Section 5.5 Inverse Trigonometric Functions and Their Graphs

DEFINITION: The **inverse sine function**, denoted by $\sin^{-1} x$ (or $\arcsin x$), is defined to be the inverse of the restricted sine function

DEFINITION: The **inverse cosine function**, denoted by $\cos^{-1} x$ (or $\arccos x$), is defined to be the inverse of the restricted cosine function

DEFINITION: The inverse tangent function, denoted by $\tan^{-1} x$ (or $\arctan x$), is defined to be the inverse of the restricted tangent function

DEFINITION: The **inverse cotangent function**, denoted by $\cot^{-1} x$ (or $\operatorname{arccot} x$), is defined to be the inverse of the restricted cotangent function

DEFINITION: The **inverse secant function**, denoted by $\sec^{-1} x$ (or $\operatorname{arcsec} x$), is defined to be the inverse of the restricted secant function

DEFINITION: The inverse cosecant function, denoted by $\csc^{-1} x$ (or $\arccos x$), is defined to be the inverse of the restricted cosecant function

IMPORTANT: Do not confuse

 $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, $\cot^{-1} x$, $\sec^{-1} x$, $\csc^{-1} x$

with

1	1	1	1	1	1
$\overline{\sin x}$,	$\overline{\cos x}$,	$\overline{\tan x}$,	$\overline{\cot x}$,	$\overline{\sec x}$,	$\overline{\csc x}$

FUNCTION	DOMAIN	RANGE
$\sin^{-1}x$	[-1, 1]	$[-\pi/2,\pi/2]$
$\cos^{-1}x$	[-1, 1]	$[0,\pi]$
$\tan^{-1} x$	$(-\infty,+\infty)$	$(-\pi/2,\pi/2)$
$\cot^{-1}x$	$(-\infty,+\infty)$	$(0,\pi)$
$\sec^{-1} x$	$(-\infty,-1] \cup [1,+\infty)$	$[0,\pi/2) \cup [\pi,3\pi/2)$
$\csc^{-1} x$	$(-\infty,-1] \cup [1,+\infty)$	$(0, \pi/2] \cup (\pi, 3\pi/2]$

FUNCTION	DOMAIN	RANGE	t	sin t	cos t	tan t	csc t	sec t	cot t
$\sin^{-1} r$	[_1 1]	$[-\pi/2 \pi/2]$	0	0	1	0	—	1	—
1			π	1	$\sqrt{3}$	$\sqrt{3}$	2	$2\sqrt{3}$	1/2
$\cos^{-1}x$	[-1, 1]	$[0,\pi]$	6	2	2	3	2	3	V 3
$\tan^{-1} x$	$(-\infty,+\infty)$	$(-\pi/2,\pi/2)$	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\cot^{-1} x$	$(-\infty,+\infty)$	$(0,\pi)$	π	$\sqrt{3}$	- 1	1/2	$2\sqrt{3}$	2	$\sqrt{3}$
$\sec^{-1} x$	$(-\infty,-1]\cup[1,+\infty)$	$[0,\pi/2) \cup [\pi,3\pi/2)$	3	2	$\overline{2}$	V3	3	2	3
$\csc^{-1} x$	$(-\infty, -1] \cup [1, +\infty)$	$(0,\pi/2] \cup (\pi,3\pi/2]$	$\frac{\pi}{2}$	1	0	—	1	—	0

y

AII

Cosine

x

Sine

Tangent

EXAMPLES:

- (a) $\sin^{-1} 1 = \frac{\pi}{2}$, since $\sin \frac{\pi}{2} = 1$ and $\frac{\pi}{2} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (b) $\sin^{-1}(-1) = -\frac{\pi}{2}$, since $\sin\left(-\frac{\pi}{2}\right) = -1$ and $-\frac{\pi}{2} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (c) $\sin^{-1} 0 = 0$, since $\sin 0 = 0$ and $0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (d) $\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$, since $\sin\frac{\pi}{6} = \frac{1}{2}$ and $\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (e) $\sin^{-1}\frac{\sqrt{3}}{2} = \frac{\pi}{3}$, since $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$ and $\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (f) $\sin^{-1}\frac{\sqrt{2}}{2} = \frac{\pi}{4}$, since $\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ and $\frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

