From previous lecture:

for
$$f(t) = 2t$$
: Define $F(x) = \int_0^x f(t) dt = \int_0^x 2t dt = x^2$

We worked out that $F(x) = \int_0^x 2t \, dt = x^2$ simplifies to x^2 using calculations of areas of triangles and properties of the integral.

Therefore we can compute $F'(x) = \frac{d}{dx}(x^2) = 2x$

What effect would it have to change the "0" in the integral to some other constant?

Q1: What is a simpler formula for $F(x) = \int_3^x 2t \, dt$?

(Recall: you know $\int_0^x 2t \, dt = x^2$; think in terms of areas)

A) x^2 B) $x^2 + 3x$ C) $x^2 - 3x$ D) $x^2 + 4$ E) $x^2 - 9$

so $F(x) = \int_3^x 2t \, dt = x^2 - 9$. Notice that it is <u>still</u> true that F'(x) = 2x

A similar calculation will show you the $F(x) = \int_a^x 2t \, dt = x^2 + C$ where C is a constant (possibly negative). Therefore F'(x) = 2x no matter how the constant a is chosen.

In summary For any choice of the constant a, $F(x) = \int_a^x f(t) dt = \int_a^x 2t dt$, F(x) is an antiderivative for f(x): F'(x) = 2x.

Fundamental Theorem of Calculus (Part I)

If f is continuous on [a, b] and we define $F(x) = \int_a^x f(t) dt$

then F is an antiderivative for f, that is, $f'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x)$

We will talk some about <u>why</u> this is true in the next lecture.

Example:

If
$$F(x) = \int_3^x \sqrt{1 + \cos^2 t} \, dt$$
. then $F'(x) = \frac{d}{dx} \int_3^x \sqrt{1 + \cos^2 t} \, dt = \sqrt{1 + \cos^2 x}$

Example: $F(x) = \int_x^3 \sqrt{1 + \cos^2 t} \, dt$. The Fundamental Theorem (Part I) assume that the <u>constant limit</u> in the integral is the lower limit/ We need to put the problem into that form before we can apply the Fundamental Theorem:

$$F(x) = \int_{x}^{3} \sqrt{1 + \cos^{2} t} \, dt = -\int_{3}^{x} \sqrt{1 + \cos^{2} t} \, dt, \text{ so}$$
$$F'(x) = -\sqrt{1 + \cos^{2} x}$$

Q2: Suppose
$$y = G(x) = \int_0^{\sin x} \sqrt{2+t} \, dt$$
. What is $\frac{dy}{dx} = G'(x)$?

(*Hint*: Let $u = \sin x$ and use the chain rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$)

A) $G'(x) = \sqrt{2 + \sin x}$ B) $G'(x) = \sqrt{2 + \cos x}$ C) $G'(x) = (\sin x)\sqrt{2 + \sin x}$ D) $G'(x) = (\cos x)\sqrt{2 + \sin x}$ E) $G'(x) = (\cos x)\sqrt{2 + x}$

We have $y = \int_0^u \sqrt{2+t} dt$, where $u = \sin x$

 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$. From the Fundament Theorem Part I, $\frac{dy}{du} = \sqrt{2+u}$

so
$$G'(x) = \frac{dy}{dx} = \sqrt{2+u} \frac{du}{dx} = \sqrt{2+\sin x} (\cos x)$$

Consider the function $G(x) = \int_0^{\sin x} \sqrt{2 + \cos t} \, dt$. Let's create a rough graph.

Since $sin(x + 2\pi) = sin x$, it must be true that $G(x + 2\pi) = G(x)$, so G(x) is periodic with period 2π . We only need to try to draw the graph over the interval $[0, 2\pi]$.

We can compute a few values of the function easily: $G(\pi) = \int_0^{\sin \pi} \sqrt{2+t} dt$ = $\int_0^0 \sqrt{2+t} dt = 0$.. Similarly, $G(0) = G(2\pi) = 0$

Since $\sqrt{2 + \sin x} > 0$, the sign of $G'(x) = \sqrt{2 + \sin x} (\cos x)$ is the same as the sign of cos :

$0 < x < rac{\pi}{2}$	$\cos x > 0$	G'(x) > 0 so $G(x)$ is increasing
$\frac{\pi}{2} < x < \frac{3\pi}{2}$	$\cos x < 0$	G'(x) < 0 so $G(x)$ is decreasing
$\frac{3\pi}{2} < x < 2\pi$	$\cos x > 0$	G'(x) > 0 so $G(x)$ is increasing

So G has a local maximum at $x = \frac{\pi}{2}$ and a local minimum at $x = \frac{3\pi}{2}$.

We could, of course also compute G''(x) to check concavity and inflection points, but won't do that here. The graph of G(x) looks like

(*Notice, from the graph, that it appears that* $|G(\frac{\pi}{2})| > |G(\frac{3\pi}{2})|$)

<u>Fundamental Theorem of Calculus (Part II)</u> Suppose f is continuous on [a, b] and F is <u>any</u> antiderivative for f on [a, b]. Then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

Note: We often abbreviate the expression $F(b) - F(a) = F(x)|_a^b$

<u>Why?</u> $G(x) = \int_a^x f(t) dt$ is also an antiderivative for f on the interval [a, b] so G and F must differ by a constant:

$$G(x) = F(x) + C$$
. Evaluating at $x = a$. this gives
 $G(a) = F(a) + C$. But $G(a) = \int_a^a f(t) dt = 0$. So
 $0 = F(a) + C$, so $C + -F(a)$.

Therefore

$$G(x) = F(x) - F(a)$$
, and so
 $G(b) = F(b) - F(a)$
 \parallel
 $\int_{a}^{b} f(t) dt$
 \parallel
 $\int_{a}^{b} f(x) dx$

The Fundamental Theorem (Part II) lets us to a lot of computations easily.

Example: We worked out (using a limit of Riemann sums) that $\int_0^1 x^2 dx = \frac{1}{3}$. This was a long calculation. Using the Fundamental Theorem (Part II), we could simply say:

Pick any antiderivative F(x) for $f(x) = x^2$. For example, pick $F(x) = \frac{1}{3}x^3$.

Then
$$\int_0^1 x^2 dx = F(x)|_0^1 = (\frac{1}{3}x^3)|_0^1 = \frac{1}{3}(1)^3 - \frac{1}{3}(0)^3 = \frac{1}{3}x^3$$

Notice that any other antiderivative of x^2 would give the same answer. For example, if we had chosen $F(x) = \frac{1}{3}x^3 + 19$ then

$$\int_0^1 x^2 \, dx = F(x)|_0^1 = (\frac{1}{3}x^3 + 19)|_0^1 = \frac{1}{3}(1+19)^3 - \frac{1}{3}(0+19)^3 = \frac{1}{3}$$

The constant "19" cancels out in the arithmetic.