Review of Definition of the integral

$f(x)$ and $g(x)$ continuous on $[a, b]$ (actually, a finite number of jump discontinuities is also ok).

Go back to the definition of $\int_{a}^{b} f(x) d x$: what follows here uses the same notation, not repeated here.

$$
\Delta x=\frac{b-a}{n}, x_{i}^{* \prime} \text { 's "sample points" - one chose in each subinterval }
$$

$\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right) \Delta x+f\left(x_{1}^{*}\right) \Delta x+\ldots+f\left(x_{1}^{*}\right) \Delta x\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{1}^{*}\right) \Delta x=\int_{a}^{b} f(x) d x$
$\lim _{n \rightarrow \infty}\left(g\left(x_{1}^{*}\right) \Delta x+g\left(x_{1}^{*}\right) \Delta x+\ldots+g\left(x_{1}^{*}\right) \Delta x\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} g\left(x_{1}^{*}\right) \Delta x=\int_{a}^{b} g(x) d x$

Adding (or subtracting) these limits and combining terms gives

$$
\begin{aligned}
\int_{a}^{b} f(x) d x+\int_{a}^{b} f(x) d x \quad & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{1}^{*}\right) \Delta x \pm \lim _{n \rightarrow \infty} \sum_{i=1}^{n} g\left(x_{1}^{*}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{1}^{*}\right) \pm g\left(x_{1}^{*}\right)\right) \Delta x \\
& =\int_{a}^{b}(f(x) \pm g(x)) d x
\end{aligned}
$$

In other words:

$$
\text { - } \int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x
$$

"the integral of the sum of the integrals"
"the integral of a difference is the difference of the integrals"
Multiplying by a constant c in the definition of $\int_{a}^{b} f(x) d x$ gives

$$
\int_{a}^{b} c f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} c f\left(x_{1}^{*}\right) \Delta x=c \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{1}^{*}\right) \Delta x=c \int_{a}^{b} f(x) d x
$$

In other words:

- $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
- $\int_{a}^{a} f(x) d x=0 \quad$ (because if $a=b$ in the definition, then $\Delta x=0$, so every Riemann sum is 0)
- $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
(because if a and b are reversed in the definition, then $\Delta x=\frac{a-b}{n}<0$.
So the sign of every Riemann sum is reversed and therefore the sign of the limit of the Riemann sums (the integral) is reversed.
- $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x\left({ }^{*}\right)$

For example, in the picture below this just says that

$$
-A_{1}+\left(A_{2}+A_{3}\right)=-A_{1}+A_{2}+A_{3}
$$

But it's important to note that the $\left({ }^{*}\right)$ property of integrals is true no matter what the order or size of a, b, c - the only thing required is that the upper limit on the first integral match the lower limit on the second integral in $\left(^{*}\right)$ as highlighted in red, above.

For example: $\int_{b}^{a} f(x) d x+\int_{a}^{c} f(x) d x=\int_{b}^{c} f(x) d x$
To check this in the picture above:
LEFT SIDE:

$$
\begin{aligned}
\int_{b}^{a} f(x) d x+\int_{a}^{c} f(x) d x & =-\int_{a}^{b} f(x) d x & & +\int_{a}^{c} f(x) d x \\
& =-\left(-A_{1}+A_{2}+A_{3}\right) & & +\left(-A_{1}\right)=-A_{2}-A_{3}
\end{aligned}
$$

RIGHT SIDE: $\int_{b}^{c} f(x) d x=-\int_{c}^{b} f(x) d x=-\left(A_{2}+A_{3}\right)=-A_{2}-A_{3}$

- If $f(x) \leq g(x)$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$ because, in the Riemann sums, every $f\left(x_{i}^{*}\right) \leq g\left(x_{i}^{*}\right)$. Therefore
(any Riemann sum for f) \leq (the corresponding Riemann sum for g) so, taking limits gives $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$

When $f(x) \geq 0$ and $g(x) \geq 0$ this makes perfect sense interpreted as areas:
(area under the lower graph $f(x)) \leq($ area under the higher graph $g(x))$

In particular, if

$$
\begin{array}{rlcl}
m & \leq & f(x) & \leq M \text { on }[a, b], \text { then } \\
\int_{a}^{b} m d x & \leq & \int_{a}^{b} f(x) d x & \leq \int_{a}^{b} M d x, \quad \text { that is, } \\
m(b-a) & \leq & \int_{a}^{b} f(x) d x & \leq M(b-a)
\end{array}
$$

Example: $\quad \int_{0}^{2} e^{x} d x$

If $x \geq 0$, what is $\int_{0}^{x} 2 t d t$?

The integral represents the area $A_{2}=\frac{1}{2} x(2 x)=x^{2}$ (by the formula for area of a triangle).

Q1 : What is $\int_{0}^{-1} 2 t d t$?

A) 0
B) -1
C) 1
D) 2
E) -2

Answer C: We can think of $\int_{0}^{-1} 2 t d t$ as a signed area, but that requires having the lower limit on the integral (a) be less than the upper limit (b). To make that true, we reverse the limits:

$$
\int_{0}^{-1} 2 t d t=-\int_{-1}^{0} 2 t d t . \quad \text { But } \int_{-1}^{0} 2 t d t \text { represents the negative of area } A_{1}
$$

So $\quad \int_{0}^{-1} 2 t d t=-\int_{-1}^{0} 2 t d t=-\left(-A_{1}\right)=A_{1}$. Since area $A_{1}=1$ (by triangle area formula), we get the final result $\int_{0}^{-1} 2 t d t=1$

Q2: If $x<0$, what is $\int_{0}^{x} 2 t d t$?

A) x
B) $-x$
C) $\frac{1}{3} x^{3}$
D) $-x^{2}$
E) x^{2}

Answer E) As in Q1, we can think of the integral as a (signed) area but that requires having the smaller number x as the lower limit for the integral. So we switch the limits to make that so:

$$
\begin{array}{r}
\int_{0}^{x} 2 t d t=-\left(\int_{x}^{0} 2 t d t\right) . \text { The integral } \int_{x}^{0} 2 t d t \text { gives the negative of area } A_{1}, \text { so } \\
\begin{aligned}
\int_{0}^{x} 2 t d t & =-\left(\int_{x}^{0} 2 t d t\right)=-\left(-A_{1}\right)=A_{1}, \text { and area } A_{1}
\end{aligned}=\frac{1}{2}|x||2 x| \\
\\
=|x|^{2}=x^{2}
\end{array}
$$

Define a new function $F(x)=\int_{0}^{x} 2 t d t$. The "recipe" for $\int_{0}^{x} f(t) d t$ is very complicated, but since $f(t)=2 t$ is so simple we were able to work out by simple geometry that

$$
F(x)=\int_{0}^{x} 2 t d t=x^{2} \text { for all } x
$$

For example, we know that $F(1)=\int_{0}^{1} 2 t d t=4 \quad$ and (above) that $F(-1)=1$.
Notice (just an observation) that F is an antiderivative for f :

$$
F^{\prime}(x)=\left(x^{2}\right)^{\prime}=2 x=f(x)
$$

It turns out (next lecture) that part of the Fundamental Theorem of Calculus states that:
for any continuous function $f(t)$ we can define a new function by making use of an integral:

$$
F(x)=\int_{0}^{x} f(t) d t \text { and that } F^{\prime}(x)=f(x)
$$

For example: $F(x)=\int_{0}^{x} e^{-t^{2}} d t \quad$ (there is no simpler formula for this function $F(x)$!) But $F^{\prime}(x)$ is $e^{-x^{2}}$ by the Fundamental Theorem of Calculus!

