Review from last lecture: Suppose $f(x)$ is continuous on $[a, b], f(x) \geq 0$.
Divide $[a, b]$ into n equal subintervals of width $\Delta x=\frac{b-a}{n}$.
Pick "sample points" $x_{1}^{*}, x_{2}^{*}, \ldots x_{n}^{*}$ in the subintervals.
Form the Riemann sum

$$
\begin{aligned}
& S=f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\ldots+f\left(x_{n}^{*}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& \lim _{n \rightarrow \infty} S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\text { area } A \text { under graph and above }[a, b]
\end{aligned}
$$

Because f is continuous, it can be shown that the limit will exist and always be the same no matter how the $x_{i} s$ are chosen. So, for example, if the x_{i}^{*} 's are the right or left endpoints, then we get the same value for A :

$$
\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} L_{n}=A
$$

Q1: Approximate the area A under the graph of $y=\sin x$ and above the interval $\left[\frac{\pi}{2}\right.$. $\pi]$ using $n=4$ and choosing right endpoints as sample points in each subinterval.

The Riemann sum looks like
$R_{4}=\sum_{i=1}^{4} f\left(x_{i}^{*}\right) \Delta x=f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+f\left(x_{3}^{*}\right) \Delta x+f\left(x_{4}^{*}\right) \Delta x$
What is Δx and what is x_{3}^{*}
A) $\Delta x=\frac{\pi}{4} \quad x_{3}^{*}=\frac{6 \pi}{8}$
B) $\Delta x=\frac{\pi}{4} \quad x_{3}^{*}=\frac{7 \pi}{8}$
C) $\Delta x=\frac{\pi}{8} \quad x_{3}^{*}=\frac{6 \pi}{8}$
D) $\Delta x=\frac{\pi}{8} \quad x_{3}^{*}=\frac{7 \pi}{8}$
E) $\Delta x=\frac{\pi}{2} \quad x_{3}^{*}=\frac{7 \pi}{8}$

Answer D): $\quad \Delta x=\frac{\pi-\frac{\pi}{2}}{4}=\frac{\pi}{8}$
In the yellow shaded area, the interval $\left[\frac{\pi}{2}, \pi\right]$ is divided into 4 subintervals of width $\frac{\pi}{8}$. The right endpoints are $\frac{5 \pi}{8}, \frac{6 \pi}{8}, \frac{7 \pi}{8}, \frac{8 \pi}{8}=\pi$ The third right endpoint is $x_{3}^{*}=\frac{7 \pi}{8}$

More completely,

$$
\begin{gathered}
\left.\left.R_{4}=\quad \sum_{i=1}^{4} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{4} f\left(\frac{\pi}{2}+\frac{i \pi}{8}\right)\right) \Delta x=\sum_{i=1}^{4} \sin \left(\frac{\pi}{2}+\frac{i \pi}{8}\right)\right)\left(\frac{\pi}{8}\right) \\
=\sin \left(\frac{5 \pi}{8}\right) \frac{\pi}{8}+\sin \left(\frac{6 \pi}{8}\right) \frac{\pi}{8}+\sin \left(\frac{7 \pi}{8}\right) \frac{\pi}{8}+\sin \left(\frac{8 \pi}{8}\right) \frac{\pi}{8}
\end{gathered}
$$

$$
\begin{aligned}
& =\left(\sin \left(\frac{5 \pi}{8}\right)+\sin \left(\frac{6 \pi}{8}\right)+\sin \left(\frac{7 \pi}{8}\right)+\sin \left(\frac{8 \pi}{8}\right)\right) \frac{\pi}{8} \approx 0.7908, \text { and } \\
& L_{4}=\left(\sin \left(\frac{4 \pi}{8}\right)+\sin \left(\frac{5 \pi}{8}\right)+\sin \left(\frac{6 \pi}{8}\right)+\sin \left(\frac{7 \pi}{8}\right)\right) \frac{\pi}{8} \approx 1.1835
\end{aligned}
$$

Since $f(x)=\sin x$ is decreasing on the interval $\left[\frac{\pi}{2}, \pi\right], R_{n}$ will always underestimate the area A (see green rectangles on the left for $n=4$) and L_{n} (see red rectangles on the right) will always overestimate the area A.

