $(-\pi, \pi)$ ,  $y'' = \frac{\sin x}{(1 + \cos x)^2} = 0$  where  $\sin x = 0$ , that is at x = 0.

In  $(-\pi, \pi)$ , the denominator is always , and  $\begin{cases} \text{for } -\pi < x < 0 : & \sin x < 0 \\ \text{for } 0 < x < \pi : & \sin x > 0 \end{cases}$ 

so 
$$\begin{cases} \text{for } -\pi < x < 0 : \quad y'' < 0 \quad f \text{ is concave down} \\ \text{for } 0 < x < \pi : \quad y'' > 0 \quad f \text{ is concave up} \end{cases}$$

and there is an inflection point at 0.

All this information is gathered together in the graph below. We worked only in the interval  $(-\pi, \pi)$ , shaded gray. Then repeat the graph in each adjacent intervals of width  $2\pi$ .



## Example: (Optimization)

A rectangular box (open on the top - no lid!) is to be constructed from a 3ft x 3ft square of cardboard by cutting a small square out of each corner and folding up along the dashed lines to form the sides of the box. What is the largest possible volume for the box?



Q1: If an  $x \ge x$  square is cut from each corner of the cardboard, what will be the volume of the resulting box?

A)  $V = (3 - x)x^2$ B)  $V = (3 - 2x)^2 x$ C)  $V = (3 - x)^2 x$ D)  $V = (3 - 2x)x^2$ E)  $V = (3 - 2x)^3 x^3$ 

Answer: The rectangle surrounded by the dashed lines becomes the bottom of the box: it has area (3-2x)(3-2x). When the sides are folded up, the height of the box will be x. So  $V = (3-2x)^2 x$ 

Q2: What values for x make sense in this problem?

A)  $0 \le x \le 3$ B)  $0 \le x \le 2$ C)  $0 \le x \le \frac{3}{2}$ D)  $0 < x < \frac{3}{2}$ E) 0 < x < 3

Answer: We could argue between

C) 
$$0 \le x \le \frac{3}{2}$$
 and  
D)  $0 < x < \frac{3}{2}$ ,

Since the cardboard is 3x3 we certainly can't cut out square corners where  $x > \frac{3}{2}$  (the cardboard isn't lig enough) nor squares with a "negative side" x.

The issue is whether to allow x = 0 (no squares removed, no sides to fold up - a "box" with height = 0 and therefore V = 0) and whether to allow  $x = \frac{3}{2}$  (after removing the corner squares, no cardboard is left, and we could think of that too as producing a "box" with V = 0)

But is doesn't really matter: either way, we are looking for the <u>largest volume possible</u>, and the answer for how to do that doesn't depend whether we decide count V = 0 as the "smallest" possible volume)

I prefer thinking of  $0 \le x \le \frac{3}{2}$  because then v(x) is a continuous function on a closed interval  $[0, \frac{3}{2}]$  and the <u>Extreme Value Theorem</u> guarantees, that there <u>will be</u> an absolute maximum and minimum V for these x's, and it makes finding them simpler.

Notice (just in case you were dubious) that changing x does change the volume V of the box you create. Here's a table with just a couple of sample calculations:

| x    | V      |
|------|--------|
| 0    | 0      |
| 0.25 | 1.5625 |
| 0.5  | 2      |
| 0.75 | 1.6875 |
| 1    | 1      |
| 1.25 | 0.3125 |
| 1.5  | 0      |

We want to find the absolute maximum value of  $V = (3 - 2x)^2 x$  on the interval  $[0, \frac{3}{2}]$ 

There <u>must</u> be an absolute maximum and minimum value for V: these could occur at the endpoints at any critical points in  $(0, \frac{3}{2})$ .

$$V' = 2(3-2x)(-2)x + (3-2x)^2(1)$$
  
= (3-2x)[-4x + (3-2x)] = (3-2x)(3-6x) = 0  
so  $x = \frac{3}{2}$  or  $x = \frac{1}{2}$ 

The only critical number in  $(0, \frac{3}{2})$  is  $\frac{1}{2}$ .

Test the value of V for each candidate: 
$$V(0) = V(\frac{3}{2}) = 0$$
  
 $V(\frac{1}{2}) = 2^2(\frac{1}{2}) = 2$ 

So the absolute maximum volume is 2 (ft<sup>3</sup>), obtained when the squares cut from the corners are  $\frac{1}{2} \times \frac{1}{2}$ . (As observed before we began calculating,  $x = 0 = \frac{3}{2}$  produce "boxes" with absolute minimum volume V = 0.

