Section 5.5 Inverse Trigonometric Functions and Their Graphs

DEFINITION: The inverse sine function, denoted by $\sin ^{-1} x($ or $\arcsin x)$, is defined to be the inverse of the restricted sine function

$$
\sin x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

DEFINITION: The inverse cosine function, denoted by $\cos ^{-1} x($ or $\arccos x)$, is defined to be the inverse of the restricted cosine function
y=

DEFINITION: The inverse tangent function, denoted by $\tan ^{-1} x$ (or $\arctan x$), is defined to be the inverse of the restricted tangent function

$$
\tan x, \quad-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

$y=\tan x$

$y=\tan x,-\frac{\pi}{2}<x<\frac{\pi}{2}$

$y=\tan ^{-1} x$

DEFINITION: The inverse cotangent function, denoted by $\cot ^{-1} x(\operatorname{or} \operatorname{arccot} x)$, is defined to be the inverse of the restricted cotangent function

$y=\cot x$

$$
\cot x, \quad 0<x<\pi
$$

$y=\cot x, 0<x<\pi$

$y=\cot ^{-1} x$

DEFINITION: The inverse secant function, denoted by $\sec ^{-1} x($ or $\operatorname{arcsec} x)$, is defined to be the inverse of the restricted secant function
$\sec x, \quad x \in[0, \pi / 2) \cup[\pi, 3 \pi / 2)$
[or $x \in[0, \pi / 2) \cup(\pi / 2, \pi]$ in some other textbooks]

$y=\sec x$

$y=\sec x, 0 \leq x<\frac{\pi}{2}, \pi \leq x<\frac{3 \pi}{2}$

$y=\sec ^{-1} x$

DEFINITION: The inverse cosecant function, denoted by $\csc ^{-1} x$ (or $\operatorname{arccsc} x$), is defined to be the inverse of the restricted cosecant function
$\csc x, \quad x \in(0, \pi / 2] \cup(\pi, 3 \pi / 2] \quad[$ or $x \in[-\pi / 2,0) \cup(0, \pi / 2]$ in some other textbooks]

$y=\csc x, 0<x \leq \frac{\pi}{2}, \pi<x \leq \frac{3 \pi}{2}$

$y=\csc ^{-1} x$

IMPORTANT: Do not confuse

$$
\sin ^{-1} x, \quad \cos ^{-1} x, \quad \tan ^{-1} x, \quad \cot ^{-1} x, \quad \sec ^{-1} x, \quad \csc ^{-1} x
$$

with

$$
\frac{1}{\sin x}, \quad \frac{1}{\cos x}, \quad \frac{1}{\tan x}, \quad \frac{1}{\cot x}, \quad \frac{1}{\sec x}, \quad \frac{1}{\csc x}
$$

FUNCTION	DOMAIN	RANGE
$\sin ^{-1} x$	$[-1,1]$	$[-\pi / 2, \pi / 2]$
$\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1} x$	$(-\infty,+\infty)$	$(-\pi / 2, \pi / 2)$
$\cot ^{-1} x$	$(-\infty,+\infty)$	$(0, \pi)$
$\sec ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$[0, \pi / 2) \cup[\pi, 3 \pi / 2)$
$\csc ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$(0, \pi / 2] \cup(\pi, 3 \pi / 2]$

FUNCTION	DOMAIN	RANGE	t	$\sin t$	$\cos t$	$\tan t$	$\csc t$	$\sec t$	$\cot t$
$\sin ^{-1} x$	$[-1,1]$	$[-\pi / 2, \pi / 2]$	0	0	1	0	-	1	-
$\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\tan ^{-1} x$	$(-\infty,+\infty)$	$(-\pi / 2, \pi / 2)$	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\cot ^{-1} x$	$(-\infty,+\infty)$	$(0, \pi)$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\sec ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$[0, \pi / 2) \cup[\pi, 3 \pi / 2)$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	1	0	-	1	-
$\csc ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$(0, \pi / 2] \cup(\pi, 3 \pi / 2]$	$\frac{\pi}{2}$	0					

