Approximating the area under a graph and above the *x*-axis *http://www.math.wustl.edu/~freiwald/Math131/areas.pdf*

In both pictures there are 4 rectangles: their bases are of equal length, $\Delta x = \frac{2-0}{4} = \frac{1}{2}$.

In L_4 , the height of each rectangle is the distance up to the graph at the <u>left</u> endpoint. So the heights are $f(0), f(\frac{1}{2}), f(1), f(\frac{3}{2})$

In R_4 , the height of each rectangle is the distance up to the graph at the <u>right</u> endpoint. So the heights are $f(\frac{1}{2}), f(1), f(\frac{3}{2}), f(2)$

Therefore $L_4 = \text{sum of areas} = f(0)\Delta x + f(\frac{1}{2})\Delta x + f(1)\Delta x + f(\frac{3}{2})\Delta x$ and $R_4 = \text{sum of areas} = f(\frac{1}{2})\Delta x + f(1)\Delta x + f(\frac{3}{2})\Delta x + f(2)\Delta x$

In \sum -notation, we could write : $R_4 = \sum_{i=1}^4 f(0 + i\Delta x) \Delta x = \sum_{i=1}^4 f(i\Delta x) \Delta x$ And we could write: $L_4 = \sum_{i=1}^4 f((i-1)\Delta x) \Delta x$

Because f is <u>increasing</u>, L_4 <u>underestimates</u> the area under $y = 2x^2$ above [0, 2], and R_4 overestimates it.

If we use a larger number of subdivisions, L_4 should give a better (under)estimate of the area under the graph, and R_4 should give a better (over)estimate of the area under the graph. Turn over for a short table.

n	L_n	R_n	
4	3.5000	7.5000	
100	5.2536	5.4136	
1000	5.3253	5.3413	For $n = 1000000$, more precision actually gives
100000	5.3333	5.3334	$L_{1000000} \approx 5.33332533333600$
1000000	5.3333	5.3333	$R_{1000000}\approx 5.33334133333600$

 $\stackrel{\downarrow}{\sim}$

 $\downarrow \\ ? \\ \frac{16}{3} \quad \frac{16}{3} \text{ loc} \\ \text{(area} \\ \text{under graph)}$ $\downarrow ? \\ \frac{16}{3} \text{ look like good guesses for the limits}$