For some other values of n :

n	R_{n}	L_{n}
4	0.7908	1.1835
8	0.8986	1.0950
50	0.9842	1.0156
100	0.9921	1.0078
500	0.9984	1.0016
1000	0.9992	1.0008

which shows that

$$
0.9992<A<1.008
$$

The table might lead us to guess that the area A under $\sin x$ over the interval $\left[\frac{\pi}{2}, \pi\right]=1$

Example: Suppose $v(t)=30 \mathrm{~m} / \mathrm{sec}$ is the velocity (constant) of a point moving along a straight line at time $t \mathrm{sec}$, where $1 \leq t \leq 4$:

The area under the graph
$30(3)=90 \quad$ has a physical interpretation:
$($ rate $)($ time $)=$ distance
$(\mathrm{m} / \mathrm{sec})(\mathrm{sec}) \quad(m)$
That is, the area under this constant velocity function over the time interval $[1,4]$ also represents distance traveled for $1 \leq t \leq 4=90 \mathrm{~m}$

If the velocity function $v(t) \geq 0$ is not constant the n we can approximate the area under the graph using a Riemann sum (L_{6} in the picture below).

Sum of blue rectangle areas $\approx\left\{\begin{array}{l}\text { area under the graph } \\ \text { total distance traveled for } 0 \leq t \leq 30\end{array}\right.$
A Riemann sum has both a geometric and a physical meaning here. Taking the limit (using L_{n}) :

$$
\lim _{n \rightarrow \infty} L_{n}=\left\{\begin{array}{l}
\text { area under the graph of } v(t) \text { and above }[0,30] \\
\text { total distance traveled for } 0 \leq t \leq 30
\end{array}\right.
$$

We now restate our procedure and make a definition. The only real change is that we no longer require $f(x) \geq 0$.

Definition Suppose $f(x)$ continuous on $[a, b]$ (or even that $f(x)$ has a finite number of jump discontinuities)
(We no longer ask that $f(x) \geq 0$)
Divide $[a, b]$ into n subintervals of width $\Delta x=\frac{b-a}{n}$..
Let $x_{1}^{*}, x_{2}^{*}, \ldots x_{n}^{*}$ be "sample points" chosen from each of the subintervals.
Form the Riemann sum $S=f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\ldots+f\left(x_{n}^{*}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
$\lim _{n \rightarrow \infty} S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ is a number called the integral of $f(x)$ from a to b which is denoted by the symbol $\int_{a}^{b} f(x) d x$

Thus

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

It can be proven that when f is continuous (or has a finite number of jump discontinuities) that this limit always exists and does not depend on how the x_{i} 's are chosen. So we could also write, for example,

$$
\int_{a}^{b} f(x) d x= \begin{cases}\lim _{n \rightarrow \infty} R_{n} & \underline{\text { or }} \\ \lim _{n \rightarrow \infty} L_{n} & \end{cases}
$$

- The numbers a and b are called the "limits" for the integral.
- Think of $f(x) d x$ as a single symbol, not a multiplication: the x just serves as a reminder of what variable is involved in the integral which can be handy in complicated problems. However if the reminder isn't needed, someone might drop out the x 's altogether and just write $\int_{a}^{b} f$.

So, \quad if $y=f(x) \geq 0, \int_{a}^{b}(f(x) d x=$ the area under the graph over $[a, b]$
if $v(t) \geq 0$ is a velocity function, $\int_{a}^{b} v(t) d t=$ the total distance traveled between times $t=a$ and $t=b$.

- the letter used for the variable isn't important. We could have $y=f(x)=x^{2}$ or velocity $v(t)=t^{2}$

$$
\begin{aligned}
& \int_{0}^{1} x^{2} d x=\frac{1}{3} \text { (worked out in preceding lecture) }=\text { area under the graph } \\
& \int_{0}^{1} t^{2} d t=\frac{1}{3} \text { (total distance traveled). }
\end{aligned}
$$

What happens if $f(x)$ is sometimes negative? For example:

(In the picture, the rectangles are "right endpoint rectangles")
In the Riemann sum corresponding to this picture:

$$
R_{6}=f\left(x_{1}^{*}\right) \Delta x+\ldots+f\left(x_{4}^{*}\right) \Delta x+f\left(x_{5}^{*}\right) \Delta x+f\left(x_{6}^{*}\right) \Delta x
$$

$f\left(x_{1}^{*}\right), \ldots, f\left(x_{4}^{*}\right)$ are negative numbers, so each term like $f\left(x_{1}^{*}\right) \Delta x$ is the negative of the area of the corresponding rectangle in the picture; the blue terms represent positive areas, as before.