EXAMPLES:

$$\cos^{-1} 0 = \frac{\pi}{2}, \quad \cos^{-1} 1 = 0, \quad \cos^{-1} (-1) = \pi, \quad \cos^{-1} \frac{1}{2} = \frac{\pi}{3}, \quad \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}, \quad \cos^{-1} \frac{\sqrt{2}}{2} = \frac{\pi}{4}$$
$$\tan^{-1} 1 = \frac{\pi}{4}, \quad \tan^{-1} (-1) = -\frac{\pi}{4}, \quad \tan^{-1} \sqrt{3} = \frac{\pi}{3}, \quad \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}, \quad \tan^{-1} \left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$

EXAMPLES: Find $\sec^{-1} 1$, $\sec^{-1}(-1)$, and $\sec^{-1}(-2)$.

FUNCTION	DOMAIN	RANGE	t	sin t	cos t	tan <i>t</i>	csc t	sec t	cot t
$\sin^{-1} x$	[_1 1]	$[-\pi/2,\pi/2]$	0	0	1	0	—	1	—
$\cos^{-1}x$	[-1,1]	$[0,\pi]$	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$\tan^{-1}x$	$(-\infty, +\infty)$	$(-\pi/2,\pi/2)$	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\cot^{-1} x$	$(-\infty, +\infty)$	$(0,\pi)$	-4 π	$\sqrt{3}$	1	. (5	$2\sqrt{3}$	2	$\sqrt{3}$
$\sec^{-1} x$	$(-\infty,-1]\cup[1,+\infty)$	$[0, \pi/2) \cup [\pi, 3\pi/2)$	3	2	2	$\sqrt{3}$	3	2	3
$\csc^{-1} x$	$(-\infty, -1] \cup [1, +\infty)$	$(0, \pi/2] \cup (\pi, 3\pi/2]$	$\frac{\pi}{2}$	1	0	—	1	—	0

y▲

AII

Cosine

 \hat{x}

<mark>S</mark>ine

EXAMPLES: Find $\sec^{-1} 1$, $\sec^{-1}(-1)$, and $\sec^{-1}(-2)$. Solution: We have sec⁻¹ 1 = 0, sec⁻¹(-1) = π , sec⁻¹(-2) = $\frac{4\pi}{3}$ $\sec 0 = 1$, $\sec \pi = -1$, $\sec \frac{4\pi}{3} = -2$ Tangent since

and

 $0, \pi, \frac{4\pi}{3} \in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$

Note that $\sec \frac{2\pi}{3}$ is also -2, but

$$\sec^{-1}(-2) \neq \frac{2\pi}{3}$$

since

$$\frac{2\pi}{3} \not\in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$$

EXAMPLES: Find

$$\tan^{-1}0$$
 $\cot^{-1}0$ $\cot^{-1}1$ $\sec^{-1}\sqrt{2}$ $\csc^{-1}2$ $\csc^{-1}\frac{2}{\sqrt{3}}$

FUNCTION	DOMAIN	RANGE	t	sin t	cos t	tan <i>t</i>	csc t	sec t	cot t
$\sin^{-1} r$	[_1 1]	$[-\pi/2 \pi/2]$	0	0	1	0	-	1	—
1			π	1	$\sqrt{3}$	$\sqrt{3}$	2	$2\sqrt{3}$	1/2
$\cos^{-1}x$	[-1, 1]	$[0,\pi]$	6	2	2	3	2	3	V 5
$\tan^{-1} x$	$(-\infty, +\infty)$	$(-\pi/2,\pi/2)$	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\cot^{-1} x$	$(-\infty,+\infty)$	$(0,\pi)$	π	$\sqrt{3}$	1	2/2	$2\sqrt{3}$	2	$\sqrt{3}$
$\sec^{-1} x$	$(-\infty, -1] \cup [1, +\infty)$	$[0, \pi/2) \cup [\pi, 3\pi/2)$	3	2	2	V 3	3	2	3
$\csc^{-1} x$	$(-\infty, -1] \cup [1, +\infty)$	$(0, \pi/2] \cup (\pi, 3\pi/2]$	$\frac{\pi}{2}$	1	0	—	1	-	0

