## Review of Inverses (See text material in §1.5 and 1.6)

Functions $f$ and $g$ are called inverses to each other if each one "undoes" the effect of the other, that is : for $a$ in the domain of $f$ and $b$ in the domain of $g$,

2) if $g(b)=a$, then $f(a)=b$ (so that $f(g(b))=b$

Schematically,

$$
\begin{array}{lll}
a \\
a
\end{array} \quad \underset{\underset{g}{g}}{\stackrel{f}{\leftrightarrows}} \quad \begin{aligned}
& b \\
& b
\end{aligned}
$$

For example, $f(x)=2 x$ and $g(x)=\frac{1}{2} x$ are inverses because

$$
\left\{\begin{array}{l}
\text { 1) } g(f(a))=g(2 a)=\frac{1}{2}(2 a)=a, \quad \text { and } \\
\text { 2) } f(g(b))=f\left(\frac{1}{2} b\right)=2\left(\frac{1}{2} b\right)=b .
\end{array}\right.
$$

For inverse functions $f$ and $g$ :

$$
\begin{array}{ll}
\text { domain } f=\text { range } g \text {, and } \\
\text { domain } g=\text { range } f & \text { (from Equations 1) and 2)) } \\
(a, b) \text { is on the graph of } f & \begin{array}{l}
\text { if and only if } b=f(a) \\
\\
\text { if and only if } a=g(b) \\
\\
\\
\text { if and only if }(b, a) \text { is on the graph of } g
\end{array}
\end{array}
$$

(See the figure)


The preceding figure shows how the points $(a, b)$ and $(b, a)$ are related: each is the reflection of the other across the line $y=x$. Therefore the graphs of inverse functions $f$ and $g$ are reflections of each
other across the line $y=x$. (For example, carefully draw the graphs of $f(x)=2 x$ and $g(x)=\frac{1}{2} x$ to see a specific example of this reflection property of inverse functions.)

## Review of Exponential and Logarithm functions

Exponential functions and logarithm functions are inverses of each other. The inverse of $f(x)=a^{x}$ is $g(x)=\log _{a} x$. (Here, $a>0$ and $a \neq 1$. Since $1^{x}$ is constant we don't want to call it an "exponential" function; and we want to avoid functions like $(-2)^{x}$ because they aren't defined for certain $x$ 's - for example, $(-2)^{1 / 2}=$ ? )

The domain of $f(x)=a^{x}$ is the set of all real numbers $(-\infty, \infty)$ and the range is the set of all positive real numbers $(0, \infty)$. Therefore the domain for the inverse function $g(x)=\log _{a} x$ is $(0, \infty)$ its range is $(-\infty, \infty)$.

The two figures below show (on the left) the graphs of $2^{x}$ and $\log _{2} x$ and (on the right) the graphs of $\left(\frac{1}{2}\right)^{x}$ and $\log _{\frac{1}{2}} x$ (but most often we will be using a base $a>1$ ). The graphs are reflections of each other across the line $y=x$.


Because $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverse functions, Equations 1) and 2) tell us that $f(g(x))=x$ and $g(f(x))=x$, that is

$$
\begin{array}{lll}
(* *) & a^{\log _{a} x}=x & \text { for } x \text { in }(0, \infty) \text { and } \\
& \log _{a}\left(a^{x}\right)=x & \text { for } x \text { in }(-\infty, \infty)
\end{array}
$$

For example, $10^{\log _{10} 13}=13$ and $\log _{5}\left(5^{9}\right)=9$.

We can think of the equation $a^{\log _{a} x}=x$ as saying: " $\log _{a} x$ is the power (exponent) to which $a$ must be raised to give $x$." If we put it that way,
$\log _{10} 100=2$ because 2 is the exponent to which 10 must be raised to give 100
$\log _{3} 81=4$ because 4 is the exponent to which 3 must be raised to give 81 .
$\log _{a} 1=0$ because $a^{0}=1$.
Therefore $(1,0)$ is on the graph of $y=\log _{a} x$ for any base $a$; we should have known this anyway - because $(0,1)$ is on the graph of $y=a^{x}$.

Since logarithms can be thought of as exponents, they have properties like exponents. For example:
$\log _{a}(x y)=?$
This is asking " $a$ ? $=x y$ ".
The answer is $\log _{a} x+\log _{a} y$, because the laws of exponents say

$$
a^{\log _{a} x+\log _{a} y}=a^{\log _{a} x} \cdot a^{\log _{a} y}=x y
$$

Therefore

$$
\log _{a} x y=\log _{a} x+\log _{a} y
$$

$\log _{a}\left(x^{r}\right)=$ ?
This is asking " $a$ ? $x^{r}$."
The answer is $r \log _{a} x$ because the laws of exponents say $a^{r \log _{a} x}=\left(a^{\log _{a} x}\right)^{r}=x^{r}$.
Therefore

$$
\log _{a}\left(x^{r}\right)=r \log _{a} x
$$

Examples: 1) $\log _{3}(48)=\log _{3}(3 \cdot 16)=\log _{3} 3+\log _{3}(16)=1+\log _{3} 16$
2) $\log _{10}(400)=\log _{10}\left(10^{2}\right)+\log _{10}(4)=2+\log _{10} 4$
3) To solve $10^{3 x^{2}-4}=7$, we can "kill" the exponential with a logarithm:

$$
\begin{aligned}
& \log _{10}\left(10^{3 x^{2}-4}\right)=\log _{10} 7 \\
& 3 x^{2}-4=\log _{10} 7 \\
& x^{2}=\left(4+\log _{10} 7\right) / 3 \\
& x= \pm \sqrt{\left(4+\log _{10} 7\right) / 3}
\end{aligned}
$$