Same Example, continued: What if we had decided to work with  $V = (x)(3-2x)^2x$  on the interval  $(0, \frac{3}{2})$  (excluding the possibility of "boxes with volume 0)?

This turns out to be a little more involved. We are <u>not guaranteed</u> mathematically that the continuous function V(x) will have an absolute maximum value: we have to compute to see whether it does or not.

Just as above: setting V' = 0 gives that  $x = \frac{1}{2}$  is the <u>only</u> critical point <u>in the</u> <u>interval</u>  $(0, \frac{3}{2})$ .

Now we look at the sign of the derivative:

 $\begin{array}{ll} \text{in } (0,\frac{3}{2}) & (3-2x) > 0 \\ (6-3x) > 0 & \text{when } 0 < x < \frac{1}{2} \\ (6-3x) < 0 & \text{when } \frac{1}{2} < x < \frac{3}{2} \end{array}$   $\begin{array}{ll} \text{Therefore} & f'(x) > 0 & \text{for } \underline{\text{all } x} < \frac{1}{2} \text{ in } (0,\frac{3}{2}) \\ f'(x) < 0 & \text{for } \underline{\text{all } x} > \frac{1}{2} \text{ in } (0,\frac{3}{2}) \end{array}$ 

This means that there must be an <u>absolute</u> maximum at  $\frac{1}{2}$ , and  $V(\frac{1}{2}) = 2$ , as before.

*Notice that on the interval*  $(0, \frac{3}{2})$  *the is <u>no absolute minimum value for V</u>* 

(not that we care in this problem).. If you think that 0 is still the absolute minimum value for v, I ask you: at what x in  $(0, \frac{3}{2})$  does it occur?)

This solution uses the "First Derivative Test for Absolute Maxima and Minima" as stated on p. 333 of the text:

**First Derivative Test for Absolute Extreme Values** Suppose that c is a critical number of a continuous function f defined on an interval.

- (a) If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) is the absolute maximum value of f.
- (b) If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) is the absolute minimum value of f.

We have been using a "First Derivative Test" to identify local maxima and minima, and <u>in general</u>, it doesn't help with absolute maxima and minima. But if f is continuous on an interval I and c is a critical number in I and, say,

 $\begin{array}{ll} f'(x) > 0 & \quad \text{for } \underline{\mathrm{ALL}} \ x \ \text{in } I, \ x < c \ \text{and} \\ f'(x) < 0 & \quad \text{for } \underline{\mathrm{ALL}} \ x \ \text{in } \mathrm{I}, \ x > c \end{array}$ 

then (of course) f has a <u>local</u> maximum at c but also an <u>absolute</u> maximum at c

The key word up above is <u>ALL</u>: it implies that there are no critical points other than c in <u>I</u> (if d is any <u>other</u> point in the interval I, then either d < c or d > c: so either f'(d) > 0 or f'(d) < 0 – and therefore d isn't a critical number. The function is rising (increasing) at <u>ALL</u> x's < c in I and then falling for <u>ALL</u> x's > c in I: so the value (c, f(c)) is the highest point on the graph.

Similarly, f'(x) < 0 for <u>ALL</u> x in I, x < c and f'(x) > 0 for <u>ALL</u> x in I, x > c

tells you that f(x) its absolute minimum value in I at x = c.

Look at the following graph:

$$V = (3 - 2x)^2 x$$
 where  $0 \le x \le \frac{3}{2}$   
(shaded green)

Our optimization problem restricted  $x \; [0.\frac{3}{2}] \; \mathrm{or} \; (0,\frac{3}{2})$ 

Either way, the part of the graph we were looking at shows an absolute maximum value 2 at  $x = \frac{1}{2}$ . On  $(0, \frac{3}{2})$  the First Derivative test detects the <u>absolute</u> max at  $\frac{1}{2}$  because

$$\underline{\operatorname{in} I} = (0, \tfrac{3}{2}) \quad f'(x) > 0 \text{ for } \underline{\operatorname{all}} \ x < \tfrac{1}{2} \text{ and } f'(x) < 0 \text{ for } \underline{\operatorname{all}} \ > \tfrac{1}{2}$$



But if, in some other situation, we were looking a V(x) on, say, the interval I = (0, 3) then the same check of the first derivative would reveal that 2 is a local maximum value but 2 is not an absolute maximum value:

$$f'(x) < 0$$
 is NOT true for ALL  $x > \frac{1}{2}$  in the new interval  $(0,3)$