In each Riemann sum R_{n} there will "cancellation" of areas that count as positive and negative. The result is that the limit $\lim _{n \rightarrow \infty} \mathrm{R}_{n}=\int_{0}^{3} f(x) d x=$ "net signed area" $=$ "area above the x-axis" - "area below the x-axis."

Example: Find $\int_{0}^{2} 2 x d x$.
We know that the integral gives the shaded area, so by geometry, we know the answer:

Area under graph $=\frac{1}{2}(2)(4)=4=\int_{0}^{2} 2 x d x$
But let's work out the integral using a limit of Riemann sums and, since it doesn't matter how we choose the sample points, we will use right endpoint Riemann sums R_{n}.

Q2: Which expression gives the right endpoint Riemann sum for $\int_{0}^{2} 2 x d x$?
A) $R_{n}=\sum_{i=1}^{n} \frac{4 i}{n} \cdot \frac{3}{n}$
B) $R_{n}=\sum_{i=1}^{n} \frac{4 i}{n} \cdot \frac{2}{n}$
C) $R_{n}=\sum_{i=1}^{n} \frac{2 i}{n} \cdot \frac{2}{n}$
D) $R_{n}=\sum_{i=1}^{n} \frac{i}{n} \cdot \frac{2}{n}$
E) $R_{n}=\sum_{i=1}^{n} \frac{4 i}{n} \cdot \frac{1}{n}$

Answer: $\Delta x=\frac{2-0}{n}=\frac{2}{n}$. The right endpoints of the n subintervals are

$$
\begin{aligned}
& \frac{2}{n}, 2\left(\frac{2}{n}\right)=\frac{4}{n}, 3\left(\frac{2}{n}\right)=\frac{6}{n}, \ldots, i\left(\frac{2}{n}\right), \ldots, n\left(\frac{2}{n}\right)=2 \\
& \text { So } R_{n}=\sum_{i=1}^{n} f\left(i\left(\frac{2}{n}\right)\right) \Delta x=\sum_{i=1}^{n}\left(2\left(i\left(\frac{2}{n}\right)\right) \Delta x=\sum_{i=1}^{n}\left(\frac{4 i}{n}\right) \cdot \frac{2}{n}\right. \text { (Answer B) }
\end{aligned}
$$

To continue:
$\int_{0}^{2} 2 x d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{8 i}{n^{2}}=\lim _{n \rightarrow \infty} \frac{8}{n^{2}} \sum_{i=1}^{n} i=\lim _{n \rightarrow \infty} \frac{8}{n^{2}}\left(\frac{n(n+1)}{2}\right)$
$=\lim _{n \rightarrow \infty} \frac{4 n^{2}+4 n}{n^{2}}=4 \quad$ (the same answer, of course, as computed using the formula for the area of a right triangle).

Example What is $\int_{-1}^{2} 2 x d x$?

Just arguing geometrically $\int_{-1}^{2} 2 x d x=$ area $A_{2}-$ area $A_{1}=4-1=3$

Example (a hint of an easier way to do such calculations)
Suppose a point moves along a line with position $s=t^{2} \quad 0 \leq t \leq 2$)
Then velocity is $v-\frac{d s}{d t}=2 t$
How far does it travel?
One solution : $s(2)-s(0)=4-0=0$
(since $v \geq 0$, there is no change in direction of motion, so this calculation gives total distance traveled)

Another solution: distance traveled $=\int_{0}^{2} v(t) d t=\int_{0}^{2} 2 t d t=4$ (as calculated above)

Of course, both methods produced the same solution. In other words

$$
\int_{0}^{2} v(t) d t=s(2)-s(0)
$$

The integral, in this example, can be found by 1) finding an antiderivative $s=t^{2}$
for the function $v=2 t$, substituting to get $S(2)$ and $s(0)$, then subtracting.
We will see that a method like this always works - but we're not quite there yet!