4) To solve $\log _{9}(7 x-3)=10$, we can "kill" the logarithm with an exponential:

$$
\begin{aligned}
& 9^{\log _{9}(7 x-3)}=9^{10} \\
& 7 x-3=9^{10} \\
& x=\left(9^{10}+3\right) / 7
\end{aligned}
$$

The base most often used in calculus is base $a=e$, because (as we have seen) the exponential $f(x)=a^{x}$ has the simplest derivative when $a=e$ :

$$
\begin{aligned}
& \frac{d}{d x}\left(a^{x}\right)=(\ln a) \cdot a^{x}, \text { and, when } a=e, \\
& \frac{d}{d x}\left(e^{x}\right)=(\ln e) \cdot e^{x}=1 \cdot e^{x}=e^{x}
\end{aligned}
$$

For $y=f(x)=e^{x}$, the tangent line at $(0,1)$ on the graph has slope $f^{\prime}(1)=1$.
For $y=f(x)=a^{x}$, the tangent line at $(0,1)$ on the graph has slope $f^{\prime}(1)=\ln a$.
As we know, $e$ is a constant whose value is approximately 2.71828. The exponential function $y=e^{x}$ has $y=\log _{e} x$ as its inverse. Since we most often use base $e, \log _{e} x$ is given a simpler name: $\log _{e} x=\ln x$.

We can use properties of logarithms to see how to convert logs from one base to another.
The conversion formula is:

$$
(* * *) \quad \log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

(In remembering this: imagine you already know how to compute logs with base a and want to do logs in base b instead: the "new thing", $\log _{b} x$ (on the left), is given in terms of the "old things": all the logs on the right side of the equation are base $a$.

Why is (***) true?
Equation ( ${ }^{* * *}$ ) is the same as saying:

$$
\left(\log _{b} x\right)\left(\log _{a} b\right)=\log _{a} x
$$

To verify that, we need to check whether

$$
a^{\left(\log _{b} x\right)\left(\log _{a} b\right)}=x
$$

But that's true because of laws of exponents:

$$
\begin{aligned}
a^{\left(\log _{b} x\right)\left(\log _{a} b\right)} & =\left(\left(a^{\left.\log _{b} b\right)}\right)^{\left(\log _{b} x\right)}\right. \\
& =b^{\log _{b} x}=x .
\end{aligned}
$$

For example,

$$
\log _{a} x=\frac{\log _{e} x}{\log _{e} a}=\frac{\ln x}{\ln a}
$$

Therefore if your calculator can do "In", you can also use it to find the value of, say, $\log _{17} 35$.

For base $a=e$, the earlier equations ( ${ }^{* *}$ ) become: $e^{\ln x}=x \quad$ and $\ln \left(e^{x}\right)=x$
The graphs look like:


Notice how in reflecting across the line $y=x$, the horizontal asymptote ( $x$-axis) of $y=e^{x}$ turns into a vertical asymptote (the $y$-axis) for the graph of the inverse $y=\ln x$.

We know that for $f(x)=e^{x}, f^{\prime}(x)=f^{\prime \prime}(x)=e^{x}$. Since the first and second derivatives are both always $>0, e^{x}$ is always increasing and concave up (as the graph seems to show.).

We will see soon that for $g(x)=\ln x$ :

$$
g^{\prime}(x)=\frac{1}{x}, \quad \text { and so } \quad g^{\prime \prime}(x)=-\frac{1}{x^{2}}
$$

Since $g(x)$ is only defined for $x>0, \frac{1}{x}$ is always $>0$ so the graph of $y=\ln x$ is always increasing. Since $-\frac{1}{x^{2}}<0$ always, the graph of $y=\ln x$ is always concave down (as the graph seems to indicate).

Notice finally that:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} e^{x}=\infty, \quad \lim _{x \rightarrow-\infty} e^{x}=0 \\
& \lim _{x \rightarrow 0^{+}} \ln x=\infty \text { and } \lim _{x \rightarrow \infty} \ln x=\infty .
\end{aligned}
$$

The last limit seems a little counterintuitive: $(\ln x)^{\prime}=\frac{1}{x} \rightarrow 0$ as $x \rightarrow \infty$ : the graph "flattens out," so one might feel like there's a horizontal asymptote. But a little thought shows that this is false: $\ln x$ can be made as large as we like by taking $x$ large enough. For example: $\ln x>1000$ if $e^{\ln x}>e^{1000}$. Of course, $e^{1000}$ is very large: $e^{1000}>10^{333}$ (why?!?). It takes a long while for the graph of $\ln x$ to rise above height 1000 , but it does eventually do so.