EXAMPLES: We have

$$\tan^{-1} 0 = 0$$
, $\cot^{-1} 0 = \frac{\pi}{2}$, $\cot^{-1} 1 = \frac{\pi}{4}$, $\sec^{-1} \sqrt{2} = \frac{\pi}{4}$, $\csc^{-1} 2 = \frac{\pi}{6}$, $\csc^{-1} \frac{2}{\sqrt{3}} = \frac{\pi}{3}$

EXAMPLES: Evaluate

(a) $\sin\left(\arcsin\frac{\pi}{6}\right)$, $\arcsin\left(\sin\frac{\pi}{6}\right)$, and $\arcsin\left(\sin\frac{7\pi}{6}\right)$. (b) $\sin\left(\arcsin\frac{\pi}{7}\right)$, $\arcsin\left(\sin\frac{\pi}{7}\right)$, and $\arcsin\left(\sin\frac{8\pi}{7}\right)$. (c) $\cos\left(\arccos\left(-\frac{2}{5}\right)\right)$, $\arccos\left(\cos\frac{2\pi}{5}\right)$, and $\arccos\left(\cos\frac{9\pi}{5}\right)$.

Solution: Since $\arcsin x$ is the inverse of the restricted sine function, we have

$$\sin(\arcsin x) = x \text{ if } x \in [-1, 1] \quad \text{and} \quad \arcsin(\sin x) = x \text{ if } x \in [-\pi/2, \pi/2]$$
Therefore
(a)
$$\sin\left(\arcsin\frac{\pi}{6}\right) = \arcsin\left(\sin\frac{\pi}{6}\right) = \frac{\pi}{6}, \text{ but}$$

$$\operatorname{arcsin}\left(\sin\left(\frac{\pi}{6}\right)\right) = \operatorname{arcsin}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \quad \operatorname{Tangent} \quad \operatorname{Cosine} \quad \operatorname{arcsin}\left(\sin\frac{7\pi}{6}\right) = \operatorname{arcsin}\left(\sin\left(\pi + \frac{\pi}{6}\right)\right) = \operatorname{arcsin}\left(-\sin\frac{\pi}{6}\right) = -\operatorname{arcsin}\left(\sin\frac{\pi}{6}\right) = -\frac{\pi}{6}$$
(b)
$$\sin\left(\arcsin\frac{\pi}{7}\right) = \arcsin\left(\sin\frac{\pi}{7}\right) = \frac{\pi}{7}, \text{ but}$$

$$\operatorname{arcsin}\left(\sin\frac{8\pi}{7}\right) = \arcsin\left(\sin\left(\frac{\pi}{7} + \pi\right)\right) = \operatorname{arcsin}\left(-\sin\frac{\pi}{7}\right) = -\operatorname{arcsin}\left(\sin\frac{\pi}{7}\right) = -\frac{\pi}{7}$$
(c)
$$\operatorname{Similarly, since \arccos x is the inverse of the restricted cosine function, we have
$$\cos(\arccos x) = x \text{ if } x \in [-1, 1] \quad \text{and} \quad \operatorname{arccos}(\cos x) = x \text{ if } x \in [0, \pi]$$
Therefore
$$\cos\left(\arccos\left(-\frac{2}{5}\right)\right) = -\frac{2}{5} \text{ and } \operatorname{arccos}\left(\cos\frac{2\pi}{5}\right) = \frac{2\pi}{5}, \text{ but}$$$$

$$\operatorname{arccos}\left(\cos\frac{9\pi}{5}\right) = \operatorname{arccos}\left(\cos\left(2\pi - \frac{\pi}{5}\right)\right) = \operatorname{arccos}\left(\cos\frac{\pi}{5}\right) = \frac{\pi}{5}$$