Review from precalculus: Sigma (32) notation is a way to efficiently write down long

sums.

n
ap+as+az+...+a, => q
i=1

The notation simply means that, in turn, for each 4, find a; : then add them all together.

Example:

Example:

Add to get

Example:

Example:

3
S=3(243)=5+7+9=21
i=1

n

S=>%i=1+2+..+n sum of the first n natural numbers)
i=1

We can find a nice formula for S : write the sum down twice, in opposite
orders:

S=1 +2 +3 + .. +n—1 +n

S=n +(n-1 +n-2) + .. + 2 +1

28=(mn+1) +(n+1) +(n+1) +(n+1) +(n+1)
=n(n+1)

0 § = nntl)

2

n
S=>i?=12+22+ ... +n? (the sum of the squares of the first n
i=1
natural numbers)

n
There is also a nice formula for this sum: S = Y % = w

1=1
(See the extra sheet "Sums of Squares” to derive this formula and more.
6
> 7. Here,a; =7 (for every i, starting with i = 2)
i=2

6
YT=a+a3ta+as+ag=7+7+7+7+7=235
=2



A) 28: k(k+1) B) 28: (k+5)(k+6)
k=6 k=6
0) é(k’—f))(k—él) D) kzz(k—l)(k‘—Q)

Answer C: ;Z(Z +1) = (1)(2) +(2)(3) + 3(4)

=2 (k=5)(k—4)

k=6
Note that the same sum can be written in different ways in sigma notation. Try writing
this same sum in a few other ways.



We know how to find areas of regions bounded by straight line segments: rectangles, triangles,
polygons (cut up into non-overlapping triangles). We also know how to find the area of one kind

of region with a “curved” boundary: a circle with radius r has area a = 2.

Finding areas of more general regions with “curved boundaries” is one motivation for a new
idea. We approximate the area as the sum of the area of n rectangles. The approximation
improves as n gets larger, and the limit of the approximations is the exact area. (This is the style
as we used to find the slope of a tangent line to y = f(x) at (a, f(a)) : make an approximation
using the slope of a secant line through (a, f(a) and a nearby point (f, (x)). The secant line has
slope W and the limit of the approximations lim M

~— -~ gives the exact slope of the
r—a

tangent line, assuming this limit exists.
To be more precise, we will work on this problem: suppose y = f(x) is continuous on the
interval [a, b] and that f(x) > 0(so that the graph is always above the x-axis). What is the

area A under the graph and above the interval [a, b]?

1) Approximate the area A (refer to the picture, from the textbook, below):

a) Pickn(=1,2,3...)

b) Subdivide interval [a, b] into n equal subintervals. So each subinterval will
have length Az = 2=

n

Call the endpoints of these subintervals
Ty Tlyeeee y Tn—1, In
| |
a b

¢) Inside each subinterval, choose a “sample point” x;
(how? the choice is up to you, you could choose each
x; = the right endpoint of the subinterval; or the

left endpoint, or the midpoint, or ... )

d) For each subinterval: compute f(z})
Using the subinterval as base, make a rectangle whose height is f(z})
The area of this rectangle is (height)(base) = f(z})Ax

¢) Sum up the areas of all these rectangles:
Sn = f(@)) Az + f(z3) Az + ... + f(z}) Az = 3_ f(z]) Az
i—1

S,, is called a Riemann Sum

The value of .S,, depends on nand on how the x's are chosen. S, approximates
the area A
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2) Asyou make n larger and larger, .S;, gives a better and better approximation
to the exact value of the area A.

3) The limit of the approximations gives the exact area:

A=1im S, = lim ) f(z])Ax = A = the exact area under the

graph. (It turns out that for “nice” functions — for example, when f is continuous —
the limit will always exist and the value of the limit doesn't depend on how the x;'s were
chosen)



In class, we followed the steps above for the function y = f(x) = 2% over the interval
[0,1]. These calculations are done in detail, with illustration, in the textbook (pp. 366-
369 so they aren't reproduced again in these notes except to summarize:

R, denotes the Riemann sum with n equal subintervals and where the right endpoints are
chosen as the sample points. L, denotes the Riemann sum with n equal subintervals and

where the left endpoints are chosen as the sample points.

For example,

& Az
S
Ry= (1)) + (D) + DD+ (DD

In this particular example, the function f(x) = z? is increasing so using right endpoints
to create the rectangle heights produces rectangles that are “tool tall” — they stick out
above the graph of f. Similarly, using left endpoints produces rectangles that are “too
short” — totally under the graph of f. So R, (in this example) always overestimates area
A and L,, always underestimates A.

The following table shows the calculated values of both L,, and R,, for some larger value
of n. The roe for n = 1000 tells us that

0.3328335 < A < .3338335

The table suggests the guess that as n — oo, L, — % and R,, — %
and that therefore A = % (exact!)

n L R

10 0.2850000

0.3087500
0.3168519
0.3234000
0.3283500

0.3328335

20
30
50
100
1000

0.3850000
0.3587500
0.3501852
0.3434000
0.3383500
0.3338335




We can verify this (at does the text) by writing out and simplifying an exact formula for
R,, (doable here because this is such a simple example):

YA
/(1,1)

n

The subintervals have width Az = 1 and the right endpoints (sample points in the

subintervals) are 1, 2 3 n=l n(—1q)
R, =Y f@)Ar = f()Az+ f(2)Az+ f(3)Az+ ...+ f(3)Aw
iz

= (1)2Az + (2)’Az+ (2)2Az + ... + (2)?Az

= PG +HEPE) +HEPE) -+ (PG

= (12422 + 32+ ...+ n?)

_ L( n(n+1)(2n+1)) _ 20 +3n’4n
ol 6 - 6n3

. . . 3 2
So the (exact area) A under the graphis A = lim R, = lim 223+
n—oo n—oo n
. 24344
= lim ——= LA 2 = & (as we guessed).
n—oo

This was a fair amount of work for a very simple example. We will see that there's a
much easier way to deal with more complicated areas.



