
If  is a function of , then the chain rule is involved: 
              

  
     

   

Q1  If , what is ?      
 

 

A)    B)     C)     D)     E)      
Answer C:          

  
  where   

                
     

   

so       


Example    Find   if      
 

  


Since the variable  appears in  the upper and lower limits of the integral, the both
Fundamental Theorem doesn't apply directly.  Break the integral into 2 pieces:
        

  
    



Since the first integral has the constant limit,  as the  limit, we need to reverse the upper
limits in order to apply the Fundamental Theorem to it.  So
          

  
    



     



  



“Breaking” the integral into two parts at was a arbitrary choice: it would have led to the
same answer to write         

 
   

17
17 

    !go through the steps above
 However, in certain cases “breaking the integral into two integrals” requires a
 little care:
 for example , we  write can't     

    
      

 The integral  doesn't make sense since the function has a vertical  
 

 asymptote at ( !).  We only defined the integral    draw the graph of   when  is continuous (or, at worst, has just a finite number of jump
 discontinuities) in the interval ) 
 There's no problem, above, with wherever you choose to “break the integral into
 two pieces.”  For example, no matter what is chosen

    is OK    
    

     
 

      
 since  is guaranteed to be continuous on both  and 

       



Since the Fundamental Theorem part II requires finding an antiderivative for , a new
notation is handy:

“ the antiderivatives for  are ”   means the same thing as    
         

For example:    a bunch of functions: all the antiderivatives of            
       
          

  is a is a . 
     number bunch of functions     

  is called a  is called an  
     definite integral indefinite integral  

       (which means the same as
        the antiderivatives for  

Example  We don't have many tools for finding antiderivatives yet: just remembering the
differentiation formulas and thinking backwards.  Sometimes some algebraic manipulation
lets you recognize what to do.
     


coscos


 

To find the integral, we need an antiderivative for . We can find one with a little coscos





manipulation:
 sec  tan    cos coscos cos cos

 
  
 

                
so, using the Fundamental Theorem (Part II)
  tan (tan ) tan   


  

    


coscos


                  

 



Q   Find the areas A1 and A2:

 
A) Area A1 Area A2   B)  Area A1 Area A2       
C)  Area A1 Area A2   D)  Area A1 Area A2        

   E) Area A1 Area A2   
 

Answer E:  Area                
      

   



 Area                 
  

     rectangle area)   
          

 

Notice:   the curve is    which we could rewrite as       
           

Rotating your head clockwise by 90°. you can think of area  as the area “under” the
graph of  and “above”  the interval So .                

 
   

And, with this sideways turn of the head,               
  





Suppose  and      
 

    
     
   alternate notations for   

 so Fundamental Theorem, Part II      
  
    
   
   

  
 The integrals on the left are all the same, just using different notation for .
 But notation  

 reminds rate of change of  us that the  gives the   
       with respect to the variable 
 So the Fundamental Theorem, Part II can be restated as

      Net Change Theorem
      ,   or 

     
 (*) rate of change of  net change in          

 A volcano erupts at time    is the total number of tonnes ofExample    
material ejected into the atmosphere by time , and so the rate at which material is 

ejected into the atmosphere at time  (tonnes/sec).
( )A tonne is a “metric ton” 1000 kg
Some collected data is arranged in a table
 

 
We can plot the data to see an  graph for , created by joining the dataapproximate 
points from the table with straight line segments.



   
How much material is ejected into the atmosphere by time ?  
Use the Net Change Theorem:
  ( ) is )  

  
          since 

              
  rate of change of  net change in  



We can only estimate  from the data  (   since we don't have a formula for   )
We could do this several ways, getting a slightly different estimate each time. Based on
the data its not completely clear which estimate is “better” but they are all in the same
“ball park.”

a) We can compute the  to estimate :left endpoint Riemann sum    


Divide  into  equal subintervals:  , left endpoints are             
                            
    (tonnes)              

b) Instead, we can compute the right endpoint Riemann sum  

                            
    (tonnes)              

c) We can :   (tonnes).average these two estimates   
     

Usually the average on  and  gives a better estimate for the integral than either  of the separate estimates.



Extra Information:  what does this average mean geometrically?
     

             
                       
 
 ( )       since (     

 
 



  a sum of trapezoidal areas.
 For example, in the picture below,
   is the area of the shaded trapezoid. 



  
The sum of the trapezoidal areas approximates the area under the graph.
In general, the average  is called the  

     trapezoidal approximation to the
integral. It's usually a better approximation to the actual value of an integral than
either of  or    

In this particular example, the pictured graph consists of straight line segments, and
therefore  sum of trapezoidal areas the  under the  graph.   exact area pictured
But remember that the  is itself only an approximation (based on thepictured graph
tabular data) for the true function Therefore  is still only an approximation to 
the “actual” value of  

 


