A. particle is moving up and down along a vertical straight line. The graph of its position s = f(t) is pictured below, where s is measured in meters and t in seconds.

Answer a)*-c) based solely on information in the picture.*

a) When does the particle have positive velocity? negative velocity?

b) When does the particle have positive acceleration? negative acceleration?

c) What is the <u>average velocity</u> of the point during the trip? Are there any times where the instantaneous velocity appears to equal the average velocity?

Suppose now that you know the actual equation: $s = f(t) = t^3 - 6t^2 + 9t - 3$.

- d) Give an exact answer for part b).
- e) During the trip (that is, for $0 \le t \le 4$) :
 - i) What is the net change of position of the particle?
 - ii) What is the total distance traveled by the particle?

t	S
0	-3
1	1
2	- 1
3	- 3
4	1