A suggested outline for sketching the curve $y=f(x)$
This sequence of steps usually works fairly well. However, in some cases you might want to vary the order a bit or add some other things you want to check to get the best possible sketch.

What is the domain of $f(x)$ ? Does the formula for $y=f(x)$ allow you to "rule out" parts of the grid where no part of the graph will be?

Plot any points where it's very easy to evaluate $f$
Are there any vertical asymptotes (are there any points $a$ for which $\lim _{x \rightarrow a} f(x)= \pm \infty$ ?)

Find any points (critical points) where $f^{\prime}(x)$ does not exist or where $f^{\prime}(x)=0$. Plot these points: use a calculator, if necessary, to evaluate $f$ at each critical point. (Indicate somehow in the picture, just for yourself, whether each is a point where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ does not exist.)

Determine the intervals on which $f$ is increasing or decreasing. This will tell you also which critical points are local maxima or minima.

Find points where $f^{\prime \prime}(x)$ does not exist or $f^{\prime \prime}(x)=0$ : these points are candidates for inflection points.

Determine the intervals of which $f^{\prime \prime}(x)$ is positive or negative ( $=$ intervals on which $f^{\prime}(x)$ is increasing or decreasing). Use this information to determine whether $f$ is concave up (CU) or concave down (CD) on these intervals.

Using this information locate any inflection points and plot them.
Are there any horizontal asymptotes: check $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$