EXAMPLES:

(a) $\sin ^{-1} 1=\frac{\pi}{2}$, since $\sin \frac{\pi}{2}=1$ and $\frac{\pi}{2} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(b) $\sin ^{-1}(-1)=-\frac{\pi}{2}$, since $\sin \left(-\frac{\pi}{2}\right)=-1$ and $-\frac{\pi}{2} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(c) $\sin ^{-1} 0=0$, since $\sin 0=0$ and $0 \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

(d) $\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$, since $\sin \frac{\pi}{6}=\frac{1}{2}$ and $\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(e) $\sin ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{3}$, since $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ and $\frac{\pi}{3} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(f) $\sin ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4}$, since $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ and $\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

EXAMPLES:

$$
\begin{aligned}
& \cos ^{-1} 0=\frac{\pi}{2}, \quad \cos ^{-1} 1=0, \quad \cos ^{-1}(-1)=\pi, \quad \cos ^{-1} \frac{1}{2}=\frac{\pi}{3}, \quad \cos ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{6}, \quad \cos ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4} \\
& \tan ^{-1} 1=\frac{\pi}{4}, \quad \tan ^{-1}(-1)=-\frac{\pi}{4}, \quad \tan ^{-1} \sqrt{3}=\frac{\pi}{3}, \quad \tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}, \quad \tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{6}
\end{aligned}
$$

EXAMPLES: Find $\sec ^{-1} 1, \sec ^{-1}(-1)$, and $\sec ^{-1}(-2)$.

FUNCTION	DOMAIN	RANGE	t	$\sin t$	$\cos t$	$\tan t$	$\csc t$	$\sec t$	$\cot t$
$\sin ^{-1} x$	$[-1,1]$	$[-\pi / 2, \pi / 2]$	0	0	1	0	-	1	-
$\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\tan ^{-1} x$	$(-\infty,+\infty)$	$(-\pi / 2, \pi / 2)$	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\cot ^{-1} x$	$(-\infty,+\infty)$	$(0, \pi)$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\sec ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$[0, \pi / 2) \cup[\pi, 3 \pi / 2)$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	1	0	-	1	-
$\csc ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$(0, \pi / 2] \cup(\pi, 3 \pi / 2]$	$\frac{\pi}{2}$	0					

EXAMPLES: Find $\sec ^{-1} 1, \sec ^{-1}(-1)$, and $\sec ^{-1}(-2)$.
Solution: We have

$$
\sec ^{-1} 1=0, \quad \sec ^{-1}(-1)=\pi, \quad \sec ^{-1}(-2)=\frac{4 \pi}{3}
$$

since

$$
\sec 0=1, \quad \sec \pi=-1, \quad \sec \frac{4 \pi}{3}=-2
$$

and

$$
0, \pi, \frac{4 \pi}{3} \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)
$$

Note that $\sec \frac{2 \pi}{3}$ is also -2 , but

$$
\sec ^{-1}(-2) \neq \frac{2 \pi}{3}
$$

since

$$
\frac{2 \pi}{3} \notin\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)
$$

EXAMPLES: Find

$$
\tan ^{-1} 0 \quad \cot ^{-1} 0 \quad \cot ^{-1} 1 \quad \sec ^{-1} \sqrt{2} \quad \csc ^{-1} 2 \quad \csc ^{-1} \frac{2}{\sqrt{3}}
$$

