From previous lecture:

$$
\text { for } f(t)=2 t: \quad \text { Define } F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} 2 t d t=x^{2}
$$

We worked out that $F(x)=\int_{0}^{x} 2 t d t=x^{2}$ simplifies to x^{2} using calculations of areas of triangles and properties of the integral.

Therefore we can compute $F^{\prime}(x)=\frac{d}{d x}\left(x^{2}\right)=2 x$

What effect would it have to change the " 0 " in the integral to some other constant?

Q1: What is a simpler formula for $F(x)=\int_{3}^{x} 2 t d t$?
(Recall: you know $\int_{0}^{x} 2 t d t=x^{2}$; think in terms of areas)
A) x^{2}
B) $x^{2}+3 x$
C) $x^{2}-3 x$
D) $x^{2}+4$
E) $x^{2}-9$

Answer E: $\quad \int_{0}^{x} 2 t d t=\int_{0}^{3} 2 t d t+\int_{3}^{x} 2 t d t \quad$ (from previous lecture, and true whether or $\begin{gathered}\quad \text { triangle area } \\ x^{2}=9^{\downarrow}\end{gathered}+\int_{3}^{x} 2 t d t$
so $F(x)=\int_{3}^{x} 2 t d t=x^{2}-9 . \quad$ Notice that it is still true that $F^{\prime}(x)=2 x$

A similar calculation will show you the $F(x)=\int_{a}^{x} 2 t d t=x^{2}+C$ where C is a constant (possibly negative). Therefore $F^{\prime}(x)=2 x$ no matter how the constant a is chosen.

In summary For any choice of the constant $a, F(x)=\int_{a}^{x} f(t) d t=\int_{a}^{x} 2 t d t$, $F(x)$ is an antiderivative for $f(x): F^{\prime}(x)=2 x$.

Fundamental Theorem of Calculus (Part I)

If f is continuous on $[a, b]$ and we define $F(x)=\int_{a}^{x} f(t) d t$
then F is an antiderivative for f, that is, $f^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$

We will talk some about why this is true in the next lecture.
Example:
If $F(x)=\int_{3}^{x} \sqrt{\frac{f}{1+\cos ^{2} t} d t}$. then $F^{\prime}(x)=\frac{d}{d x} \int_{3}^{x} \sqrt{1+\cos ^{2} t} d t=\sqrt{1+\cos ^{2} x}$

Example: $F(x)=\int_{x}^{3} \sqrt{1+\cos ^{2} t} d t$. The Fundamental Theorem (Part I) assume that the constant limit in the integral is the lower limit/ We need to put the problem into that form before we can apply the Fundamental Theorem:

$$
\begin{aligned}
F(x) & =\int_{x}^{3} \sqrt{1+\cos ^{2} t} d t=-\int_{3}^{x} \sqrt{1+\cos ^{2} t} d t, \text { so } \\
F^{\prime}(x) & =-\sqrt{1+\cos ^{2} x}
\end{aligned}
$$

Q2: Suppose $y=G(x)=\int_{0}^{\sin x} \sqrt{2+t} d t$. What is $\frac{d y}{d x}=G^{\prime}(x)$?
(Hint: Let $u=\sin x$ and use the chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$)
A) $G^{\prime}(x)=\sqrt{2+\sin x}$
B) $G^{\prime}(x)=\sqrt{2+\cos x}$
C) $G^{\prime}(x)=(\sin x) \sqrt{2+\sin x}$
D) $G^{\prime}(x)=(\cos x) \sqrt{2+\sin x}$
E) $G^{\prime}(x)=(\cos x) \sqrt{2+x}$

We have $y=\int_{0}^{u} \sqrt{2+t} d t$, where $u=\sin x$

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} . \text { From the Fundament Theorem Part } \mathrm{I}, \frac{d y}{d u}=\sqrt{2+u}
$$

so

$$
G^{\prime}(x)=\frac{d y}{d x}=\sqrt{2+u} \frac{d u}{d x}=\sqrt{2+\sin x}(\cos x)
$$

Consider the function $G(x)=\int_{0}^{\sin x} \sqrt{2+\cos t} d t$. Let's create a rough graph.
Since $\sin (x+2 \pi)=\sin x$, it must be true that $G(x+2 \pi)=G(x)$, so $G(x)$ is periodic with period 2π. We only need to try to draw the graph over the interval $[0,2 \pi]$.