FUNCTION	DOMAIN	RANGE	t	$\sin t$	$\cos t$	$\tan t$	$\csc t$	$\sec t$	$\cot t$
$\sin ^{-1} x$	$[-1,1]$	$[-\pi / 2, \pi / 2]$	0	0	1	0	-	1	-
$\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\tan ^{-1} x$	$(-\infty,+\infty)$	$(-\pi / 2, \pi / 2)$	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\cot ^{-1} x$	$(-\infty,+\infty)$	$(0, \pi)$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\sec ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$[0, \pi / 2) \cup[\pi, 3 \pi / 2)$	$\frac{1}{3}$	$\frac{\pi}{2}$	1	0	-	1	-
$\csc ^{-1} x$	$(-\infty,-1] \cup[1,+\infty)$	$(0, \pi / 2] \cup(\pi, 3 \pi / 2]$	$\frac{\pi}{2}$	0					

EXAMPLES: We have

$$
\tan ^{-1} 0=0, \quad \cot ^{-1} 0=\frac{\pi}{2}, \quad \cot ^{-1} 1=\frac{\pi}{4}, \quad \sec ^{-1} \sqrt{2}=\frac{\pi}{4}, \quad \csc ^{-1} 2=\frac{\pi}{6}, \quad \csc ^{-1} \frac{2}{\sqrt{3}}=\frac{\pi}{3}
$$

EXAMPLES: Evaluate

(a) $\sin \left(\arcsin \frac{\pi}{6}\right)$, $\arcsin \left(\sin \frac{\pi}{6}\right)$, and $\arcsin \left(\sin \frac{7 \pi}{6}\right)$.
(b) $\sin \left(\arcsin \frac{\pi}{7}\right), \arcsin \left(\sin \frac{\pi}{7}\right)$, and $\arcsin \left(\sin \frac{8 \pi}{7}\right)$.
(c) $\cos \left(\arccos \left(-\frac{2}{5}\right)\right), \arccos \left(\cos \frac{2 \pi}{5}\right)$, and $\arccos \left(\cos \frac{9 \pi}{5}\right)$.

Solution: Since $\arcsin x$ is the inverse of the restricted sine function, we have

$$
\sin (\arcsin x)=x \text { if } x \in[-1,1] \quad \text { and } \quad \arcsin (\sin x)=x \text { if } x \in[-\pi / 2, \pi / 2]
$$

Therefore
(a) $\sin \left(\arcsin \frac{\pi}{6}\right)=\arcsin \left(\sin \frac{\pi}{6}\right)=\frac{\pi}{6}$, but

$$
\arcsin \left(\sin \frac{7 \pi}{6}\right)=\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

or

$$
\arcsin \left(\sin \frac{7 \pi}{6}\right)=\arcsin \left(\sin \left(\pi+\frac{\pi}{6}\right)\right)=\arcsin \left(-\sin \frac{\pi}{6}\right)=-\arcsin \left(\sin \frac{\pi}{6}\right)=-\frac{\pi}{6}
$$

(b) $\sin \left(\arcsin \frac{\pi}{7}\right)=\arcsin \left(\sin \frac{\pi}{7}\right)=\frac{\pi}{7}$, but

$$
\arcsin \left(\sin \frac{8 \pi}{7}\right)=\arcsin \left(\sin \left(\frac{\pi}{7}+\pi\right)\right)=\arcsin \left(-\sin \frac{\pi}{7}\right)=-\arcsin \left(\sin \frac{\pi}{7}\right)=-\frac{\pi}{7}
$$

(c) Similarly, since $\arccos x$ is the inverse of the restricted cosine function, we have

$$
\cos (\arccos x)=x \text { if } x \in[-1,1] \quad \text { and } \quad \arccos (\cos x)=x \text { if } x \in[0, \pi]
$$

Therefore $\cos \left(\arccos \left(-\frac{2}{5}\right)\right)=-\frac{2}{5}$ and $\arccos \left(\cos \frac{2 \pi}{5}\right)=\frac{2 \pi}{5}$, but

$$
\arccos \left(\cos \frac{9 \pi}{5}\right)=\arccos \left(\cos \left(2 \pi-\frac{\pi}{5}\right)\right)=\arccos \left(\cos \frac{\pi}{5}\right)=\frac{\pi}{5}
$$