We can compute a few values of the function easily: $G(\pi)=\int_{0}^{\sin \pi} \sqrt{2+t} d t$ $=\int_{0}^{0} \sqrt{2+t} d t=0$. Similarly, $G(0)=G(2 \pi)=0$

Since $\sqrt{2+\sin x}>0$, the sign of $G^{\prime}(x)=\sqrt{2+\sin x}(\cos x)$ is the same as the sign of \cos :

$$
\begin{array}{lll}
0<x<\frac{\pi}{2} & \cos x>0 & G^{\prime}(x)>0 \text { so } G(x) \text { is increasing } \\
\frac{\pi}{2}<x<\frac{3 \pi}{2} & \cos x<0 & G^{\prime}(x)<0 \text { so } G(x) \text { is decreasing } \\
\frac{3 \pi}{2}<x<2 \pi & \cos x>0 & G^{\prime}(x)>0 \text { so } G(x) \text { is increasing }
\end{array}
$$

So G has a local maximum at $x=\frac{\pi}{2}$ and a local minimum at $x=\frac{3 \pi}{2}$.
We could, of course also compute $G^{\prime \prime}(x)$ to check concavity and inflection points, but won't do that here. The graph of $G(x)$ looks like

(Notice, from the graph, that it appears that $\left.\left|G\left(\frac{\pi}{2}\right)\right|>\left|G\left(\frac{3 \pi}{2}\right)\right|\right)$
Fundamental Theorem of Calculus (Part II) Suppose f is continuous on $[a, b]$ and F is any antiderivative for f on $[a, b]$. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Note: We often abbreviate the expression $F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$

Why? $G(x)=\int_{a}^{x} f(t) d t$ is also an antiderivative for f on the interval $[a, b]$ so G and F must differ by a constant:

$$
\begin{aligned}
& G(x)=F(x)+C . \text { Evaluating at } x=a \text {. this gives } \\
& G(a)=F(a)+C . \text { But } G(a)=\int_{a}^{a} f(t) d t=0 . \text { So } \\
& 0 \quad=F(a)+C, \text { so } C+-F(a) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& G(x)=F(x)-F(a), \text { and so } \\
& G(b)=F(b)-F(a) \\
& \| \\
& \int_{a}^{b} f(t) d t \\
& \| \\
& \int_{a}^{b} f(x) d x
\end{aligned}
$$

The Fundamental Theorem (Part II) lets us to a lot of computations easily.

Example: We worked out (using a limit of Riemann sums) that $\int_{0}^{1} x^{2} d x=\frac{1}{3}$.
This was a long calculation. Using the Fundamental Theorem (Part II), we could simply say:

Pick any antiderivative $F(x)$ for $f(x)=x^{2}$. For example, pick $F(x)=\frac{1}{3} x^{3}$.
Then $\int_{0}^{1} x^{2} d x=\left.F(x)\right|_{0} ^{1}=\left.\left(\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{1}{3}(1)^{3}-\frac{1}{3}(0)^{3}=\frac{1}{3}$.
Notice that any other antiderivative of x^{2} would give the same answer. For example, if we had chosen $F(x)=\frac{1}{3} x^{3}+19$ then

$$
\int_{0}^{1} x^{2} d x=\left.F(x)\right|_{0} ^{1}=\left.\left(\frac{1}{3} x^{3}+19\right)\right|_{0} ^{1}=\frac{1}{3}(1+19)^{3}-\frac{1}{3}(0+19)^{3}=\frac{1}{3}
$$

The constant " 19 " cancels out in the arithmetic.

